
Automatic Endosomal Structure Detection And Localization in 
Fluorescence Microscopic Images

Dongyun Lin and Zhiping Lin
School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore

Ramraj Velmurugan and Raimund J. Ober
Department of Biomedical Engineering, Texas A&M University, Texas, US

Abstract

This paper proposes a modified spatially-constrained similarity measure (mSCSM) method for 

endosomal structure detection and localization under the bag-of-words (BoW) framework. To our 

best knowledge, the proposed mSCSM is the first method for fully automatic detection and 

localization of complex subcellular compartments like endosomes. Essentially, a new similarity 

score and a novel two-stage output control scheme are proposed for localization by extracting 

discriminative information within a group of query images. Compared with the original SCSM 

which is formulated for instance localization, the proposed mSCSM can address category based 

localization problems. The preliminary experimental results show the proposed mSCSM can 

correctly detect and localize 79.17% of the existing endosomal structures in the microscopic 

images of human myeloid endothelial cells.
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I. Introduction

In cell biology, proteins which localize to particular subcellular compartments (organelles) 

may be imaged via fluorescence microscopy to produce snapshots of these organelles inside 

the cells. These organelle localization images are generally segmented and processed 

manually, owing to the complexity in morphology, variations in intensities among individual 

organelles and overlap between neighboring structures in dense images (Fig. 1A). 

Endosomes are one such type of subcellular organelles that are found in all eukaryotic cells 

and function as transport compartments that shuttle proteins, nutrients and other materials 

between different destinations in the cell [1]. They generally appear in 2-dimensional 

fluorescence microscopic images as hollow ring-like structures (Fig. 1B), diffraction-limited 

spots (Fig. 1C) or tubule-like structures (Fig. 1D). One of the problems of relevance to drug 

discovery is the identification of ring-like endosomal structures, which would allow the 

assessment of the effectiveness of a particular class of drugs called therapeutic monoclonal 

antibodies [2].
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While attempts have been made in the past to use automated methods to identify subcellular 

compartments, the methods were either used for classification of entire images of a single 

compartment [3] or focused on lower-magnification segmentation tasks like identification of 

cell nuclei (which often comprise more than 50% volume of the cell) in large tissue samples 

[4]. However, these methods were not tested or optimized for their efficiency in localizing 

complex subcellular compartment types, e.g., endosomes.

In this paper, we propose a method which can automatically detect and localize endosomal 

structures in florescence microscopic images under the popular bag-of-words (BoW) 

framework. BoW is one of the state-of-the-art approaches for object retrieval and 

localization [5][6][7]. In this framework, it firstly vector quantizes (VQ) local features of 

images into clusters and defines centers of these clusters as visual words. Then, an image is 

represented as a histogram of visual words through assigning its local features to their 

nearest visual word. Ref. [6] proposed spatially-constrained similarity measure (SCSM) 

which effectively incorporates spatial information for object instance retrieval and 

localization. However, the original SCSM cannot be directly applied in endosomal structure 

localization as the latter is an object category retrieval problem. Therefore, we propose a 

modified SCSM (mSCSM) for our category (i.e., endosomal structures) based localization.

The main contributions of the proposed method are: (i) The method can achieve fully 

automated detection and localization of endosomal structures without human interactions 

once training is done. To our best knowledge, this is the first fully-automated method for 

localizing endosomal structures (ii) Compared with the original SCSM, the proposed 

mSCSM can handle object category detection and localization. (iii) A novel output control is 

designed based on histogram intersection kernel to address the requirement of multiple 

outputs and to further improve the localization accuracy.

The paper is organized as follows. Section II reviews the original SCSM [6]. In Section III, 

the details of the proposed modified SCSM (mSCSM) is presented. Section IV demonstrates 

detection and localization results in one of the testing images and some preliminary 

quantitative evaluation results. Section V concludes the entire paper.

