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Abstract

Causal mediation analysis seeks to decompose the effect of a treatment or exposure among 

multiple possible paths and provide casually interpretable path-specific effect estimates. Recent 

advances have extended causal mediation analysis to situations with a sequence of mediators or 

multiple contemporaneous mediators. However, available methods still have limitations and 

computational and other challenges remain. The present paper provides an extended causal 

mediation and path analysis methodology. The new method, implemented in the new R package, 

gmediation (described in a companion paper), accommodates both a sequence (two stages) of 

mediators and multiple mediators at each stage, and allows for multiple types of outcomes 

following generalized linear models. The methodology can also handle unsaturated models and 

clustered data. Addressing other practical issues, we provide new guidelines for the choice of a 

decomposition, and for the choice of a reference group multiplier for the reduction of Monte Carlo 

error in mediation formula computations. The new method is applied to data from a cohort study 

to illuminate the contribution of alternative biological and behavioral paths in the effect of 

socioeconomic status on dental caries in adolescence.
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1. Introduction

Mediation analysis seeks to decompose the total effect of a treatment or exposure on a final 

outcome into alternative paths. The goal of such an analysis is to illuminate the mechanisms 

through which the exposure affects the outcome. In the simplest scenario, the exposure 

effect is apportioned between the direct effect and the indirect effect through a single 

mediator. However, in many health contexts, exposure effects are more realistically 
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described with multiple mediators, in some cases occurring in multiple ‘stages’ involving a 

sequence of mediators. The more general situation has been referred to as path analysis.

Classically, mediation and path analysis have relied on linear regression models. More 

recently, causal mediation analysis using a potential outcomes framework has provided a 

principled foundation allowing for causally interpretable mediation (direct, indirect and 

path-specific) effects under flexible model specifications. One of the most popular causal 

model approaches is based on the mediation formula.1,2 This approach, as originally 

developed in the single mediator setting, provides inference for natural direct and indirect 

effects3,4 yielding an exact decomposition of the total exposure effect. The mediation 

formula approach accommodates flexible models for the mediator and final outcome, for 

example allowing interactions and mixed types of variables following generalized linear 

models. A key assumption of this approach is ‘sequential ignorability’.1

Recent papers have extended the original (single mediator) parametric mediation formula to 

allow a sequence of mediators, thus accommodating more complex causal models.5,6 This 

approach, which uses extended versions of the mediation formula and assumes an extended 

version of sequential ignorability, has a number of limitations. As the approach relies on 

parametric models for each outcome (including the mediators) it may lack robustness to 

violations of the assumed models.7,8 As noted by several researchers,9,10 the separate 

specification of models for each outcome will generally not provide a straightforward model 

for the natural direct or indirect effects. For example, mediation effects may vary over 

different levels of covariates, even in the absence of interaction terms in the models. A 

further challenge in the case of multiple mediators is that some paths may not be identifiable 

even under sequential ignorability.11,5

A number of alternative methods have been proposed that circumvent one or more of the 

limitations of the parametric mediation formula approach. Direct and (natural) indirect effect 

models have been proposed that provide parsimonious descriptions of these mediation 

effects.9,12 Other researchers have provided semiparametric approaches to avoid parametric 

model assumptions or to improve robustness. For example, Albert7 provided an inverse 

probability of exposure weighting approach, that uses a logistic regression model for 

exposure in place of a model for the mediator. Nguyen et al.10 (see also Tchetgen 

Tchetgen13) offered an approach using inverse odds ratio weighting. As noted by Nguyen et 

al.,10 the weighting approach is advantageous for situations with multiple mediators as a 

single exposure model takes the place of the multiple mediator models needed in the 

mediation formula approach. Other researchers, using a graphical model framework, have 

provided nonparametric (discrete probability) formulae for certain path-specific effects.14,15

Despite its limitations, the parametric mediation formula framework still has important 

advantages. First, the semiparametric and alternative parametric approaches7–10,12,13 are 

generally limited to a single mediator, or multiple contemporaneous (non causally-ordered) 

mediators. In contrast, the generalized mediation formula approach allows for causal models 

with multiple ‘stages’ of mediation, that is, paths with more than two links. (The 

nonparametric theoretical results mentioned above11,14,15 accommodate multiple causally-

ordered mediators, but this work does not elaborate on inference issues or provide data 
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examples.) Structural equation model (SEM) based approaches (as implemented, for 

example, in MPlus16) would seem to offer similar advantages, but tend to be limited to linear 

(or ‘linearized’, e.g., probit) models. In contrast, the mediation formula approach, as 

implemented in the R mediation package17 for the single mediator case, offer flexible model 

specifications, typically including a choice among a number of generalized linear models for 

each outcome. Such models tend to be appealing to health researchers, due in part to their 

familiarity, and because they naturally allow for conditioning on baseline covariates, unlike 

the standard covariance structure analysis approach to SEM which considers the entire 

variable vector as random. Further, the mediation formula approach has been successfully 

used in a number of recent applications.18,19 Nevertheless, the use of the extended mediation 

formula has been hampered by some remaining limitations, by practical and technical 

difficulties, and by a lack of suitable user-friendly software.

The goal of the present paper is to present a further development of the extended parametric 

mediation formula approach to causal mediation and path analysis, with special attention to 

its practical use and implementation. As in previously described approaches,5,6 our extended 

method allows for two stages of mediation, and a generalized linear model for each 

outcome. New contributions of the present paper include extensions to: 1) multiple 

mediators at each stage, 2) unsaturated models, and 3) clustered data. In addition, we 

elucidate some important practical issues, including the choice of a decomposition, the 

choice of a reference group, and number of needed Monte Carlo draws in the mediation 

formula. All of the extensions described in this paper are incorporated in a newly developed 

R package called gmediation. The latter is described in a companion paper.20

2. Background

2.1. Causal mediation analysis – single mediator

We begin with some notational and theoretical background. The mediation formula approach 

to mediation analysis uses a potential outcomes framework. We let Y(x) denote the potential 

outcome of Y if exposure X were set to level x. We also define nested potential outcomes; 

for example, Y(x,M(x’)) is the potential outcome of Y if X were set to x and variable (e.g., 

mediator) M set to its potential outcome if X = x’. Variables without parentheses (e.g., Y) in 

expressions given here on in will refer to observed values. This notation extends to multiple 

contemporaneous and multiple stages of mediators as shown below. We focus on natural 

direct and indirect effects, though other types of mediation effects (e.g., controlled and 

randomized interventional effects) have been described in the literature.21,22 We also restrict 

attention to the common situation of a binary treatment or exposure (X). We further let C 
denote a vector of observed baseline covariates (not affected by X).

