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Abstract
Optimal ex vivo expansion protocols for adoptive cell therapy (ACT) must yield T cells able to effectively home to tumors 
and survive the inhospitable conditions of the tumor microenvironment (TME), while simultaneously exerting persistent anti-
tumor effector functions. Our previous work has shown that ex vivo activation in the presence of IL-12 can induce optimal 
expansion of murine CD8+ T cells, thus resulting in significant tumor regression after ACT mostly via sustained secretion 
of IFN-γ. In this report, we further elucidate the mechanism of this potency, showing that IL-12 additionally counteracts 
the negative regulatory effects of autocrine IFN-γ. IL-12 not only downregulates PD-1 expression by T cells, thus minimiz-
ing the effects of IFN-γ-induced PD-L1 upregulation by tumor stromal cells, but also inhibits IFNγR2 expression, thereby 
protecting T cells from IFN-γ-induced cell death. Thus, the enhanced anti-tumor activity of CD8+ T cells expanded ex vivo 
in the presence of IL-12 is due not only to the ability of IL-12-stimulated cells to secrete sustained levels of IFN-γ, but also 
to the additional capacity of IL-12 to counter the negative regulatory effects of autocrine IFN-γ.

Keywords  Melanoma/skin cancers · Tumor promotion and progression · Models of host–tumor interactions · Tumor 
microenvironment · Adoptive T cells transfer · PD-1
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Introduction

A number of studies suggest that optimally manipulating T 
cells ex vivo prior to transfer is crucial for maximizing the 
clinical efficacy of ACT for cancer [1]. This can be achieved 
by providing the appropriate signals during T cell expan-
sion. TCR engagement and co-stimulation are sufficient to 
induce robust expansion of T cells, though optimal effector 
capabilities are only achieved in the presence of inflamma-
tory cytokine signals such as IL-12 and Type I IFN [2–4]. 
IL-12 stimulation during T cell activation induces the differ-
entiation of effector and memory cells via direct modulation 
of genes regulating cell cycle, DNA synthesis and repair, 
protein translation, and metabolism [5–8]. Accordingly, we 
previously reported that ex vivo activation of tumor-reactive 
CD8+ T cells in the presence of antigen and IL-12 resulted in 
enhanced anti-tumor activity after adoptive transfer, which 
also correlated with superior tumor control and prolonged 
survival [9–11].

In this setting, the enhanced anti-tumor activity of IL-
12-preconditioned CD8+ T cells was associated with sus-
tained levels of intratumoral IFN-γ. However, because IFN-γ 
regulates CD8+ T cell homeostasis by both contracting 
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activated T cell numbers and by promoting T cell exhaus-
tion via PD-L1 induction on tumor stromal cells [12, 13], 
we further investigated how these conflicting activities of 
IL-12-induced IFN-γ expression coordinately regulate anti-
tumor responses. While downregulation of PD-1 expression 
on tumor-infiltrating, adoptively transferred CD8+ T cells 
expanded ex vivo in the presence of IL-12 was reported pre-
viously by Gerner et al. [14], it was identified as a mecha-
nism to circumvent T cell exhaustion mediated specifically 
by sustained exposure to an exogenous antigen, ovalbu-
min (OVA). Here we used an endogenous, ubiquitously 
expressed tumor antigen (Pmel/gp100) to show that PD-1 
modulation on CD8+ T cells by IL-12 is not dependent on 
repeated exposure to antigen, suggesting instead that other 
inflammatory factors within a TME might play a role.

Our study also describes a second, more direct, mecha-
nism of resistance to IFN-γ mediated by IL-12 that involves 
protection from apoptosis via the downregulation of the beta 
chain of the IFN-γ receptor (IFNγR2) on adoptively trans-
ferred CD8+ T cells. Like PD-1 inhibition, this response 
also occurs within the TME and results in enhanced T cell 
survival and improved anti-tumor activity.

