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Abstract Genetic predictions of height differ among human populations and these differences

have been interpreted as evidence of polygenic adaptation. These differences were first detected

using SNPs genome-wide significantly associated with height, and shown to grow stronger when

large numbers of sub-significant SNPs were included, leading to excitement about the prospect of

analyzing large fractions of the genome to detect polygenic adaptation for multiple traits. Previous

studies of height have been based on SNP effect size measurements in the GIANT Consortium

meta-analysis. Here we repeat the analyses in the UK Biobank, a much more homogeneously

designed study. We show that polygenic adaptation signals based on large numbers of SNPs below

genome-wide significance are extremely sensitive to biases due to uncorrected population

stratification. More generally, our results imply that typical constructions of polygenic scores are
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sensitive to population stratification and that population-level differences should be interpreted

with caution.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39702.001

Introduction
Most human complex traits are highly polygenic (Yang et al., 2010; Boyle et al., 2017). For exam-

ple, height has been estimated to be modulated by as much as 4% of human allelic

variation (Boyle et al., 2017; Zeng et al., 2018). Polygenic traits are expected to evolve differently

from monogenic ones, through slight but coordinated shifts in the frequencies of a large numbers of

alleles, each with mostly small effect. In recent years, multiple methods have sought to detect selec-

tion on polygenic traits by evaluating whether shifts in the frequency of trait-associated alleles are

correlated with the signed effects of the alleles estimated by genome-wide association studies

(GWAS) (Turchin et al., 2012; Berg and Coop, 2014; Mathieson et al., 2015; Robinson et al.,

2015; Berg et al., 2017; Racimo et al., 2018; Guo et al., 2018).

Here we focus on a series of recent studies—some involving co-authors of the present manu-

script—that have reported evidence of polygenic adaptation at alleles associated with height in

Europeans. One set of studies observed that height-increasing alleles are systematically elevated in

frequency in northern compared to southern European populations, a result that has subsequently

been extended to ancient DNA (Turchin et al., 2012; Berg and Coop, 2014; Mathieson et al.,

2015; Robinson et al., 2015; Berg et al., 2017; Racimo et al., 2018; Guo et al., 2018;

Simonti et al., 2017). Another study using a very different methodology (singleton density scores,

SDS) found that height-increasing alleles have systematically more recent coalescence times in the

United Kingdom (UK) consistent with selection for increased height in the last few thousand

years (Field et al., 2016a). In the present work, we assess polygenic adaptation on human height as

a particular case of the effects that uncorrected population structure in GWAS can have on studies

of complex traits.

Most of these previous studies have been based on SNP associations and effect sizes (summary

statistics) reported by the GIANT Consortium, which most recently combined 79 individual GWAS

through meta-analysis, including a total of 253,288 individuals (Lango Allen et al., 2010;

Wood et al., 2014). Here, we show that the selection effects described in these studies are severely

attenuated and in some cases no longer significant when using summary statistics derived from the

UK Biobank, an independent and larger study that includes 336,474 genetically unrelated individuals

who derive their recent ancestry almost entirely from the British Isles (identified as ‘white British

ancestry’ by the UK Biobank) (Supplementary file 1). The UK Biobank analysis is based on a single

cohort drawn from a relatively homogeneous population enabling better control of population strati-

fication. Both datasets have high concordance even for low P value SNPs which do not reach

genome-wide significance (Figure 1—figure supplement 1; genetic correlation between the two

height studies is 0.94 [se = 0.0078]). Despite this concordance, we observe that small but systematic

biases lead to the two datasets yielding qualitatively different conclusions with respect to signals of

polygenic adaptation.

Results

Discrepancies in GWAS: population-level differences in height
To study population level differences among ancient and present-day European samples, we began

by estimating ‘polygenic height scores’ as sums of allele frequencies at independent SNPs weighted

by their effect sizes from GIANT. We used a set of different significance thresholds and strategies to

correct for linkage disequilibrium as employed by previous studies, and replicated their signals for

significant differences in genetic height across populations (Turchin et al., 2012; Berg and Coop,

2014; Mathieson et al., 2015; Robinson et al., 2015; Berg et al., 2017; Racimo et al., 2018;

Guo et al., 2018; Simonti et al., 2017) (Figure 1a, Figure 1—figure supplement 2). We then
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Figure 1. Polygenic height scores and tSDS scores based on GIANT and UK Biobank GWAS. (a) Polygenic scores

in present-day and ancient European populations are shown, centered by the average score across populations

and standardized by the square root of the additive variance. Independent SNPs for the polygenic score from

both GIANT (red) and the UK Biobank [UKB] (blue) were selected by picking the SNP with the lowest P value in

each of 1700 independent LD blocks similarly to refs. (Berg et al., 2017; Racimo et al., 2018) (see

Materials and methods). Present-day populations are shown from Northern Europe (CEU, GBR) and Southern

Europe (IBS, TSI) from the 1000 genomes project; Ancient populations are shown in three meta-populations

(HG = Hunter Gatherer (n = 162 individuals), EF = Early Farmer (n = 485 individuals), and SP = Steppe Ancestry