II. Spatially-constrained similarity measure

In this section, the original formulation of spatially-constrained similarity measure (SCSM) 

[6] is reviewed. Considering a query image Q with a set of features {f1,f2,...,fm} and a 

testing image D with its features {g1,g2,...,gn}, these features are assigned to the 

corresponding visual words by vector quantization in the BoW model. The SCSM is defined 

between Q and D as:
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S(Q, D |T) ≜ ∑
k = 1

N
∑
f i, g j

Score(k)

f i ∈ Q, g j ∈ D

w f i = w g j = k

T L f i − L g j 2 < ε

(1)

Score(k) ≜ id f 2(k)
t f Q(k) ⋅ t f D(k) (2)

where k represents the kth visual word in the BoW model, N is the number of visual words. 

In the second constraint, w(fi) = w(gj) = k means features fi and gj are both assigned to the 

same visual word k. L(·) denotes the location of the corresponding feature, i.e., L(f) = (xf, yf) 

in the query image Q. T represents the similarity transformation which contains changes in 

rotation, scale and translation. ‖T(L(fi)) − L(gj)‖2 < ε means two matched features are 

spatially close given a similarity transformation T on L(fi). In (2), idf(k) is the inverse 

document frequency of visual word k, tfQ(k) and tfD(k) are the number of occurrences of 

visual word k in Q and D, respectively.

For a matched feature pair (fi, gj) and a predefined similarity transformation T, the potential 

location of the query object can be determined in the testing image and a similarity score 

defined in (2) is voted to the location. By traversing all the matched feature pairs, a voting-

map with the same size as the testing image can be generated. The locations in the 

votingmap with big values are more probable to contain the query object. The method 

selects the peak value in the voting-map and incorporates the information in T for object 

localization.

III. The proposed method

Endosomal structure localization is a category localization problem which are different from 

instance localization addressed by the original SCSM in two aspects (see Fig. 2): (i) multiple 

query images belonging to the same category are available; (ii) There might be multiple 

localization outputs for a testing image. Therefore, a modified SCSM (mSCSM) is proposed 

including three main modifications:

1. A new definition of the similarity score is proposed through extracting 

discriminative information from multiple query images.

2. A general voting-map is obtained through accumulating all the isolated voting-

maps generated by multiple query images.

3. An output control is designed to address the requirement of multiple 

localizations.
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Fig. 2 illustrates the pipeline of the proposed mSCSM method. From this figure, given a set 

of query images (shown in the dashed rectangle) of endosomal structures and a testing image 

(on the left), a voting-map (on the middle) is generated by the methods to be described in 

Subsection III-A. Subsequently, the final localization outputs (on the right) are determined 

by an output control scheme to be proposed in Subsection III-B.

A. Modified similarity score and voting-map generation

To modify the original SCSM for category based localization, a new similarity score 

definition is proposed based on the relationship between each visual word and a set of query 

images of endosomal structures. In the BoW framework, each query image is represented by 

a histogram with respect to the visual words. If the kth visual word is discriminative to 

identify the endosomal structures, the distribution of this visual word should be stable for all 

the query images. Hence, a relatively higher similarity score should be assigned to the 

matched features associated with such visual word. Based on this observation, a new 

similarity score is defined to incorporate discriminative information from multiple query 

images as:

Score*(k) ≜ 1
1
M ∑

l = 1

M
hQl

(k) − hQl
(k)

2
(3)

hQl
(k) = 1

M ∑
l = 1

M
hQl

(k) (4)

where hQl
= hQl

(1), hQl
(2), …, hQl

(N)  is the N-bin histogram representation of query image 

Ql, M denotes the number of query images and hQl
(k) is the average value of the kth 

component of the normalized histograms over all the query images. This definition of the 

similarity score is indeed the inverse of the standard deviation for the kth visual word over 

the query images. If the standard deviation is smaller, the corresponding visual word is more 

discriminative to identify endosomal structures.