Causal mediation effects may be defined in terms of expected potential outcomes. For 

example, in the single mediator case, the natural direct and indirect effects are defined as:

D x = E Y 1, M x − E Y 0, M x (1)
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I x = E Y x, M 1 − E Y x, M 0 (2)

We further note that the total effect, T = E Y 1 − E Y 0 , can be decomposed into natural 

direct and indirect effects in two ways: T = D 1 + I 0  or T = D 0 + I 1 . Thus, in the single 

mediator case there are two versions of each effect, corresponding to the two possible 

decompositions.

Researchers taking a causal model approach have given close attention to the identification 

of causal mediation effects. Imai et al.1 showed that (1) and (2) are identified under the 

consistency assumption (see Supplementary Material, Appendix A) and the following 

sequential ignorability assumptions,

Y x′, m , M x ∐X C = c (3)

Y(x′, m)∐M(x) X = x, C = c (4)

for x, x’ = 0,1 and all m and c (that is over the support of M and C). Note that a positivity 

assumption is also made, namely, P(X = x | C = c ) > 0 and P(M(x) = m | X = x, C = c) > 0, 

for x = 0,1 and all m, c. Condition (3) states that the observed exposure, X, is independent of 

potential outcomes of Y and M conditional on C, while (4) amounts to the requirement that 

there are no unobserved confounders (and no confounders affected by X) of the M-Y 
relationship.

Under the above assumptions, any expected potential outcome for Y can be identified (that 

is, expressed in terms of estimable parameters) using the mediation formula as follows:

E Y(x′, M(x)) =
c m

E(Y M = m, X = x′, C = c)dFM X = x, C = c(m)dFC(c) (5)

Imai et al.1 also discussed the important issue of sensitivity analysis for the sequential 

ignorability assumption, with a focus on (4) as this condition is not assured under a 

randomized treatment or exposure, even if the levels of the mediator were also randomized.

2.2. Causal Mediation with Multiple Causally-Unordered Mediators

Often, one wishes to provide a decomposition through multiple mediators with no assumed 

causal ordering. We refer to such a set of causally-unordered mediators as 

‘contemporaneous’, regardless of whether they are actually measured at (or close to) the 

same time. The situation of multiple contemporaneous mediators was addressed by Wang et 

al.23 taking an extended mediation formula approach while allowing for the mediators to be 

correlated (as may be induced by an unobserved confounder among them) by incorporating 
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a model involving multivariate normally-distributed latent variables. An alternative 

mediation formula approach24 allowed for interactions among mediators while assuming 

potential outcomes of contemporaneous mediators to be conditionally independent 

(conditional on observed baseline covariates).

The situation of multiple causally-unordered mediators was also addressed in papers taking 

a natural effect model approach.9,10,13 This approach assumes that the contemporaneous 

mediators are ‘nonintertwined’,9 that is, that mediators do not causally affect one another, 

and there are no confounders affected by exposure.

2.3 Generalized Causal Mediation

Albert and Nelson5 and Daniel et al.6 extended the parametric mediation formula approach 

to the situation of a causally-ordered sequence of mediators, considering a single mediator at 

each stage. As noted by these researchers, even under an extended sequential ignorability 

assumption, some of the expected potential outcomes, thus some path-specific effects, are 

not identified, a result obtained theoretically by Avin et al.11 The problem occurs for a 

nested potential outcome that involves a ‘cross-world discrepancy’, that is, potential 

outcomes of the same mediator at different exposure levels (also referred to as 

‘counterfactuals’). An example is the potential outcome Y(0, M1(0), M2(0, M1(1))), which 

involves both M1(0) and M1(1). Consequently, the effect for the path X → M1 → M2 → Y, 

which can be expressed, for example, as a contrast between expected values of Y(0, M1(0), 

M2(0, M1(1))) and Y(0, M1(0), M2(0, M1(0))) = Y(0), is not identifiable even under 

sequential ignorability. Identification of such path-specific effects requires a further 

assumption regarding the joint distribution of M1(0) and M1(1). As any such assumption will 

not generally be testable, it is typically incorporated within a sensitivity analysis.

Daniel et al.6 provided formal identifiability results for the general expected potential 

outcome in the case of one mediator per stage. They also discussed the case of multiple 

contemporaneous mediators considered as a ‘group’, implying that for any intervention, all 

mediators in the group would be affected in the same manner (either exposed or not 

exposed). Taguri at al.24 also addressed this situation, noting that this grouping approach 

would allow the (nominally) contemporaneous mediators to have an arbitrary causal 

ordering as well as unobserved confounders. Considering the contemporaneous mediators as 

a group allows the notation and theory for the case of a single mediator at each stage6 to go 

through as before. These approaches are limited, though, in that they do not allow 

consideration of separate paths (corresponding to distinct hypothesized mechanisms) among 

the multiple contemporaneous mediators.

3. Extensions of Generalized Causal Mediation

3.1. Multi-stage Model with Multiple Contemporaneous Mediators

A key extension of interest is to allow multiple stages of mediation with distinct 
contemporaneous mediators, that is, mediators on separate paths, at each stage. The 

flexibility provided by the combination of multiple stages and multiple mediators per stage 

would have considerable advantages. First, a departure from the no causal ordering 
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assumption among multiple mediators in a single-stage model, may be resolved by including 

multiple stages. This extension allows the construction of a more elaborate causal, 

specifically, directed acyclic graph (DAG), model in which the conditional independence 

assumption among contemporaneous mediators is more plausible, allowing one to avoid 

complicated multivariate models.23

We consider the two-stage mediation model, as represented in Figure 1, and address 

inference for each path-specific effect (providing the ‘finest decomposition’ of the total 

exposure effect).6 Identifiability of the path-specific effects requires extensions of the 

consistency and sequential ignorability assumptions given above. The approach, 

representing an extension of the mediation formula, extends earlier results.6,24 Our 

assumptions and derivations focus on the case of two mediators per stage. Highlights follow 

with details provided in the Supplementary Material (Web Appendix A). The extension to an 

arbitrary number of mediators at each stage would be straightforward though notationally 

cumbersome.