(n = 465 individuals)) (see Supplementary file 2). Error bars are drawn at 95% credible intervals. See Figure 1—

figure supplement 1 for analyses of concordance of effect size estimates between GIANT and UKB. See

Figure 1—figure supplements 2–6 for polygenic height scores computed using other linkage disequilibrium

pruning procedures, significance thresholds, summary statistics and populations. (b) tSDS for height-increasing

allele in GIANT (left) and UK Biobank (right). The tSDS method was applied using pre-computed Singleton Density

Scores for 4,451,435 autosomal SNPs obtained from 3195 individuals from the UK10K project (Field et al., 2016a;

Field et al., 2016b) for SNPs associated with height in GIANT and the UK Biobank. SNPs were ordered by GWAS

P value and grouped into bins of 1000 SNPs each. The mean tSDS score within each P value bin is shown on the

y-axis. The Spearman correlation coefficient between the tSDS scores and GWAS P values, as well as the

correlation standard errors and P values, were computed on the un-binned data. The gray line indicates the null-

Figure 1 continued on next page
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repeated the analysis using summary statistics from a GWAS for height in the UK Biobank restricting

to individuals of British Isles ancestry (hereafter referred to as the ‘white British’ (WB) subset) and

correcting for population stratification based on the first ten principal components (UK Biobank

[UKB]; also referred to as ‘UKB Neale’ in the supplementary figures) (Churchhouse et al., 2017). This

analysis resulted in a dramatic attenuation of differences in polygenic height scores (Figure 1a, Fig-

ure 1—figure supplements 2–4). The differences between ancient European populations also

greatly attenuated (Figure 1a, Figure 1—figure supplement 5). Strikingly, the ordering of the

scores for populations also changed depending on which GWAS was used to estimate genetic

height both within Europe (Figure 1a, Figure 1—figure supplements 2–5) and globally (Figure 1—

figure supplement 6), consistent with reports from a recent simulation study (Martin et al., 2017).

The height scores were qualitatively similar only when we restricted to independent genome-wide

significant SNPs in GIANT and the UK Biobank (p<5�10�8) (Figure 1—figure supplement 2b). This

replicates the originally reported significant north-south difference in the allele frequency of the

height-increasing allele (Turchin et al., 2012) or in genetic height (Berg and Coop, 2014) across

Europe, as well as the finding of greater genetic height in ancient European steppe pastoralists than

in ancient European farmers (Mathieson et al., 2015), although the signals are attenuated even

here. Our observations suggest that tests of polygenic adaptation based on genome-wide significant

SNPs are relatively consistent across different GWAS (Figure 1—figure supplement 2b) and that

our concern is primarily directed towards the use of sub-significant SNPs in polygenic scores

(Figure 1a, Figure 1—figure supplement 2a).

Discrepancies in GWAS: height evolution within a single population
Next, we assessed if an independent measure, the ‘singleton density score (SDS)’, which uses a coa-

lescent approach to infer adaptation within a population, is equally as susceptible to biases in

GWAS (Field et al., 2016a; Field et al., 2016b). SDS can be combined with GWAS effect size esti-

mates to infer polygenic adaptation on complex traits (generating a ‘tSDS score’ by aligning the

SDS sign to the trait-increasing allele). A tSDS score larger than zero for height-increasing alleles

implies that these alleles have been increasing in frequency in a population over time due to natural

selection. We replicate the original finding that SDS scores of the height-increasing allele computed

Figure 1 continued

expectation, and the colored lines are the linear regression fit. The correlation is significant for GIANT (Spearman

r = 0.078, p=1.55�10�65) but not for UK Biobank (Spearman r = �0.009, p=0.077). See Figure 1—source data 1

for figure data.

DOI: https://doi.org/10.7554/eLife.39702.002

The following source data and figure supplements are available for figure 1:

Source data 1. Polygenic height scores and tSDS scores based on GIANT and UK Biobank GWAS.

DOI: https://doi.org/10.7554/eLife.39702.009

Figure supplement 1. Beta concordance between GIANT and UK Biobank by P value bin.

DOI: https://doi.org/10.7554/eLife.39702.003

Figure supplement 2. Polygenic height scores based on GIANT and UK Biobank GWAS for clumped SNPs in

present-day and ancient Europeans.

DOI: https://doi.org/10.7554/eLife.39702.004

Figure supplement 3. Polygenic height scores in 1000 genomes European populations using clumped SNPs and

effect sizes from different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.005

Figure supplement 4. Polygenic height scores in 1000 Genomes Project European populations using ~1700

independent SNPs and effect sizes from different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.006

Figure supplement 5. Polygenic height scores in ancient populations using ~1700 independent SNPs and effect

sizes from different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.007

Figure supplement 6. Polygenic height scores in ancient and global modern populations using three different

GWAS.