Similar to the original SCSM described in Section II, one query image will generate one 

voting-map by traversing all the matched features but with the similarity score defined in (2) 

replaced by the proposed one in (3). To combine the information from multiple query 

images, a general voting-map V (T) is produced by accumulating all the isolated votingmaps 

from different query images as shown in Fig. 3. The similarity score for the query image set 

is defined as:
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S Qset, D |T ≜ ∑
l = 1

M
S Ql, D |T (5)

where Qset denotes the query image set {Q1,Q2,...,QM}.

One general voting-map V (T) with its values defined by S(Qset,D|T) is obtained given a 

fixed similarity transformation T. Therefore, a group of general voting-maps will be 

obtained by traversing a discrete range of T denoted as T1,T2,...,TI. Then, all these general 

voting-maps are pooled together by selecting the maximum values (max-pooling) to 

calculate a final voting-map. Meanwhile, for each location of the final voting-map, the best 

similarity transformation T∗ is determined in this max-pooling process as:

T* = arg max
T ∈ T1, T2, …TI

S Qset, D |T (6)

B. Output control

Given the final voting-map and the T∗ for each location, a two-stage output control scheme 

is designed to determine the final localization outputs of endosomal structures. In the first 

stage, the potential locations of endosomal structures are obtained by setting a threshold α 
for the normalized final voting-map (i.e., the similarity score values of the voting-map are 

normalized to the range [0,1]). In our method, a relatively small α between 0.1 and 0.2 is 

used.

The second stage is designed to confirm whether the potential output is indeed an endosomal 

structure. As shown in [8], histogram intersection kernel is an effective similarity measure 

between two images under the BoW framework. Therefore, we design such confirmation by 

measuring the histogram intersection kernel between each query image and the potential 

output patches. Specifically, given the same visual words, a query image Ql and a potential 

output patch Pj have their histogram representations as hQl
= hQl

(1), hQl
(2), …, hQl

(N)  and 

hP j
= hP j

(1), hP j
(2), …, hP j

(N) , respectively. The histogram intersection kernel value 

between Ql and Pj is defined as:

KHI Ql, P j = ∑
k = 1

N
min hQl

(k), hP j
(k) (7)

Consider a set of query images {Q1,Q2,...,QM}, a histogram intersection kernel vector can be 

obtained and each of its entries is calculated by (7):
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KHI Qset, P j = KHI Q1, P j , KHI Q2, P j , …, KHI QM, P j (8)

We threshold the maximum entry of KHI(Qset,Pj) to determine whether the patch Pj is 

significantly similar to the query images. The final decision rule is predicting Pj as an 

endosomal structure if:

max
Q ∈ Q1, Q2, …, QM

KHI Q, P j ≥ β (9)

where β is a threshold to be determined.

IV. Experiments

A. Data Set Description

In this paper, we use 29 microscopic images of human myeloid endothelial cells. Human 

myeloid endothelial cells were maintained, transfected with DNA plasmids that express 

green fluorescent protein-tagged neonatal Fc receptor (FcRnGFP), plated in glass-bottom 

dishes and imaged as described previously [2][9]. Briefly, the images were acquired using a 

Zeiss AxioObserver.Z1 microscope with widefield arc lamp illumination, a 63x 1.4NA Plan 

Apochromat oil immersion objective, a GFP-specific filterset (GFP-3035D-000, Semrock) 

and a monochromatic CCD camera (Orca ER, Hamamatsu).

B. Experiment Settings

In the experiments, the dense SIFT feature is calculated with patch size 12 pixels and the 

grid space is set as 8 pixels. The number of visual words is 400. The scale range for 

similarity transformation T is within [0.7,1.2] with the step size 0.05. The threshold α is set 

as 0.15 and β is set as 0.65. A total of 52 query images with size 45 by 45 are manually 

selected and cropped from 20 training images. The testing set contains 9 images which are 

independent from the query images.