Collectively, these findings suggest that the enhanced 
anti-tumor activity of CD8+ T cells expanded ex vivo in 
the presence of IL-12 not only involves the upregulation 
of effector functions such as IFN-γ secretion, but also the 
induction of mechanisms that protect them from the auto-
crine negative regulation induced by IFN-γ. These results 
support the rational use of IL-12 during the expansion of 
T cells for ACT, due to both its direct anti-tumor effect and 
indirect, T-cell protective activities, and provides novel 
insights into the regulatory roles of IFN-γ during T cell-
mediated anti-tumor immune responses.

Materials and methods

Mice

IFNγR1 knockout and Pmel-1 transgenic animals were 
crossed and bred to produce homozygous IFNγR−/− Pmel 
animals.

Antibodies and flow cytometry

Human antibodies used were anti-CD8 (clone RPA-T8), 
anti-IFN-γ (clone B27) from BD Bioscience, and anti-
CD279 (PD-1) (clone MIH4) from Thermo Fisher Scientific 
(Waltham, MA). Mouse antibodies were anti-CD8 (clone 
53-6.7) and annexin V from BD Biosciences (San Jose, CA) 
and anti-CD90.1 (Thy1.1) (clone HIS51), anti-IFN- γ (clone 
XMG1.2) and anti-CD279 (PD-1) (clone J43) from Thermo 
Fisher Scientific. Titrated concentrations were used and 

stained cell samples were examined on a BD Biosciences 
LSRFortessa flow cytometer using FACSDiva v8.0.1. 
All analyses were performed using FlowJo 10.4 software 
(FLOWJO, LLC, Ashland, OR).

Melanoma culture and tumor growth

B16-F10 melanoma cells were cultured in RPMI 1640 con-
taining 10% FBS, 0.1% penicillin/ streptomycin, 0.2% l-glu-
tamine, 0.05% 2-mercaptoethanol, 0.01% sodium pyruvate, 
0.1% HEPES, and 0.1% nonessential amino acids. Mela-
noma tumors were established by subcutaneous (s.c.) injec-
tion of 2.0 × 105 B16-F10 cells in the right flank. Tumors 
were measured using calipers on alternate days. Mice with 
tumors larger than 2000 mm3 were euthanized. Melanoma 
lung lesions were established after intravenous (i.v.) injec-
tion of 5 × 104 B16-F10 cells. Mice were killed 25 days after 
tumor cell injection, and lungs were harvested.

Ex vivo CD8+T cell activation and adoptive cell 
transfer

Cell suspensions from the spleens of Pmel-1 mice were 
adjusted to 1 × 106 cells/ml in complete RPMI and activated 
with 1 µg/ml of cognate peptide (KVPRNQDWL) (Ameri-
can Peptide; Sunnyvale, CA). Where indicated, the suspen-
sions were subjected to a 3-day activation with 10 ng/ml 
IL-12 at the time of priming (source CHO cells, PeproTech, 
Rocky Hill, NJ). 1 day prior to ACT, wild-type C57BL6 
mice bearing 7-day-old B16-F10 tumors were conditioned 
by a single intraperitoneal (i.p.) injection of 4 mg cyclophos-
phamide (Baxter Healthcare Corporation; Deerfield, IL). 
24 h later, adoptive cell transfer (ACT) was performed by 
intravenous (i.v.) injection via tail vein of 5 × 106 Pmel cells 
that had been primed under various conditions. To determine 
the persistence of circulating donor Pmel-specific T cells, 
blood samples were stained with mAb against Thy1.1 and 
CD8, which distinguished the transferred Pmel T cells from 
the endogenous CD8+Thy1.1− cells upon flow cytometry 
analysis.