DOI: https://doi.org/10.7554/eLife.39702.008
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in the UK population (using the UK10K dataset) increase with stronger association of the alleles to

height as inferred by GIANT (Field et al., 2016a) across the entire P value spectrum (Spearman’s

r = 0.078, p=1.55�10�65, Figure 1b). However, we observed that this signal of polygenic adapta-

tion in the UK, measured using a Spearman correlation across all GWAS SNPs, disappeared when

we used the UK Biobank height effect size estimates (r = 0.009, p=0.077, Figure 1b). These obser-

vations suggest that concerns about sub-significant SNPs should not only be directed towards popu-

lation-level differences using polygenic scores but also to analyses of adaptation within a single

population.

Population structure underlying discrepancies in GWAS
Discrepancies between GIANT and UK biobank
We propose that the qualitative difference between the polygenic adaptation signals in GIANT and

the UK Biobank is due to the cumulative effect of subtle biases in each of the SNPs estimated in

GIANT. This bias can arise due to incomplete control of the population structure in

GWAS (Novembre and Barton, 2018). For example, if height were differentiated along a north-

south axis because of differences in environment, any variant that is differentiated in frequency along

the same axis would have an artificially large effect size estimated in the GWAS. Population structure

is substantially less well controlled for in the GIANT study than in the UK Biobank study. This is both

because the GIANT study population is more heterogeneous than that in the UK Biobank, and

because population structure in the GIANT meta-analysis may not have been well controlled in some

component cohorts due to their relatively small sizes (i.e., the ability to detect and correct popula-

tion structure is dependent on sample size (Patterson et al., 2006; Price et al., 2006). The GIANT

meta-analysis also found that such stratification effects worsen as SNPs below genome-wide signifi-

cance are used to estimate height scores (Wood et al., 2014), consistent with our finding that the

differences in genetic height among populations increase when including these SNPs.

We obtained direct confirmation that population structure is more correlated with effect size esti-

mates in GIANT than to those in the UK Biobank. Figure 2a shows that the effect sizes estimated in

GIANT, in contrast to those in the UKB, are highly correlated with the SNP loadings of several princi-

pal components of population structure (PC loadings). We also find that the UK Biobank estimates

including individuals of diverse ancestry and not correcting for population structure (UKB all no PCs)

show the same stratification effects as GIANT (Figure 2—figure supplements 1–3). Further, in line

with our intuition regarding the effects of residual stratification on GWAS effect size estimates, we

find that alleles that are more common in the Great Britain population (1000 genomes GBR) than in

the Tuscan population from Italy (1000 genomes TSI) tend to be preferentially estimated as height-

increasing according to the GIANT study but not according to the UKB study (Figure 2c, Figure 2—

figure supplements 2–3).

Effect size estimates from previously published family-based height GWAS
We analyzed previously released family-based effect size estimates based on an approach of

Robinson et al. (2015) (NG2015 sibs). Surprisingly, we found that while these summary statistics

produced significant polygenic adaptation signals, they were also correlated with PC loadings as

well as with GBR-TSI allele frequency differences (Figure 2—figure supplements 1–3). This suggests

that these estimates are also affected by population structure despite being computed within fami-

lies and, therefore, in principle, robust to structure. Our own family-based estimates in the UK Bio-

bank (UKB sibs all, UKB sibs WB) appear unconfounded and do not produce significant adaptation

signals across the spectrum of associated SNPs (Figure 2—figure supplements 1–3). The residual

structure in the original NG2015 sibs dataset is likely to reflect a technical artifact (personal commu-

nication from Peter Visscher, and note on their website [Program in Complex Trait Genomics,

2018]). Berg and colleagues (Berg et al., 2019) show that the updated NG2015 sibs summary statis-

tics (posted in the public domain [Program in Complex Trait Genomics, 2018] in November 2018

during the revision of this manuscript) do not show significant signals of polygenic adaptation using

either polygenic score differences in Europe or the tSDS metric in the UK.
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Figure 2. Evidence of stratification in height summary statistics. Top row: Pearson Correlation coefficients of (a) PC loadings and height beta

coefficients from GIANT and UKB, and (b) PC loadings and SDS (pre-computed in the UK10K) across all SNPs. PCs were computed in all 1000 genomes

phase one samples (Abecasis et al., 2012). Colors indicate the correlation of each PC loading with the allele frequency difference between GBR and

TSI, a proxy for the European North-South genetic differentiation. PC 4 and 11 are most highly correlated with the GBR - TSI allele frequency

difference. Confidence intervals and P values are based on Jackknife standard errors (1000 blocks). Open circles indicate correlations significant at

alpha = 0.05, stars indicate correlations significant after Bonferroni correction in 20 PCs (p<0.0025). Bottom row: Heat map after binning all SNPs by

GBR and TSI minor allele frequency of (c) mean beta coefficients from GIANT and UKB, and (d) SDS scores for all SNPs. Only bins with at least 300

SNPs are shown. While the stratification effect in SDS is not unexpected, it can lead to false conclusions when applied to summary statistics that exhibit

similar stratification effects. See Figure 2—figure supplements 1–3 for analyses of stratification effects in different summary statistics, and

Supplementary file 3 for further description of stratification effects. UKB height betas exhibit stratification effects that are weaker, and in the opposite

direction of the stratification effects in GIANT (see Figure 2—figure supplement 4 for a possible explanation). See Figure 2—source data 1 for figure

data.