C. Results and Analysis

Fig. 4(a) shows the ground truth of localizations labelled by human visual inspection 

(denoted by pink rectangles) for one of the testing images and Fig. 4(b) shows the 

localization results of the proposed mSCSM (denoted by green rectangles). As seen from 

Fig. 4, the proposed method can detect and localize most endosomal structures which have 

moderate variations in illumination and shape. It is also noted that different sizes of some 

endosomal structures can be captured by varying the size of the localization windows (which 

is defined by different similarity transformation T). There are some false alarm detections 

caused by the patches which are similar in shape to endosome structures but have uniform 

pixel intensity instead of a darker inside part for true endosomal structures.
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To our best knowledge, the proposed mSCSM is the first method which can fully-

automatically detect and localize endosomal structures in microscopic images. We list some 

preliminary performance evaluations for 9 testing images (shown in Table I) to quantitatively 

demonstrate the performance of the proposed method. In Table I, FP (False Positive) is the 

number of localized patches shown in our results but not in the corresponding ground truth 

image. FN (False Negative) is the number of patches which are shown in the ground truth 

image but not localized by our method. TP (True Positive) is the number of patches which 

are shown in the ground truth image and also localized by our method. According to these 

three quantities, we further calculate the false alarm rate (FAR = FP
TP + FP ), precision 

(Precision = TP
TP + FP ) and recall (Recall = TP

TP + FN ), respectively in Table I.

From this table, on average, the proposed method achieves 35.16% false alarm rate, 64.04% 

precision and 79.17% recall. Based on these evaluations, in general, the proposed method 

can correctly localize 79.17% of the existing endosomal structures. One of the major 

concerns in the future is reducing the false alarm rate (increasing the precision) by 

introducing more discriminative output control scheme using one-class classifiers.

V. Conclusion

In conclusion, this paper has proposed an automatic detection and localization method for 

endosomal structures in florescence microscopic images. The proposed mSCSM made 

several modifications on the original SCSM to address endosomal structure category 

detection and localization. The preliminary evaluation results through experiments 

demonstrated the effectiveness of the proposed method. One of the main future 

considerations of this method is how to improve the output control scheme using one-class 

classifiers to further reduce the false alarm rate of detection.
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Fig. 1. 
A microscopy image of endosomes in a cell and magnified images of representative 

structures. (A) A grayscale fluorescence microscopy image of a human myeloid endothelial 

cell expressing the fluorescently tagged marker protein, neonatal Fc Receptor (FcRn). (B) 

Ring-like endosomes. (C) Diffraction limited spots. (D) Tubule-like structures. Scale bar = 5 

μm.

Lin et al. Page 9

IEEE Int Symp Circuits Syst Proc. Author manuscript; available in PMC 2019 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The general pipeline of the proposed mSCSM method.
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Fig. 3. 
Voting map generation. In the black dashed rectangle, Q1, Q2,...,QM denote query images, D 
is a testing image. In the red dashed rectangle, V1, V2,...VM denote isolated voting-maps 

associated with each individual query image. A general voting-map V(T) is generated by 

summing all the isolated voting-maps.
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Fig. 4. 
Comparisons between the groundtruth and the localization results of the proposed mSCSM 

in a testing image.
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Table I.

Major performance measures of the localization results

Image Index FP FN TP FAR Precision Recall

1 4 0 8 33.33% 66.67% 100.00%

2 4 1 4 50.00% 50.00% 80.00%

3 9 0 11 45.00% 55.00% 100.00%

4 1 3 5 16.67% 83.33% 62.50%

5 4 1 5 44.44% 55.56% 83.33%

6 2 3 4 33.33% 66.67% 57.14%

7 1 4 6 14.29% 85.71% 60.00%

8 2 1 2 50.00% 50.00% 66.67%

9 5 2 12 29.41% 70.59% 85.71%

average 3.6 1.7 6.3 35.16% 64.04% 79.17%
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