Culture of human tumor‑infiltrating T cells (TILs)

Fresh primary melanoma tumors were digested using the 
Miltenyi Tumor Dissociation Kit, (human) following the 
manufacturer’s instructions (Miltenyi Biotec, Bergisch Glad-
bach, Germany). Tumor cell suspensions were adjusted to 
1 × 106 cells/ml in complete RPMI containing 10% pretested 
FBS (Thermo Fisher Scientific), 0.1% gentamicin, 0.2% 
l-glutamine, 0.01% sodium pyruvate, and 0.1% nonessen-
tial amino acids (Life Technologies Thermo Fisher Scien-
tific). The cells were activated at 37 °C with Dynabeads™ 
Human T-Activator CD3/CD28 (25 µl/ml) (Thermo Fisher 
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Scientific) with or without IL-12 (10 ng/ml) (source CHO 
cells). Cells were harvested after 72 h and expression of 
PD-1 or IFN-γ by CD8+ T cells was detected by flow cytom-
etry using FMO (Fluorescence Minus One) controls. The 
laboratory performing this assay operates under exploratory 
research principles. We report on the T cell assay conducted 
in MIATA compliance [15], and the MIATA checklist is 
included in the “Supplementary” files (http://miata​proje​
ct.org/).

Cell viability and apoptosis assays

Cells were assayed using LIVE/DEAD® Viability/Cytotox-
icity Assay Kit (Thermo Fisher Scientific) according to the 
manufacturer’s instructions. Briefly, for the fluorescence 
microplate protocol, 100 µl of cultured cells were placed in 
a 96-well flat bottom plate and 100 µl of a working solution 
of 2 µM EthD-1 and 1 µM calcein AM was added to the 
cells. After 15-min incubation, the pictures were taken on 
an EVOS FL fluorescence microscope (Life Technologies 
Thermo Fisher Scientific). For flow cytometry, 1 × 106 cells 
in 1 ml were stained with 0.5 µl of 50 µM calcein AM and 
0.5 µl of 2 µM EthD-1. The cells were acquired on an LRS-
Fortessa (BD Bioscience) and analyzed using FlowJo soft-
ware (FLOWJO, LLC). Apoptosis was assayed by annexin 
V staining followed by flow cytometry analysis.

Gene expression analysis

PmelAg+IL-12- and PmelAg-infiltrated tumors were harvested 
3 and 9 days after adoptive transfer. Total RNA was iso-
lated using TRI Reagent (Molecular Research Center, Inc., 
Cincinnati, OH) and cDNA was synthesized from 1 µg of 
total RNA using M-MLV Reverse Transcriptase (Promega; 
Madison, WI) per manufacturer’s instructions. Gene expres-
sion was analyzed utilizing SYBR Green quantitative PCR 
technology (qPCR) and measured on a StepOne Plus Real-
time PCR System (Life Technologies Thermo Fisher Sci-
entific) in a final reaction volume of 20 µl according to the 
manufacturer’s instructions. The relative quantification of 
the target transcripts was normalized to endogenous actin 
expression and relative changes in gene expression between 
samples were analyzed using the 2− ddCt method.

Statistical analyses

p values were calculated using Student’s t test and a sig-
nificant difference among experimental groups was defined 
as a p value of < 0.05. Cumulative survival was calculated 
using a Kaplan–Meier curve using Prism (GraphPad, La 
Jolla, CA).

Results

Induction of tumor regression by PmelAg+IL‑12 cells 
associates with sustained levels of IFN‑γ