DOI: https://doi.org/10.7554/eLife.39702.010

The following source data and figure supplements are available for figure 2:

Source data 1. Evidence of stratification in height summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.015

Figure supplement 1. Pearson Correlation coefficients of PC loadings and height beta coefficients for different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.011

Figure supplement 2. Heat map of mean beta coefficients for different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.012

Figure supplement 3. Effect of GBR-TSI allele frequency difference on beta estimates and P values.

DOI: https://doi.org/10.7554/eLife.39702.013

Figure supplement 4. Height (cm) in the UKB as a function of GBR-TSI score.

DOI: https://doi.org/10.7554/eLife.39702.014
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Population structure within the UK biobank
We also note that the white British subset of the UKB data is not completely free of population strat-

ification (as shown previously [Haworth et al., 2019]), although the magnitude of the potential con-

founding is much smaller than in the Continental European population (Figure 2—figure

supplements 1–2). Interestingly, the north-south genetic cline in the UK tracks the height gradient

in the opposite direction than in Continental Europe (Figure 2—figure supplements 2 and 4), and

after correcting with principal components, we do not observe any evidence of residual stratification

in comparison with the 1000 genomes data (Figure 2a,c). However, we cannot exclude the possibil-

ity of uncorrected population stratification, even in the UK Biobank, along axes not captured by the

principal components of the 1000 genomes project data. For example, even for genome-wide signif-

icant SNPs (Figure 1—figure supplement 2b), polygenic scores for both modern and ancient indi-

viduals change when UKB summary statistics (WB ancestry controlling for 10 PCs) are used instead

of GIANT. This shift, for example, for the ancient European hunter-gatherer polygenic score is trou-

bling as different European populations are shown to have variable amounts of genetic ancestry

from ancient ‘hunter-gatherer’ vs. ‘early farmer’ vs. ‘steppe ancestry’ populations (Haak et al., 2015;

Galinsky et al., 2016), and could reflect residual stratification in the UKB GWAS not captured by the

1000 genomes PCs.

Effects of population structure on within-population adaptation inference
We proceeded to investigate the effects of uncontrolled population stratification in GWAS discussed

above on a coalescent approach such as tSDS that relies on singleton density (Field et al., 2016a).

In principle, this approach is robust to the type of population stratification that affects the allele-fre-

quency based tests. However, there is a north-south cline in singleton density in Europe due to lower

genetic diversity in northern than in southern Europeans, leading to singleton density being lower in

northern than in southern regions (Sohail et al., 2017). As a consequence, SDS tends to be higher

(corresponding to fewer singletons) in alleles more common in GBR than in TSI (Figure 2d). This

cline in singleton density coincidentally parallels the phenotypic cline in height and the major axis of

genome-wide genetic variation. Therefore, when we perform the tSDS test using GIANT, we find a

higher SDS around the inferred height-increasing alleles, which tend, due to the uncontrolled popu-

lation stratification in GIANT, to be at high frequency in northern Europe (Figure 2c). This effect

does not appear when we use UK Biobank summary statistics because of the much lower level of

population stratification and more modest variation in height. We find that SDS is not only corre-

lated with GBR-TSI allele frequency differences, but with several principal component loadings

across all SNPs (Figure 2b), and that these SDS-PC correlations often coincide with correlations

between GIANT-estimated effect sizes and PC loadings (Figure 2a). We further find that the tSDS

signal which is observed across the whole range of P values in some GWAS summary statistics can

be mimicked by replacing SDS with GBR-TSI allele frequency differences (Figure 3a and c, Fig-

ure 3—figure supplements 1–4), suggesting that the tSDS signal at non-significant SNPs may be

driven in part by residual population stratification.

A residual signal of polygenic adaptation on height?
For polygenic adaptation within a population, a small but significant tSDS signal is observed in the

UK when we restrict to genome-wide significant SNPs (p<5�10�8). This effect persists when using

UK Biobank family-based estimates (UKB sibs WB) for genome-wide significant SNPs (Figure 3b),

and is not driven by allele frequency differences between GBR and TSI (Figure 3d), suggesting an

attenuated signal of polygenic adaptation in the UK that is driven by a much smaller number of

SNPs than previously thought. Indeed, under most genetic architectures, a tSDS signal which is

driven by natural selection is not expected to lead to an almost linear increase over the whole P

value range in a well-powered GWAS. Instead, we would expect to see a greater difference between

highly significant SNPs and non-significant SNPs, similar to the pattern observed in the UK Biobank

(Figure 3a).