For two mediators per stage, all path-specific effects can be defined in terms of expected 

values of the following nested potential outcome:

Y d00, M11 d10 , M12 d20 , M21 d01, M11 d11 , M12 d21 , M22 d02, M11 d12 , M12 d22

(6)

(Note, as in the above expression, that we occasionally use square and curly brackets in 

place of parentheses to enhance readability of nested potential outcomes.) The d’s in (6), and 

in other potential outcomes shown below, represent exposure indicators with di j ∈ 0, 1

indicating the exposure status for the path involving the ith first-stage mediator and the jth 

second-stage mediator, i = 0,…, m1, and j = 0,…, m2, where an index equal to 0 means that 

the path does not involve a mediator at the corresponding stage. Note that this notation for 

the d’s can be extended to an arbitrary number of stages by using a corresponding number of 

digits in the subscript. In particular, for the single-stage case with one mediator there would 

only be two d’s: d0 and d1. Contrasts between expected values for the above potential 

outcome with selected values for the d’s provide the path-specific effects. In Section 3.3, we 

define different path-specific effects and show how they are obtained in particular 

decompositions.

We distinguish two cases. Case 1 involves potential outcomes without cross-world 

discrepancies for the first-stage mediators, namely, d10 = d11 = d12, d20 = d21 = d22. Case 2 

includes potential outcomes not following the Case 1 restrictions, that is, with one or more 

cross-world discrepancies. For example, a potential outcome with d10 = 1 and d11 = 0 would 

involve both counterfactuals for the first first-stage mediator, M11(0) and M11(1). The 

required joint density for such counterfactuals cannot be estimated from the data as subjects 

are either exposed or not exposed, but not both.
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For Case 1, we assume the following, with C as before representing a vector of baseline 

covariates (not affected by X) and Mk denoting the vector of mediators at stage k:

A1. No unmeasured confounding of the X-(M1,M2,Y) relationships

Y d00, m11, m12, m21, m22 , M21 d01, m11′ , m12′ , M22 d02, m11′′ , m12′′ ,
M11 d10 , M12 d20 ∐X C = c

A2. No unmeasured confounding of the M1-(M2,Y) relationships

Y d00, m11, m12, m21, m22 , M21 d01, m11′ , m12′ , M22 d02, m11′′ , m12′′ ∐ M11 d10 , M12 d20 C = c, X = x

A3. No unmeasured confounding of the M2-Y relationships

Y d00, m11, m12, m21, m22 ∐ M21 d01, m11′ , m12′ , M22 d02, m11′′ , m12′′ C =c, X = x,
M11 = m11′′ , M12 = m12′′

where the above conditional independence statements hold for all 

c, x, d00, d10, d20, d01, d02, d11, d12, d21, d22, m11, m12, m21, m22, m11′ , m12′ , m11′′ , m12′′ , m11′′′, m12′′′.

We note that we are also making the assumptions implied by the graph (as in Figure 1) under 

the nonparametric structural equation model interpretation of Pearl.25 Namely, we assume 

conditional independence of (potential outcomes of) contemporaneous variables as follows,

A4. M21 d01, m11′ , m12′ ∐ M22 d02, m11′′ , m12′′ C = c, M11 d10 = m11, M12 d20 = m12

A5. M11 d10 ∐ M12 d20 C = c for all c, x, d’s and m’s.

For Case 1, under assumptions A1-A5 as well as consistency (see Supplementary Material, 

Web Appendix A), we obtain the identifiable expression,

E Y d00, M11 d10 , M12 d20 , M21 d01, M11 d10 , M12 d20 , M22 d02, M11 d10 , M12 d20

=
c m11m12m21m22

E Y C = c, X = d00, M11 = m11, M12 = m12, M21 = m21, M22 = m22

⋅ f M11 C, X m11 c, d10 f M12 C, X m12 c, d20 f
M21 C, X, M11, M12

m21 c, d01, m11, m12

⋅ f
M21 C, X, M11, M12

m22 c, d02, m11, m12 f C c dμM m dμC c

(7)
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where M represents the vector of all mediators, and m = m11, m12, m21, m22 , a vector of 

values for M. We note that here, and elsewhere in the paper, integrals may be interpreted as 

summations for discrete variables. For the covariates (C) this may be summation over the 

empirical distribution as done in our simulations and data example.

Our identifiability results for Case 1 can be seen as a special case of previous results11, 14 

that use a graphical model framework. Case 2 requires stronger assumptions than those for 

Case 1. Previous researchers11,14,15 noted the lack of identifiability for Case 2 under 

sequential ignorability, or analogous graphical assumptions, but did not show how 

supplementary assumptions can be used to provide identifiability. Aside from consistency 

and A3, we assume extended versions of assumptions A1, A2, A4, and A5 that include both 

counterfactuals for each first-stage mediator. We derive the following expression (see Web 

Appendix A for details):

E Y d00, M11 d10 , M12 d20 , M21 d01, M11 d11 , M12 d21 , M22 d02, M11 d12 , M12 d22

=
c m11

∗ m12
∗ m11m12m21m22

E Y d00, m11, m12, m21, m22 C = c, X = d00, M11 = m11, M12 = m12,

M21 = m21, M22 = m22 ⋅ f M11 C, X m11 c, d00 f
M11 1 − d10 M11 d10 , C, X
∗ m11

∗ m11, c, d10

⋅ f M12 C, X m12 c, d20 f
M12 1 − d20 M12 d20 , C, X
∗ m12

∗ m12, c, d20

⋅ f
M21 C, M11, M12, X

m21 c, m11′ , m12′ , d01

⋅ f
M22 C, M11, M12, X

m22 c, m11′′ , m12′′ , d02 f C c dμM m dμC c

(8)

where m1 j′ = m1 j if d j1 = d j0, otherwise, m1 j′ = m1 j
∗ , and m1 j′′ = m1 j if d j2 = d j0, otherwise, 

m1 j′′ = m1 j
∗ , for j = 1, 2; and the f

M1 j 1 − d j0

∗  term (and corresponding integral) is removed 

when d j0 = d j1 = d j2 for j = 1, 2.