We previously reported that ex vivo expansion of tumor-
reactive CD8+ T cells in the presence of IL-12 results in 
increased in vivo anti-tumor activity following adoptive 
transfer [9–11]. In our system, CD8+ T cells from Pmel 
mice—which are transgenic for a TCR that recognizes 
an epitope within the Pmel/gp100 protein expressed by 
normal melanocytes and melanoma cells [16]—were 
activated ex vivo in the presence of cognate peptide with 
or without IL-12. Expanded Pmel cells were adoptively 
transferred into transiently lymphopenic mice bearing B16 
melanoma tumors (Fig. 1a). To further characterize the 
impact of these ex vivo expanded T cells on the TME, B16 
melanoma tumors were allowed to grow to approximately 
7 mm in diameter before treatment took place. Tumors 
from mice treated with cyclophosphamide (CTX) only, 
PmelAg, or PmelAg+IL-12 cells were collected at days 3 and 
9 after adoptive transfer and analyzed for expression of 
IFN-γ by qPCR and for frequency of tumor-infiltrating 
Pmel cells by flow cytometry, based on their expression 
of Thy1.1. Figure 1b shows that there is a higher level of 
intratumoral IFN-γ at day 3 post-transfer in all mice that 
received adoptive T cells, irrespective of whether IL-12 
was added to the expansion protocol. However, at day 9 
post-transfer, a drastic reduction of intratumoral IFN-γ 
was observed in mice treated with the PmelAg cells. This 
decrease in IFN-γ levels correlated with a greater reduc-
tion in the frequency of tumor-infiltrating PmelAg cells 
than intratumoral PmelAg+IL-12 cells at 9 days post-transfer 
(Fig. 1c). These results suggest the possibility that IL-12 
enhances the survival of antigen-activated T cells, thus 
allowing the sustained release of IFN-γ required for effec-
tive tumor regression.

IL‑12‑mediated modulation of PD‑1 expression can 
occur in self‑reactive CD8+ T cells

One mechanism by which IFN-γ negatively regulates T 
cell function is reported to be via the induction of PD-L1 
on tumor stromal cells [13, 17]. Thus, the inhibition of 
PD-1 expression on CD8+ T cells could be a means by 
which IL-12 maintains T cell activity. Indeed, this notion 
is supported by earlier observations of lower PD-1 lev-
els on intratumoral CD8+ T cells that were activated in 
the presence of IL-12 [14], even though the lower PD-1 
levels were originally ascribed to the ability of IL-12 
to protect T cells from exhaustion following repeated 
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exposure to a transfected, exogenous tumor antigen, oval-
bumin. Since physiologically relevant tumor antigens are 
mostly homologous to endogenous antigens—we sought 
to determine if IL-12 would also preserve the activity 
of T cells directed against chronically and ubiquitously 
expressed endogenous tumor antigen (gp100, also known 
as Pmel). Consistent with previous reports, naïve Pmel 
CD8+ T cells did not initially express PD-1, though the 
receptor was upregulated within 72 h of in vitro stimula-
tion with cognate peptide, even when the stimulation took 
place in the presence of IL-12 (Fig. 2a, top two rows). 
Seven days following transfer, however, Pmel cells in the 
spleens of recipient mice had decreased PD-1 expression 
levels, regardless of whether the T cells were stimulated 
in the presence or absence of IL-12 (Fig. 2a, third row). 
Interestingly, there were strikingly different outcomes for 
T cells within the tumor microenvironment. Here, Pmel 
cells that had been expanded ex vivo in the presence of 
antigen alone showed complete PD-1 upregulation, while 
those expanded in the presence of both antigen and IL-12 

(PmelAg+IL-12) expressed lower amounts of PD-1 (Fig. 2a, 
bottom row).

IL‑12‑mediated modulation of PD‑1 expression can 
occur independently of repeated antigen exposure

Previous work using the OT1 model attributed the minimal 
expression of PD-1 by circulating transferred CD8+ T cells 
to their lack of exposure to ubiquitous antigen; the authors 
contended that in this model peripheral blood CD8+ T-cells 
are spared from exhaustion because the OVA antigen is 
highly restricted to the tumor. Arguing against this expla-
nation, however, is the fact that we find PD-1 is also mini-
mally expressed on circulating Pmel cells, in spite of their 
continuous exposure to antigens ubiquitously expressed by 
melanocytes in the periphery. To further explore the role 
of systemic antigen exposure on the expression of PD-1 by 
T cells, murine recipients of antigen-stimulated Pmel cells 
were injected i.p. with an additional 50 µg of cognate peptide 
every other day for 10 days, prior to the circulating Pmel 
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Fig. 1   Anti-tumor activity of PmelAg+IL-12 cells associates with sus-
tained levels of IFN-γ. a Adoptive cell therapy approach involving 
the infusion of Pmel cells activated in the presence of antigen with 
or without IL-12 into a lymphopenic host. This approach mediates 
the regression of pre-established melanoma lesions which results 
in improved survival. b Tumors from mice treated with PmelAg or 
PmelAg+IL-12 were harvested 3 and 9  days after adoptive transfer. 
Expression of IFN-γ in RNA isolated from tumors was measured 
using SYBR green quantitative real-time PCR. The relative quanti-