For population-level differences in height, we assessed whether any remaining variation in height

polygenic scores among populations is driven by polygenic adaptation by testing against a null

model of genetic drift (Berg and Coop, 2014). We re-computed polygenic height scores in the

POPRES dataset to increase power for this analysis as it has larger sample sizes of northern and
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Figure 3. Height tSDS results for different summary statistics. (a) Mean tSDS of the height increasing allele in each P value bin for six different summary

statistics. The first two panels are computed analogously to Figure 4A and Figure S22 of Field et al. (2016a). In contrast to those Figures and to

Figure 1b, the displayed betas and P values correspond to the slope and P value of the linear regression across all un-binned SNPs (rather than the

Spearman correlation coefficient and Jackknife P values). The y-axis has been truncated at 0.75, and does not show the top bin for UKB all no PCs,

which has a mean tSDS of 1.5. (b) tSDS distribution of the height increasing allele in 506 LD-independent SNPs which are genome-wide significant in a

UKB height GWAS, where the beta coefficient is taken from a within sibling analysis in the UKB. The gray curve represents the standard normal null

distribution, and we observe a significant shift. (c) Allele frequency difference between GBR and TSI of the height increasing allele in each P value bin

for six different summary statistics. Betas and P values correspond to the slope and P value of the linear regression across all un-binned SNPs. The

lowest P value bin in UKB all no PCs with a y-axis value of 0.06 has been omitted. (d) Allele frequency difference between GBR and TSI of the height

increasing allele in 329 LD-independent SNPs which are genome-wide significant in a UKB height GWAS and were intersected with our set of 1000

genomes SNPs. There is no significant difference in frequency in these two populations, suggesting that tSDS shift at the genome-wide significant

SNPs is not driven by population stratification at least due to this particular axis. The patterns shown here suggest that the positive tSDS values across

the whole range of P values is a consequence of residual stratification. At the same time, the increase in tSDS at genome-wide significant, LD-

independent SNPs in (b) cannot be explained by GBR - TSI allele frequency differences as shown in (d). See Figure 3—figure supplements 1–4 for

other GWAS summary statistics for unpruned and LD-pruned SNPs. Binning SNPs by P value without LD-pruning can lead to unpredictable patterns at

the low P value end, as the SNPs at the low P value end are less independent of each other than higher P value SNPs (Figure 3—figure supplement

5). See Figure 3—source data 1 for figure data.

DOI: https://doi.org/10.7554/eLife.39702.016

The following source data and figure supplements are available for figure 3:

Source data 1. Height tSDS results for different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.022

Figure supplement 1. tSDS for height-increasing alleles using effect sizes from different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.017

Figure supplement 2. Allele frequency difference for height-increasing alleles using different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.018

Figure supplement 3. tSDS for LD-pruned height-increasing alleles using effect sizes from different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.019

Figure supplement 4. Allele frequency difference for LD-pruned height-increasing alleles using different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.020

Figure supplement 5. Number of independent regions per GWAS P value bin in the UK Biobank.

Figure 3 continued on next page
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southern Europeans than the 1000 Genomes project (Nelson et al., 2008). We computed height

scores using independent SNPs that are 1) genome-wide significant in the UK Biobank (‘gw-sig’,

p<5�10�8) and 2) sub-significantly associated with height (‘sub-sig’, p<0.01) in different GWAS

datasets. For each of these, we tested if population differences were significant due to an overall

overdispersion (PQx), and if they were significant along a north-south cline (Plat) (Figure 4, Figure 4—

figure supplements 1–2). Both gw-sig and sub-sig SNP-based scores computed using GIANT effect

sizes showed significant overdispersion of height scores overall and along a latitude cline, consistent

with previous results (Figure 4, Figure 4—figure supplements 1–2). However, the signal attenuated

dramatically between sub-sig (Qx = 1100, PQx = 1�10�220) and gw-sig (Qx = 48, PQx = 2�10�4)

height scores. In comparison, scores that were computed using the UK Biobank (UKB) effect sizes

showed substantially attenuated differences using both sub-sig (Qx = 64, PQx = 5�10�7) and gw-sig

(Qx = 33, PQx = 0.02) SNPs, and a smaller difference between the two scores. This suggests that the

attenuation of the signal in GIANT is not only driven by a loss of power when using fewer gw-sig

SNPs, but also reflects a decrease in stratification effects. The overdispersion signal disappeared

entirely when the UK Biobank family based effect sizes were used (Figure 4, Figure 4—figure sup-

plements 1–2). Moreover, Qx P values based on randomly ascertained SNPs and UK Biobank sum-

mary statistics are not uniformly distributed as would be expected if the theoretical null model is

valid and if population structure is absent (Figure 4—figure supplement 3). The possibility of resid-

ual stratification effects even in the UK Biobank is also supported by a recent study (Haworth et al.,

2019). Therefore, we remain cautious about interpreting any residual signals as ‘real’ signals of poly-

genic adaptation.

Discussion
We have shown, by conducting a detailed analysis of human height, that estimates of population dif-

ferences in polygenic scores are reduced when using the UK Biobank GWAS data relative to claims

of previous studies that used GWAS meta-analyses such as GIANT. We find some evidence for popu-

lation-level differences in genetic height, but it can only be robustly seen at highly significant SNPs,

because any signal at less significant P values is dominated by the effect of residual population strati-

fication. Even genome-wide significant SNPs in these analyses may be subtly affected by population

structure, leading to continued overestimation of the effect. Thus, it is difficult to arrive at any quan-

titative conclusion regarding the proportion of the population differences that are due to statistical

biases vs. population stratification of genetic height. Further, estimates of the number of indepen-

dent genetic loci contributing to complex trait variation are sensitive to and likely confounded by

residual population stratification.

