Skip to main content
. Author manuscript; available in PMC: 2019 Mar 21.
Published in final edited form as: Int Conf Comput Netw Commun. 2018 Jun 21;2018:912–916. doi: 10.1109/ICCNC.2018.8390419

Algorithm 1.

eFCM Algorithm

procedure eFCM(X, n) ▷ Where, X: Incomplete Data, n: Imputation Times
 EM(X) ▷ Expectation Maximization
 EM Posterior
for i = 1 : n do
  Build Markov Chain
  Between imputation steps
  Interior Imputation Steps
  Impute X to get Yi
  for cluster = 2 : maxCluster do ▷ Find Best
Clusters number
for m = 1 : 10 do
  Initialize U(0)
  InitializeCentroids(Yi, ClusterNumber)
  for r = 1 : MaxIteration do
   Calculate V(r)
   Calculate U(r)
   if max|U(r)U(r−1)| < ε then
    Break
  Update Xb Matrix and Lx Matrix
 Per Xb matrix, extract best cluster no. and fuzzifier
return Lx, Cluster, Fuzzifier ▷ Output
End procedure