Under the assumptions for Case 2 noted above, all the terms in expression (8) are 

identifiable with the exception of the f* terms, which represent conditional distributions of 

counterfactuals (conditional on the other counterfactual for each first-stage mediator). To 

carry out the estimation, in the parametric framework discussed below, we introduce 

additional model assumptions in a copula model approach5,6 in conjunction with a 

sensitivity analysis. The sensitivity parameter, ρ, is the ‘cross-world correlation’ between 
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normally-distributed latent versions of the counterfactuals for each first-stage mediator. The 

approach is described in detail in the Supplementary Material (Web Appendix A).

We take a parametric approach to inference in which a generalized linear (association) 

model is specified for each mediator and for the final outcome, providing flexibility in the 

types of variables that can be handled. Steps in the estimation of path-specific effects are as 

follows: 1) fit each association model, 2) for a given choice of decomposition, compute 

estimates of relevant expected potential outcomes using the mediation formula, plugging in 

estimates for parameters, 3) obtain estimated path-specific effects as appropriate contrasts 

(i.e., differences or ratios) of the estimated expected potential outcomes. For standard errors 

and/or confidence intervals, bootstrap resampling may be used. Further details and issues 

involved in these steps are discussed below.

3.2 Nonsaturated Causal Mediation/Path Models

The causal mediation analysis literature has so far focused on saturated models, that is, 

models in which the final outcome and each mediator have a link from (are causally affected 

by) the exposure and all mediators at each prior stage. Thus, the final outcome, Y, would 

have a link from all the other (prior) variables; the second-stage mediators would have a link 

from all first-stage mediators as well as the exposure, and the first-stage mediators would all 

have a link from the exposure. (Note that links - or non-links - from baseline covariates do 

not affect whether a model is considered as saturated or unsaturated according to the above 

definition.) However, it will often be desirable to allow more flexibility in the modeling. For 

example, a particular first-stage mediator may not be hypothesized to affect every second-

stage mediator. Removing such links (thus, producing an unsaturated model) is a way to 

provide a simpler, more parsimonious model.

Allowing for unsaturated models raises additional issues. Whereas in a saturated model all 

paths involving first-stage mediators are non-identifiable without further cross-world 

assumptions, this is not always the case with unsaturated models. The general rule in the 

present two-stage mediation context is that a path involving a first-stage mediator is 

identifiable if and only if it is the only path going through that mediator.11 The use of 

unsaturated models thus requires additional attention in the estimation algorithm, as 

identifiability for a given path may be affected by the deletion of a link. Another, perhaps 

obvious, implication is that the absence of links in the model will produce ‘null’ paths, i.e., 

some paths that may otherwise exist will have an a priori zero effect due to the model 

specification. Specific implications when using the gmediation R package are discussed in 

Cho and Albert.20

3.3 Decompositions

While only two distinct decompositions exist for the single mediator case, this number 

increases dramatically with the number of mediators. This fact is highlighted by Daniel et al.
6 who considered the case of a sequence of mediators with an arbitrary number of stages and 

one mediator per stage. For m mediators, the number of possible decompositions is 2m. In 

the case of m1 (contemporaneous) mediators in a single-stage model, the number of possible 

decompositions is (m1+1)!. In the case of m1 first-stage and m2 second-stage mediators the 
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number is {(m1+1) × (m2+1)}!. For example, with two mediators at each stage the number 

of possible decompositions is (3 × 3)! = 362,880. Daniel et al.6 provided some suggestions 

for dealing with the daunting number of decompositions. Here, we provide some new 

guidelines, the first of which is based on a compelling identifiability consideration that can 

greatly reduce the number of candidate decompositions.

We first formulate a compact way to characterize different decompositions, focusing on the 

case of two stages of mediation (and considering saturated models for now). To obtain a 

decomposition we start, without loss of generality, with all d’s (defined in Section 3.1) set 

equal to 1 (corresponding to E{Y(1)}); we then set one d at a time to 0, obtaining the 

corresponding expected potential outcome for the resulting array of d’s after each change. 

Path-specific effects are obtained using successive expected potential outcomes. For 

example, if the first d set to 0 is d00, we obtain, using a difference scale,

E Y 1 − E Y 0, M11 1 , M12 1 , M21 1, M11 1 , M12 1 , M22 1, M11 1 , M12 1

This contrast, involving only a change in d00, represents a (natural) direct effect. Of course, 

this is one of many possible versions of the natural direct effect, which are obtained by using 

different sets of values - common to both terms in the contrast - for the other d’s besides d00. 

Supposing that the next d set to 0 is d01, the resulting contrast is,

E Y 0, M11 1 , M12 1 , M21 1, M11 1 , M12 1 , M22 1, M11 1 , M12 1

−E Y 0, M11 1 , M12 1 , M21 0, M11 1 , M12 1 , M22 1, M11 1 , M12 1

which represents a natural indirect effect occurring through mediator M21 alone. This 

process continues until all the d’s are equal to 0, providing Q = (m1 + 1) × (m2 + 1) path-

specific effects. These path-specific effects sum to the total exposure effect by construction, 

thus providing a proper decomposition.6 The number of possible decompositions is thus 

equal to the number of possible orderings in which the d’s are set to 0, which is Q! as noted 

above. A particular ordering (thus, decomposition) may be represented by listing the ordered 

d’s in an ‘order vector’. For example, in the case of two stages and one mediator per stage, 

the order vector (d00, d01, d10, d11) would indicate the decomposition obtained by first 

setting d00 to 0, then d01, and so on.