We conclude that while effect estimates are highly concordant between GIANT and the UK Bio-

bank when measured individually (Supplementary file 5–7, Figure 1—figure supplement 1), they

are also influenced by residual population stratification that can mislead comparisons of complex

traits across populations and inferences about polygenic adaptation. Although these biases are sub-

tle, in the context of tests for polygenic adaptation, which are driven by small systematic shifts in

allele frequency, they can create highly significant artificial signals especially when SNPs that are not

genome-wide significant are used to estimate genetic height. Our results do not question the reli-

ability of the genome-wide significant associations discovered in the GIANT cohort. However, we

urge caution in the interpretation of signals of polygenic adaptation or between-population differen-

ces that are based on large number of sub-significant SNPs–particularly when using effect sizes

derived from meta-analysis of heterogeneous cohorts which may be unable to fully control for popu-

lation structure.

Our results have implications in other areas of human genetics research. For example, there is

growing interest in polygenic scores that predict complex phenotypes from the aggregate effects of

all allelic variants (Wray et al., 2007; Purcell et al., 2009; Vilhjálmsson et al., 2015; Chun et al.,

2018). The observation that individuals with extreme values of polygenic scores exhibit many-fold

elevated risk of common diseases raises hopes for their potential clinical utility (Ganna et al., 2013;

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.39702.021
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Khera et al., 2018), and use for sociogenomics applications (Lee et al., 2018; Savage et al., 2018;

Nagel et al., 2018). It is already clear that polygenic scores derived from European populations do

not translate across populations on a global scale (Martin et al., 2017). Our analysis further suggests

that subtle population structure, especially in GWAS that are meta-analyses of independent cohorts,

could be an additional source of error in polygenic scores and affect their applicability even within
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Figure 4. Polygenic height scores in POPRES populations show a residual albeit attenuated signal of polygenic adaptation for height. Standardized

polygenic height scores from four summary statistics for 19 POPRES populations with at least 10 samples per population, ordered by latitude (see

Supplementary file 4). The grey line is the linear regression fit to the mean polygenic scores per population. Error bars represent 95% confidence

intervals and are calculated in the same way as in Figure 1. SNPs which were overlapping between each set of the summary statistics and the POPRES

SNPs were clumped using PLINK 1.9 with parameters r̂2 < 0.1, 1 Mb distance, p<1. (Top) A number of independent SNPs was chosen for each summary

statistic to match the number of SNPs which remained when clumping UKB at p<0.01. (Bottom) A set of independent SNPs with p<5�10�8 in the UK

Biobank was selected and used to compute polygenic scores along with effect size estimates from each of the different summary statistics. The

numbers on each plot show the Qx P value and the latitude covariance P value respectively for each summary statistic. See Figure 4—figure

supplements 1–4 for other clumping strategies and GWAS summary statistics. See Figure 4—source data 1 for figure data.

DOI: https://doi.org/10.7554/eLife.39702.023

The following source data and figure supplements are available for figure 4:

Source data 1. Polygenic height scores in POPRES populations show a residual albeit attenuated signal of polygenic adaptation for height.

DOI: https://doi.org/10.7554/eLife.39702.028

Figure supplement 1. Polygenic height scores in POPRES for different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.024

Figure supplement 2. Test statistics for Qx (left) and latitude correlation (right) in the POPRES dataset for different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.025

Figure supplement 3. P value calibration in the POPRES dataset for Qx and latitude covariance tests.

DOI: https://doi.org/10.7554/eLife.39702.026

Figure supplement 4. Spearman correlations between polygenic height scores in the POPRES dataset computed from different summary statistics.

DOI: https://doi.org/10.7554/eLife.39702.027
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populations. We also note that other factors such as gene by environment interactions can be an

alternative confounding factor for GWAS effect sizes and polygenic scores.

Materials and methods

Genome-wide association studies (GWAS)
We analyzed height using publicly available summary statistics that were obtained either by meta-

analysis of multiple GWAS or by a GWAS performed on a single large population. We used results

from the GIANT Consortium (N = 253,288) (Wood et al., 2014) and a GWAS performed on individu-

als of the UK Biobank (‘UKB Neale’ or simply ‘UK Biobank (UKB)’, N = 336,474) (Churchhouse et al.,

2017) who derive their ancestry almost entirely from the British Isles (identified as ‘white British

ancestry (WB)’ by the UK Biobank). The Neale lab’s GWAS uses a linear model with sex and 10 prin-

cipal components as covariates. We also used an independent GWAS that included all UK Biobank

European samples, allowing related individuals as well as population structure (‘UKB Loh’,

N = 459,327) (Loh et al., 2018). Loh et al.’s GWAS uses a BOLT-LMM Bayesian mixed

model (Loh et al., 2018). Association signals from the three studies are generally correlated for

SNPs that are genome-wide significant in GIANT (see Yengo et al., 2018).