fication of the target transcripts normalized to the endogenous con-
trol (actin) was determined by the comparative Ct method. Data are 
presented as average fold change ± SD (n = 3) relative to tumors from 
control mice that did not receive adoptive transfer. Two-tailed Stu-
dent’s t test was used, *p < 0.05, **p < 0.005, and ***p < 0.0001. c 
Tumors were digested to single cell suspensions and analyzed for fre-
quency of infiltrating Pmel cells (Thy1.1+) by flow cytometry. Data 
shown are representative of at least three independent experiments
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cells being assessed for PD-1 levels 24 h after the last treat-
ment. Figure 2b shows that the levels of PD-1 on circulating 
Pmel expanded either in the presence or absence of IL-12 
remained low despite repeated systemic exposure to anti-
gen. The lack of PD-1 upregulation after repeated antigen 
stimulation demonstrates that chronic antigen exposure is 
not the sole factor governing enhanced PD-1 expression by 
tumor-reactive activated T cells.

Differential expression of PD‑1 by circulating 
or tumor‑infiltrating Pmel cells determines their 
anti‑tumor activity

We next determined whether differential PD-1 expression by 
adoptively transferred intratumoral or circulating Pmel cells is 
associated with the ability of those lymphocytes to control the 
spread of tumor cells. Mice already bearing B16 melanoma 
tumors were adoptively transferred with: saline, PmelAg, or 
PmelAg+IL-12, and 10 days later the mice were intravenously 
injected with an additional 5 × 104 B16 melanoma cells. 

Lungs were harvested 15 days after injection and analyzed 
for tumor lesions. Figure 2c shows that mice receiving ACT 
were able to inhibit the development of lung lesions regard-
less of whether they received PmelAg or PmelAg+IL-12. In other 
words, the effective peripheral control of B16 spread by cir-
culating PmelAg was comparable to that mediated by circulat-
ing PmelAg+IL-12. In contrast, within the tumor microenviron-
ment, only the intratumoral PmelAg+IL-12 cells were able to 
control progression of primary tumors, and tumors borne by 
mice injected with PmelAg alone continued growing robustly 
(Fig. 2d). These results are consistent with the differential 
expression of PD-1 on Pmel cells in the periphery versus the 
tumor microenvironment in the absence of IL-12.

IL‑12 downregulates PD‑1 expression on CD8+ T 
cells infiltrating human melanoma tumors resulting 
in enhanced secretion of IFN‑γ

Next, we determined whether IL-12 could directly modu-
late the expression of PD-1 on human tumor-infiltrating 
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lymphocytes (TILs). To this end, tumor cell suspensions 
from melanoma patients were treated in vitro with 10 ng/
ml of human IL-12 for 72 h, and PD-1 expression by CD8+ 
T cells was assessed before and after IL-12 treatment. Fig-
ure 3a shows that exposure of TILs to IL-12 resulted in the 
downregulation of PD-1 expression. We then asked whether 
IL-12 would enhance IFN-γ secretion if provided during 
anti-CD3/CD28 activation of T cells. Figure 3b shows a 
significant increase in the percentage of IFN-γ-producing 
CD8+ T cells when activated with both anti-CD3/CD28-
coated beads and IL-12 compared to with the beads alone. 
Downregulation of PD-1 expression after culture with IL-12 
was also observed, though to a lesser extent, in T cells infil-
trating a murine B16 tumor (Fig. 3c). These results sug-
gest that IL-12 directly modulates the expression of PD-1 
on human TILs, and that such decreases in PD-1 expression 
could contribute to the restoration of IFN-γ secretion by 
TILs in response to reduced signaling by PD-1.