We propose that some orderings be ruled out as they unnecessarily increase the number of 

non-identifiable paths (that is, non-identifiable without additional cross-world assumptions – 

see Web Appendix A). Consider the d’s corresponding to paths through a given first-stage 

mediator, M11, say, in the scenario of two mediators at each of two stages; these d’s would 

be d10, d11, and d12. When the first (and second) of these d’s are set to zero this produces a 

potential outcome for Y involving cross-world potential outcomes for M11, namely, M11(1) 

and M11(0), and thus a non-identifiable path-specific effect. This is resolved once the last d 
in the group is set to zero. Non-identifiability for paths involving a first-stage mediator is 
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unavoidable (in a saturated two-stage mediation model), regardless of the choice of 

decomposition. However, if a d not involving a first stage mediator, for example, d01, were 

set to zero in between the d’s for a first-stage mediator this would unnecessarily result in a 

non-identifiable effect - in this case, for the path through the first second-stage mediator. 

Therefore, it is preferable to keep the group of d’s for any given first-stage mediator (for 

example, d10, d11, and d12, for first-stage mediator M11) together in the ordering of setting 

d’s to 0. This consideration, in the case of two stages and one mediator per stage, would thus 

suggest (d00, d01, d10, d11) and (d11, d10, d01, d00) as possible orderings but not, for example, 

(d00, d10, d01, d11) since in this ordering d01 (corresponding to the path through the second-

stage mediator alone) occurs between d10 and d11 (representing paths through the first-stage 

mediator). In the former orderings, the direct and indirect (through the second-stage 

mediator) effects are both identifiable, while in the latter ordering only the direct effect is 

identifiable.

The second consideration that we propose for selecting a decomposition involves the context 

of the data and the interventional interpretation of the potential outcome. From this 

perspective, we will prefer decompositions representing more practical and acceptable 

(possible future) interventions. There are two premises of this approach: 1) if the exposure is 

beneficial, a desirable intervention would involve the introduction of the exposure (for those 

unexposed), while if the exposure is detrimental, interventions would involve removing the 

exposure (for those exposed); 2) in a sequence of interventions, one would first intervene to 

affect the mediator (before affecting the direct effect). The reason for the latter is because the 

direct effect represents ‘all other’ (unobserved) mediators; targeting ‘all other’ mediators 

would be impractical, whereas if the mediator in question has already been intervened on, 

then the direct effect can be affected as well in a subsequent intervention by simply exposing 

the person. Based on these premises, the rule we propose (in terms of the ordering of setting 

d’s to zero) is to start with d00 (and generally proceed with paths with an increasing number 

of links) for a beneficial exposure, and end with d00 (go from longer to short paths) for a 

detrimental exposure.

As a simple example, consider a single mediator (say, M = frequency of dental visits) of the 

relationship between SES (X=1 for low SES; X=0 for high SES) and dental caries 

(Y=DMFT). Choosing between the two possible decompositions (as shown in Section 2.1) 

essentially involves the choice between the potential outcomes Y(0,M(1)) and Y(1,M(0)). 

Here, the exposure (low SES) is detrimental. Thus, a future intervention will seek to remove 

this exposure (in whole or in part). Targeting the mediator, the intervention of interest would 

correspond to Y(1,M(0)), representing the partial removal of the effect of low SES – i.e., an 

intervention for a low SES person that produces a dental visit frequency as if the person 

were high SES, for example by enabling increased access to dental care. This corresponds to 

setting d1 equal to zero first, and d0 = 0 last, in accordance with the rule. Using Y(0,M(1)) 

instead (contrary to our rule) would amount to an intervention for a high SES person in 

which dental visits were affected as if the person were low SES; this intervention is unlikely 

to be of interest for the reasons expressed in the two premises above. For a beneficial 

exposure, the reasoning is reversed and we would be interest in Y(0,M(1)) (and the 

corresponding decomposition) rather than Y(1,M(0)). This rule applies in a similar manner 

to the more complex situation involving a sequence of mediators.
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We note that this rule should be reinterpreted when paths are not all in the same direction. 

For example, a generally beneficial drug may have a negative path, for example through a 

mediator representing an unwelcome side effect. In this case, a future intervention of interest 

might block the path through this mediator (for example, by adding an auxiliary agent that 

ameliorates the side effects). Here, then, the interest will be in the potential outcome 

Y(1,M(0)). Thus, in this sort of case, the exposure should be considered as ‘detrimental’ 

since it has a negative effect through the mediator.

Combining the above two principles, we propose the following rule (expressed for the two-

stage mediation case):

Combined Rule: For a beneficial exposure, use order

d00, d
0∗ , d10, d

1∗ , d20, d
2∗ , …, dm10, d

m1
∗ ;

for a detrimental exposure, use order

d10, d
1∗ , d20, d

2∗ , …, dm10, d
m1

∗ , d
0∗ , d00 ,

where d
j∗

≡ d j1, d j2, ⋅ ⋅ ⋅ , d jm2
, and the elements/sets within parentheses follow the 

displayed order, but elements within brackets can follow any order.

For convenient reference, we will refer to the two broad schemes in this rule as the 

‘increasing exposure’ and ‘decreasing exposure’ decompositions, respectively. The 

combined rule reduces the number of candidate decompositions considerably. We note that 

for simplicity the rule expressed above may be more restrictive than necessary. For example, 

for a beneficial exposure and two first-stage mediators, a permissible ordering (according to 

the above rule) is d00, d
0∗ , d10, d

1∗ , d20, d
2∗ ; however, the ordering 

d00, d
0∗ , d10, d20, d

1∗ , d
2∗ , which is not consistent with the above rule, may also be 

suitable according to our two principles. A remaining indeterminacy is in the order of d’s 

corresponding to multiple mediators at a particular mediation stage. These orderings can be 

decided based on context-specific considerations, for example, of the most likely, practical 

or desirable order of a sequence of future interventions affecting the mediators. The 

implementation of the above rules is illustrated in an example provided in Web Appendix C.