We also used previously published family-based effect size estimates (Robinson et al., 2015)

(‘NG2015 sibs’) as well as a number of test summary statistics on the UK Biobank that we generated

to study the effects of population stratification. These are: ‘UKB Neale new’ (Similar to UKB Neale,

with less stringent ancestry definition and 20 PCs calculated within sample), ‘UKB all no PCs’ (All UK

Biobank samples included in the GWAS without correction by principal components), ‘UKB all 10

PCs’ (All UK Biobank samples included in the GWAS with correction by 10 principal components),

‘UK WB no PCs’ (Only ‘white British ancestry’ samples included in the GWAS without correction by

principal components), ‘UKB WB 10 PCs’ (Only ‘white British ancestry’ samples included in the

GWAS with correction by 10 principal components), ‘UKB sibs all’ (All UK Biobank siblings included

in the GWAS), ‘UKB sibs WB’ (Only UK Biobank ‘white British ancestry’ siblings included in the

GWAS) (Please see Supplementary file 1 for sample sizes and other details).

Population genetic data for ancient and modern samples
We analyzed ancient and modern populations for which genotype data are publicly available. For

ancient samples (Haak et al., 2015; Mathieson et al., 2018), we computed scores after dividing

populations into three previously described broad ancestry labels (HG = Hunter Gatherer (n = 162

individuals), EF = Early Farmer (n = 485 individuals), and SP = Steppe Ancestry (n = 465 individuals)).

For modern samples available through the 1000 genomes phase three release (Auton et al., 2015),

we computed scores in two populations each from Northern Europe (GBR, CEU), Southern Europe

(IBS, TSI), Africa (YRI, LWK), South Asia (PJL, BEB) and East Asia (CHB, JPT) (Figure 1a). In total, we

analyzed 1112 ancient individuals, and 1005 modern individuals from 10 different populations in the

1000 genomes project (Supplementary file 2). We used the allele frequency differences between

the GBR and TSI populations for a number of analyses to study population stratification (Figures 2–

3). We also analyzed 19 European populations from the POPRES (Nelson et al., 2008) dataset with

at least 10 samples per population (Figure 4—figure supplement 4).

All ancient samples had ‘pseudo-haploid’ genotype calls at 1240k sites generated by selecting a

single sequence randomly for each individual at each SNP (Mathieson et al., 2018). Thus, there is

only a single allele from each individual at each site, but adjacent alleles might come from either of

the two haplotypes of the individual. We also re-computed scores in present-day 1000 genomes

individuals using only pseudo-haploid calls at 1240 k sites to allow for a fair comparison between

ancient and modern samples (Figure 1—figure supplement 6).

Polygenic scores
The polygenic scores, confidence intervals and test statistics (against the null model of genetic drift)

were computed based on the methodology developed in references Berg and Coop,

2014 and Berg et al., 2017. We computed the polygenic score (Z) for a trait in a population by tak-

ing the sum of allele frequencies in that population across all L sites associated with the trait, weight-

ing each allele’s frequency (pl) by its effect on the trait (bl).
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analyzed. Source code repositories for the polygenic score analysis and computing scripts and

source data for all the main figures have been made available at https://github.com/msohail88/poly-

genic_selection (Sohail, 2018; copy archived at https://github.com/elifesciences-publications/poly-

genic_selection) and https://github.com/uqrmaie1/sohail_maier_2019 (Sohail, 2019; copy archived

at https://github.com/elifesciences-publications/sohail_maier_2019).

Polygenic scores were computed using independent GWAS SNPs associated with height in three

main ways: (1) The genome was divided into ~1700 non-overlapping linkage disequilibrium (LD)

blocks (using the approximately independent linkage disequilibrium blocks in the EUR population

computed in Berisa and Pickrell, 2015), and the SNP with the lowest P value within each block was

picked to give a set of ~1700 independent SNPs for each height GWAS used (all SNPs for which

effect sizes are available were considered) similar to the analysis in Berg et al., 2017. In (2) and (3),

Plink’s (Chang et al., 2015; Purcell and Chang, 2015) clumping procedure was used to make inde-

pendent ‘clumps’ of SNPs for each GWAS at different P value thresholds. This procedure selects

SNPs below a given P value threshold as index SNPs to start clumps around, and then reduces all

SNPs below a given P value threshold that are in LD with these index SNPs (above an r2 threshold,

0.1) and within a physical distance of them (1 Mb) into clumps with them. Clumps are preferentially

formed around index SNPs with the lowest P value in a greedy manner. The index SNP from each

clump is then picked for further polygenic score analyses. The algorithm is also greedy such that

each SNP will only appear in one clump if at all. We clumped each GWAS to obtain (2) a set of inde-

pendent sub-significant SNPs associated with height (p<0.01) similarly to Robinson et al. (2015),

and (3) a set of independent genome-wide significant SNPs associated with height (p<5�10�8). The

1000 genomes phase three dataset was used as the reference panel for computing LD for the clump-

ing procedure.

The estimated effect sizes for these three sets of SNPs from each GWAS was used to compute

scores. Only autosomal SNPs were used for all analyses to avoid creating artificial mean differences

between populations with different numbers of males and females.