Ex vivo activation of CD8+ T cells in the presence 
of IL‑12 stimulates the downregulation of IFNγR2 
expression

Next, we explored whether the enhanced persistence of 
intratumoral PmelAg+IL-12 cells was based on their reduced 
sensitivity to the cytotoxic effects of IFN-γ. Because the 
apoptotic signal can be greatly influenced by an overabun-
dance of IFNγR2 [18], we first determined whether IL-12 
modulated the expression of that receptor component 
on activated Pmel cells. To this end, tumor-infiltrating 

PmelAg and PmelAg+IL-12 cells were sorted from B16 mel-
anoma tumor cell suspensions based on their expression 
of Thy1.1. Figure 4a demonstrates that as compared to 
PmelAg, PmelAg+IL-12 cells express slightly more of the 
IFNγR1 chain but significantly lower levels of IFNγR2, 
both of which are required to form the functional, heter-
odimeric IFN-γ receptor. To assess the functional conse-
quences of IL-12-mediated decreased sensitivity to IFN-
γ, we generated a homozygous IFNγR1−/− strain on the 
background of Pmel-1 transgenic strain (IFNγR−/− Pmel). 
Although in this transgenic mouse, the receptor compo-
nent targeted is IFNγR1 rather than IFNγR2, the lack of 
IFNγR1 completely abrogates response to IFN-γ signaling 
[19]. Therefore, this system allowed us to test whether 
the lack of IFN-γ responsiveness could affect the survival 
of activated CD8+ T cells exposed to IFN-γ. To this end, 
equal numbers of ex vivo expanded wild-type PmelAg, 
PmelAg+IL-12, and IFNγR−/− PmelAg cells were cultured 
in fresh media. Cell viability was determined at 18, 48, 
and 72 h after reculture using a LIVE/DEAD® Assay Kit. 
As shown in Fig. 4b, there was a significantly greater 
population of viable IFNγR−/− PmelAg cells as com-
pared to wild-type PmelAg cells following reculture. This 
increase in viability was likely due to a decrease in apop-
tosis, as evidenced by lower annexin V positivity among 
IFNγR−/− PmelAg when compared to its wild-type coun-
terparts after 24 h of reculture (Fig. 4c), and by a decrease 
in Bax/Bcl-2 ratio which is indicative of reduced apoptosis 
[20] (Fig. 4d). These results strongly suggest that a lack 
of IFN-γ sensitivity protects activated CD8+ T cells from 
IFN-γ-induced apoptosis.

a b

0

10

20

30

40

0

20

40

60

80

Co
un

t

PD-1 PE

Pre
IL-12

Human Human Mousec

*p=0.045 *p=0.04

Pre IL-12
An�-CD3/CD28

Beads
An�-CD3/CD28
Beads + IL-12

Pe
rc

en
ta

ge
 (%

) o
f C

D8
+

T 
ce

ll 
ex

pr
es

sin
g 

PD
-1

Pe
rc

en
ta

ge
 (%

) o
f C

D8
+

T 
ce

ll 
pr

od
uc

in
g 

IF
N

-γ

Fig. 3   IL-12 can directly downregulate the expression of PD-1 on 
human TILs. a Tumor cell suspensions from human melanoma 
tumors were incubated with 10 ng/ml human IL-12 for 72 h, and the 
expression of PD-1 among CD8+ T cells was determined by flow 
cytometry before and after culture. (n = 3). b The same tumor cell 
suspensions were cultured in the presence of anti-CD3/CD28 beads 

with or without IL-12, and production of IFN-γ among CD8+ T cells 
was determined by flow cytometry (n = 5). One-tailed paired Stu-
dent’s t test was used, *p < 0.05, **p < 0.005, and ***p < 0.0001. c 
Cell suspensions from a B16 melanoma tumor were incubated with 
10 ng/ml murine IL-12 for 72 h, and the expression of PD-1 among 
CD8+ T cells was determined by flow cytometry