3.4. Clustered Data

Often studies involve individuals within larger units (clusters) whereby individuals within 

the same cluster tend to be similar in unmeasured characteristics that may be relevant to the 

response. Two broad approaches are commonly used for clustered data. The marginal model 

(or generalized estimating equations (GEE)) approach, which provides inference for 
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population-level fixed effects, considers the within-cluster correlation as a nuisance 

parameter and seeks to account for it only in the estimation of variances of fixed effect 

estimates. The other approach, using random effects models, estimates fixed effects while 

conditioning on the random effects (representing cluster effects) providing cluster-level 

inference.

The mediation formula approach to mediation analysis would be more complicated with the 

introduction of random effects (though a related approach26 considered a latent mediator). 

On the other hand, an explicit variance formula (such as the sandwich estimator in the GEE 

framework) is not available for mediation effect estimates obtained via the mediation 

formula.

Some scholars27 have expressed a preference for the marginal model approach to avoid the 

more stringent assumptions of the random effects model. To maintain a marginal model 

approach for inference regarding path-specific effects, we propose to account for clustering 

by using a modification of the standard bootstrap approach. A relatively simple approach is 

to use the cluster bootstrap method which samples (with replacement) clusters rather than 

individuals. This approach has been shown to work well in a regression context when there 

are a sufficient number of clusters.28 Alternative techniques have been proposed that seek to 

provide greater efficiency, particularly with a relatively small number of clusters.28 These 

approaches include a ‘residual bootstrap’ technique in which residuals are bootstrapped, and 

then used to obtain bootstrap samples of the outcomes. Field and Welsh28 focused on the 

linear model case, though a version of the residual bootstrap has been proposed for the 

generalized linear model,29 albeit for non-clustered data. Clearly, further investigation and 

development of bootstrap techniques is needed for complex mediation models.

3.5 Reference group

An issue that has received little attention for mediation analysis, particularly for the 

mediation formula, is the choice of the reference group. We use the term ‘reference group’ 

to indicate the subset of individuals to which inference is performed. An implication is that 

the joint distribution of the covariates for the reference group is used in the mediation 

formula. In practice, the evaluation of the mediation formula may involve the summation 

over the empirical distribution of the covariate vector, C, for the subjects in the reference 

group. Note that the selection of a reference group need not affect the model fitting; for the 

latter, which is done prior to the computation of the mediation formula, it is generally 

advisable to use the entire sample.

A natural choice for the reference group may arise from a particular design. For example, a 

group-matched cohort study may seek to recruit patients with a particular risk factor (for 

example, very low birth weight) along with matched (normal) controls. Here, the implied 

target population to which inference will be made is the subpopulation with the risk factor; it 

may therefore be reasonable to use the corresponding subgroup in the sample as the 

reference group.

Another consideration for the reference group is the possibility of reducing assumptions or 

simplifying inference. For example, Albert7 provided a simple formula for the natural direct 
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and indirect effects for the subpopulation of exposed individuals. Similarly, Vanderweele 

and Vansteelandt30 showed that reduced assumptions are needed for inference regarding 

natural direct and indirect effects for the exposed. These papers addressed the situation of a 

single mediator. In the case of multiple mediation stages, it has not yet been established that 

inference for the exposure group (or any other reference group in general) will allow weaker 

assumptions.

An extension of the idea of the reference group is to use sampling weights in the mediation 

formula. This is discussed in the single (albeit latent) mediator case in Albert et al.,26 but 

may be employed in the same manner in more general mediation models. The inclusions of 

such weights in the extended mediation formula may allow inference to a population of 

interest when, for example, the sample is obtained from a known probability sampling 

scheme.

3.6 Computational Issues

The mediation formula approach to causal mediation and path analysis tends to be 

computationally intensive. The problem is magnified considerably for multiple stages and 

multiple mediators per stage. This is seen by the fact that the mediation formula itself 

involves a multi-dimensional integration (or approximation, such as via Monte Carlo); 

further, this computation is carried out for each person in the reference group and then 

repeated for each bootstrap sample (and re-estimation of model parameters).

As was done previously for less complex mediation models, we consider algorithms that 

compute the mediation formula via Monte Carlo simulation. Daniel et al.6 suggested that the 

reference group be multiplied to reduce error in the Monte Carlo estimation. However, how 

large a multiplier is needed for a given application may be unclear.

Another issue is how to conduct inference for non-identifiable paths. As noted in Section 

3.1, we use a sensitivity parameter representing the cross-world correlation between 

(possibly latent versions of) counterfactuals for each first-stage mediator. Fortunately, being 

a correlation, this parameter is bounded by −1 and 1. However, the relationship between the 

cross-world correlation and estimates of path-specific effects has received little study. In the 

likely case that the user does not have much prior information about the cross-world 

correlation, the user may wish to have an idea of the range of sensitivity parameter values 

that need to be examined in order to get reasonable bounds on the otherwise non-identifiable 

mediation effects.

With the above motivation, we conducted a simulation study with the following two goals, in 

addition to that of examining validity of inference for the extended causal mediation/path 

analysis: 1) to investigate the relationship between the reference group multiplier and 

precision of path-specific effect (Monte Carlo based) estimators, and 2) to examine the 

relationship between the cross-world correlation and estimated path-specific effects. We 

considered two overall scenarios, one mimicking a dental data set (to be analyzed in the next 

section), the other, constructed to have approximately equal path-specific effects. Saturated 

models with one mediator at each stage (a special case of the causal model in Figure 1) were 

considered throughout. As in the dental data, the simulation models involved a mix of 
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variable types; namely, the first-stage mediator and final outcome (as well as exposure) were 

binary (Bernoulli distributed), while the second-stage mediator was generated as normally 

distributed. Generalized linear models with canonical links were used to generate each 

mediator and the final outcome. Each model included a single common continuous 

(normally distributed) covariate representing a confounder. A variation of this model was 

also considered in which the final outcome is distributed as negative binomial. Total sample 

sizes of 200 (roughly that of the dental dataset) and 1000 were used. The parameter values 

used for the simulations are given in the Supplementary Material, Web Table B1.