The 95% credible intervals were constructed by assuming that the posterior of the underlying

population allele frequency is independent across loci and populations and follows a beta distribu-

tion. We updated a Uniform prior distribution with allele counts from ancient and modern popula-

tions to obtain the posterior distribution at each locus in each population. We estimated the

variance of the polygenic score VZ using the variance of the posterior distribution at each locus, and

computed the width of 95% credible intervals as 1:96
ffiffiffiffiffiffi

VZ

p
for each population.

The Qx test statistic measures the degree of overdispersion of the mean population polygenic

score compared to a null model of genetic drift. It assumes that the vector of mean centered mean

population polygenic score follows a multivariate normal distribution: Z ~ MVN(0, 2 VA F), where VA

is the additive genetic variance of the ancestral population and F is a square matrix describing the

population structure. This is equivalent to the univariate case of the test statistic used in

Robinson et al. (2015). The latitude test statistic assumes that Y’Z ~ N(0, 2 VA Y’FY), where Y is a

mean centered vector of latitudes for each population (Berg et al., 2019).

tSDS analysis
The Singleton Density Score (SDS) method identifies signatures of recent positive selection based on

a maximum likelihood estimate of the log-ratio of the mean tip-branch length of the derived vs. the

ancestral allele at a given SNP. The tip-branch lengths are inferred from the average distance of

each allele to the nearest singleton SNP across all individuals in a sequencing panel. When the sign

of the SDS scores is aligned with the trait-increasing or trait-decreasing allele in the effect estimates

of a GWAS, the Spearman correlation between the resulting tSDS scores and the GWAS P values

has been proposed as an estimate of recent positive selection on polygenic traits.
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Here, we applied the tSDS method using pre-computed Singleton Density Scores for 4,451,435

autosomal SNPs obtained from 3195 individuals from the UK10K project (Field et al., 2016a;

Field et al., 2016b) for SNPs associated with height in GIANT and the UK biobank (Figure 1b) and

in different summary statistics (Figure 3). After normalizing SDS scores in each 1% allele frequency

bin to mean zero and unit variance, excluding SNPs from the MHC region on chromosome six and

aligning the sign of the SDS scores to the height increasing alleles (resulting in tSDS scores), we

computed the Spearman correlation coefficient between the tSDS score and the GWAS P value. The

tSDS Spearman correlation standard errors and P values were computed using a block-jackknife

approach, where each block of 1% of all SNPs ordered by genomic location was left out and the

Spearman correlation coefficient was computed on the remaining SNPs. We also compared the

tSDS score distributions for only genome-wide significant SNPs (Figure 3b).

Population structure analysis
To compute SNP loadings of the principal components of population structure (PC loadings) in the

1000 genomes data (Figure 2), we first computed PC scores for each individual. We used SNPs that

had matching alleles in 1000 genomes, GIANT and UK Biobank, that had minor allele frequency >5%

in 1000 genomes, and that were not located in the MHC locus, the chromosome eight inversion

region, or regions of long LD. After LD pruning to SNPs with r2 <0.2 relative to each other, PCA was

performed in PLINK on the 187,160 remaining SNPs. In order to get SNP PC loadings for more

SNPs than those that were used to compute PC scores, we performed linear regressions of the PC

scores on the genotype allele count of each SNP (after controlling for sex) and used the resulting

regression coefficients as the SNP PC loading estimates. The 1000 genomes phase one dataset

(Abecasis et al., 2012) was used to compute the PC loadings.
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Yang J, Gudbjartsson D, et al. 2010. Hundreds of variants clustered in genomic loci and biological pathways
affect human height. Nature 467:832–838. DOI: https://doi.org/10.1038/nature09410, PMID: 20881960

Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, Nguyen-Viet TA, Bowers P, Sidorenko J, Karlsson
Linnér R, Fontana MA, Kundu T, Lee C, Li H, Li R, Royer R, Timshel PN, Walters RK, Willoughby EA, Yengo L,
et al. 2018. Gene discovery and polygenic prediction from a genome-wide association study of educational
attainment in 1.1 million individuals. Nature Genetics 50:1112–1121. DOI: https://doi.org/10.1038/s41588-018-
0147-3, PMID: 30038396

Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. 2018. Mixed-model association for biobank-scale datasets.
Nature Genetics 50:906–908. DOI: https://doi.org/10.1038/s41588-018-0144-6, PMID: 29892013

Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, Kenny EE. 2017.
Human demographic history impacts genetic risk prediction across diverse populations. The American Journal
of Human Genetics 100:635–649. DOI: https://doi.org/10.1016/j.ajhg.2017.03.004, PMID: 28366442

Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roodenberg SA, Harney E, Stewardson K, Fernandes
D, Novak M, Sirak K, Gamba C, Jones ER, Llamas B, Dryomov S, Pickrell J, Arsuaga JL, de Castro JM,
Carbonell E, Gerritsen F, et al. 2015. Genome-wide patterns of selection in 230 ancient eurasians. Nature 528:
499–503. DOI: https://doi.org/10.1038/nature16152, PMID: 26595274

Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, Olalde I,
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