For each generated dataset we conducted the method described above using the gmediation 

R package.20 The ‘decreasing exposure’ decomposition was used and the whole sample was 

designated as the reference group. We studied the Monte Carlo accuracy by varying the 

reference group multiplier (using 1, 10, 100, and 1000 for the n=200 case, 1 and 10 for the 

n=1000 case). In addition, we used values for ρ ranging from −0.9 to 0.9 by 0.1 to study the 

effect of this parameter on inferences for non-identifiable paths; this was done for n=200 and 

reference group multiplier equal to 1000. Effects for each of the four possible paths were 

estimated using the extended mediation formulae (7) and (8) (see also Web Appendix A) in 

conjunction with fitting of correctly specified regression models. Five-hundred bootstrap 

samples were drawn for each generated dataset to obtain 95% confidence intervals for each 

path-specific effect using the bootstrap percentile method. For each scenario 500 replications 

were performed.

The true values for each path-specific effect were obtained by applying the extended 

mediation formulae using the true values for the regression parameters. The generated 

(empirical) covariate distribution for a dataset was considered as the true covariate 

distribution. These dataset-specific true values were used in computing the biases and 

coverage probabilities as described below. For each scenario, we computed (averaging over 

replications): bias (average estimate minus the true value), relative bias (average ratio of the 

bias and the true value), simulation standard error of the bias (noting that true values vary 

over replicates), coverage (percent of 95% confidence intervals that cover the true value) and 

power (percent of 95% confidence intervals that do not cover 0).

Figure 2 displays the simulation-estimated standard error of bias (se(bias)) as a function of 

the reference group multiplier (‘mult’) for the ‘dental data’ and equal path-specific effects 

scenarios with binary Y and n=200. The results show decreases in the se(bias) for each path-

specific effect as ‘mult’ increases from 1 to 1000. The downward trend is modest for most of 

the paths in the dental data scenario (Figure 2A), with a noticeable ‘elbow’ (from mult = 1 to 

mult = 10) only for the two-mediator (M1, M2) path. The decrease in se(bias) is somewhat 

more pronounced, with less leveling off with increasing multiplier, in the equal path-specific 

effect scenario (Figure 2B), though most paths (with the exception of the direct path) still 

show the greatest decline between multipliers 1 and 10. (Note, though, that the Y axes for 

the plots for the two scenarios are on different scales.) The results for negative binomial Y 
(dental data scenario) similarly show an elbow at mult = 10 with results for all paths being 

very similar; see Supplementary Material, Figure B1. The results (not included) for n=1000 

(binary Y) show similar relative declines, reflective of the five-fold increase in sample size, 

though changes on an absolute scale are smaller relative to the results for n=200. In 
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summary, most examined scenarios show a substantial (up to around 50%) reduction in the 

standard error of bias when increasing the reference group multiplier from 1 to 10. The 

reduction in Monte Carlo error may be particularly important for smaller sample sizes in 

which cases absolute errors will tend to be reduced substantially with an increasing 

multiplier. Depending on the scenario and path, further error reduction may occur with 

higher multiplier values (even up to 1000 or more); it may thus be advisable to use such 

higher multiplier values, computational time permitting.

The plots relating ρ and the simulation average effect estimates (with multiplier of 1000 and 

n=200) for binary Y are provided in Web Appendix B (Figures B2 and B3). Both the dental 

data and equal path-specific effects scenarios show little effect of ρ on estimates. This is 

particularly so for the dental data scenario which shows a very flat trend, while the results 

for the equal path-specific effects scenarios show a slightly decreasing trend for the M1 

alone path and increasing trend for the M1→ M2 path. Thus, the effect of the sensitivity 

parameter (ρ) on average path-specific effect estimates is remarkably small across multiple 

scenarios. While the results for our scenarios indicate low sensitivity to the choice of ρ, this 

may not hold in all situations. Also, there may be substantial variability due to Monte Carlo 

error over varying values of ρ for a given dataset. Additional results, including relative 

biases and confidence interval coverages revealing good properties for the included 

scenarios, are provided in the Supplementary Material (Tables B2 and B3).

4. Data Example

We applied the generalized causal path analysis to data from an observational cohort study 

of dental caries in adolescents.31 In this study, subjects were assessed on a number of dental 

and behavioral outcomes at around age 14 years. Baseline demographic information 

included socioeconomic status (SES), gender, race, and birth status (normal weight or very 

low birth weight with or without bronchopulmonary dysplasia). The study contained some 

siblings, so subjects were considered as clustered within ‘family’ (specifically, same 

mother), although many such ‘clusters’ contained just a single child. Of major interest in this 

study were the possible behavioral and biological mechanisms leading to dental caries. For 

the present analysis, we investigated possible paths in the relationship between SES and 

DMFT (decayed, missing, or filled teeth). Mediators of interest include brushing behavior 

(‘Brush’, at least once per day brushing versus less), frequency of dental visits (‘Visit’, at 

least once a year regular visits versus fewer), use of sealants (‘Sealant’, yes or no), and the 

oral hygiene index (‘OHI’, a clinical measure of oral hygiene or cleanliness of teeth, scored 

from 0 to 3, higher scores indicating worse hygiene). Scientific considerations led to the 

two-stage model (with Brush and Visit at the first stage and Sealant and OHI at the second 

stage) illustrated in Figure 3.

We implemented the generalized causal path analysis methodology with the following 

specifications. We fit logistic regression models for dichotomized DMFT (DMFTD, coded 

as 0 for none, 1 for any DMFT) and for the binary mediators (Brush, Visit, and Sealant), and 

a linear regression model for OHI. As a first approach, a saturated model was used (with 

each outcome/mediator model including all causally preceding variables). Also, all of the 

demographic variables mentioned above were included in each outcome model as potential 
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confounders. A ‘decreasing exposure’ decomposition was chosen in accordance with the 

combined rule described in Section 3.3, based on the exposure, low SES, being considered 

as detrimental. The detailed specification of the decomposition is provided in Web Appendix 

C. The reference group was taken to be the whole sample, and a multiplier of 10,000 was 

used. One thousand cluster (family) bootstrap samples were drawn to obtain percentile 

method 95 percent confidence intervals. In addition, p-values, corresponding to (confidence 

interval based) tests of each path-specific effect equal to zero, were computed. Aside from 

assuming the above regression models and consistency, we are making the sequential 

ignorability (or no omitted confounder) and contemporaneous mediator conditional 

independence assumptions of Section 3.1 (with the stronger versions for paths through first-

stage mediators).

Table 1 provides the estimated path-specific effects and estimated mean proportion of the 

total SES effect due to each path (that is, the estimated path-specific effect divided by the 

estimated total effect) along with 95% confidence intervals. The results show that most (an 

estimated 0.73 or 73%) of the effect of SES on DMFTD is direct (or through unidentified 

mediators). The direct effect is not statistically significant at α = 0.05 though the total effect 

is (p = 0.016). However, there is a statistically significant estimated effect of 0.054 

(p=0.012) for the path through OHI alone, corresponding to an estimated 0.33 of the total 

SES effect. The interpretation of this effect estimate is that there would be an estimated 

decrease of 0.054 in the probability of any caries (DMFTD=1) due to an intervention, 

provided to low SES subjects whose first-stage mediator (Brush and Visit) levels are as if the 

subjects were high SES, that produces OHI levels as if the subjects were high SES. All the 

other paths show small estimated effects (and proportions) not found to be statistically 

significant. A more comprehensive discussion of the interpretation of path-specific effects 

(including all those in the decomposition used) is provided in Web Appendix C. Note that 

alternative decompositions may have different path-specific effect interpretations.

Secondarily, we examined an unsaturated model obtained by removing Brush from the 

model for Sealant, as there is no compelling reason to presume a link between these 

variables. A further analysis considered the DMFT count, assumed to be distributed as 

negative binomial, as the final outcome. Here, a loglinear, rather than logistic regression, 

model was used for Y; otherwise, specifications for both saturated and unsaturated 

(removing the link between Brush and Sealant) models were as before. Substantially similar 

conclusions were obtained for all these analyses (results not shown).

A limitation of this analysis is the possibility of omitted mediators and confounders, and the 

lack of a sensitivity analysis for the sequential ignorability assumptions. Also, there is the 

possibility of measurement error or bias, particularly in the brushing variable which was 

obtained via questionnaire. Such measurement error may affect some of the path-specific 

effect estimates and possibly help explain the relatively large effect for the path going 

directly from SES to OHI, as we do not consider there to be obvious omitted mediators.
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5. Discussion

This paper presents extensions of the generalized causal mediation/path analysis 

methodology. The extended methodology is able to handle multiple mediators at each of two 

stages of mediation and provides increased flexibility by allowing unsaturated models, 

clustered data, and choice of reference group. The data analysis presented in this paper was 

conducted using the gmediation R package. This package, along with the dental data 

analyzed in the present paper, can be downloaded from the web: https://cran.r-

project.org/web/packages/gmediation/index.html

The two-stage mediation model, relative to reduced (one-stage) models, will entail a greater 

number of sequential ignorability assumptions; this is to be expected as a greater number of 

path-specific effects are being estimated. It should be noted, though, that a flexible feature of 

the two-stage model is that certain confounders affected by exposure may be included as 

first-stage “mediators”. Although the corresponding path-specific effects may not be of 

interest, inclusion of such confounders may avoid what would otherwise be a violation of 

sequential ignorability in the corresponding one-stage model.

We note that more complex models may quickly lead to a large number of paths and 

corresponding estimates and significance tests. These may need to be interpreted with care, 

and adjustments for multiplicity considered depending on the context and objectives of the 

study. Generally, without adjusting for multiplicity, results should be considered as 

exploratory as opposed to confirmatory.

This paper by no means exhausts the important issues in the assessment of causal mediation 

and path-specific effects. For example, missing data issues were not discussed in this paper. 

Multiple imputation may be readily implemented with the present method, but further work 

is needed, particularly on approaches for informative missing data. Model fit is an important 

issue for parametric data analysis. Our approach involves the separate fit of models to each 

mediator and to the final outcome; thus, standard model fit criteria and diagnostics (for 

generalized linear models) are available to the user, and appropriate model criticism should 

be conducted before using the models in a causal mediation analysis. A sensitivity analysis 

for possible violation of the extended sequential ignorability assumption would be desirable, 

but unfortunately a method for such is not available. Albert and Wang32 proposed two new 

approaches to sensitivity analysis for a single mediator model that allow for different types 

of mediators and final outcome variables following generalized linear models. It may be 

possible to extend these approaches to the multiple stage and/or multiple mediators per stage 

situations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal graph for two-stage mediation model
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Figure 2. 
Standard error of bias by reference group multiplier (log scale) for each path from 

simulations: A) mimicked dental data, B) equal path-specific effects scenario
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Figure 3: 
Causal graph for dental data example
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Table 1.

Estimated Path-Specific Effects and Proportions (of Total Effect) with 95% Confidence Intervals for Dental 

Data Analysis

Path-Specific Effects Proportion

Path Estimate (95% CI) Estimate (95% CI) p-value

ses→visit→ohi→dmft −0.008 (−0.019, 0.025) −0.051 (−0.096, 0.13) 0.82

ses→visit→sealant→dmft 0.015 (−0.020, 0.023) 0.093 (−0.27, 0.32) 0.87

ses→visit→dmft −0.003 (−0.015, 0.052) −0.019 (−0.15, 0.53) 0.26

ses→brush→ohi→dmft 0.009 (−0.024, 0.022) 0.053 (−0.17, 0.16) 0.97

ses→brush→sealant→dmft −0.005 (−0.023, 0.023) −0.031 (−0.14, 0.14) 0.96

ses→brush→dmft −0.008 (−0.030, 0.023) −0.046 (−0.16, 0.12) 0.79

ses→ohi→dmft 0.054 (0.009, 0.090) 0.33 (0.055, 0.561) 0.012

ses→sealant→dmft −0.009 (−0.031, 0.021) −0.054 (−0.912, 0.623) 0.82

ses→dmft 0.12 (−0.026, 0.222) 0.729 (−0.287, 2.410) 0.13

Total Effect 0.17 (0.036, 0.278) 0.016
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