401Cancer Immunology, Immunotherapy (2019) 68:395–405	

1 3

IFN‑γ unresponsiveness enhances the in vivo 
survival and anti‑tumor activity of adoptively 
transferred Pmel cells

We next tested the impact of diminished IFN-γ sensitivity on 
the function of adoptively transferred PmelAg or PmelAg+IL-12 
in vivo. To determine if decreased sensitivity to IFN-γ sign-
aling would enhance in vivo T cell survival, we transferred 
IFNγR−/− PmelAg, wild-type PmelAg, and PmelAg+IL-12 to 
animals bearing 7-day post-injection melanoma tumors 
(palpable lesions). We first determined the frequency of 
Pmel cells in the blood, since we and others have previously 
reported that circulating levels of adoptively transferred T 
cells is an accurate determinant of their persistence in the 
periphery as well as within the tumor [9, 21]. At day 5 post-
ACT, IFNγR−/− PmelAg accounted for over 0.5% of total 
circulating lymphocytes, a slight but significant increase in 
frequency as compared to their wild-type PmelAg counter-
parts. This difference in persistence was even more marked 

at day 13 after transfer, at which time IFNγR−/− PmelAg 
cells remained at a frequency 1–3.4% of total lymphocytes 
(Fig. 5a). We then determined whether this enhanced T cell 
persistence due to IFN-γ insensitivity also translated into 
superior tumor control. Figure 5b shows the significant delay 
in tumor progression that occurred in mice treated with 
IFNγR−/− PmelAg cells as compared to animals treated with 
wild-type PmelAg or CTX alone. As expected, this tumor 
delay resulted in a survival advantage for the mice (Fig. 5c). 
These results suggest that lack of IFN-γ responsiveness in 
T cells enhances both their survival and anti-tumor activity 
upon adoptive transfer.

Discussion

The clinical success of ACT is contingent on a synergy 
between the anti-tumor activity of the T cells and the dura-
bility of their function. Here, we show that the superior 
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cells, and analyzed for IFNγR1 and IFNγR2 expression by qPCR. 
Data are expressed as fold expression of PmelAg+IL-12 over PmelAg 
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media. b Cell viability was determined after 24, 48, and 72 h of cul-
ture using the LIVE/DEAD® assay. c Apoptosis was measured by 

annexin V stain 24  h after culture. Data are presented as the aver-
age ratio of CD8+ annexin V+ over CD8+ annexin V− cells ± SD 
(n = 3). d RNA isolated from cells after 24 h of culture was analyzed 
by qPCR for expression of Bcl-2 and Bax. These values were used 
to calculate Bax/Bcl-2 ratio which directly associates with apop-
tosis [20]. Data are presented as the average change in Bax/Bcl-2 
ratio relative to their respective baseline measurement ± SD (n = 3). 
Two-tailed Student’s t test was used, *p < 0.05, **p < 0.005, and 
***p < 0.0001. Data shown are representative of at least three inde-
pendent experiments



402	 Cancer Immunology, Immunotherapy (2019) 68:395–405

1 3

anti-tumor activity of CD8+ T cells activated ex vivo in 
the presence of IL-12 associates with both enhanced effec-
tor function via sustained secretion of IFN-γ and extended 
in vivo survival. Because of the known regulatory func-
tions of IFN-γ, we wanted to explore whether resistance to 
the negative regulation of IFN-γ played a role in the ability 
of Pmel cells activated ex vivo in the presence of IL-12 to 
maintain sustained secretion of IFN-γ.

The ability of IFN-γ to induce PD-L1 expression within 
the TME is one potential mechanism by which IFN-γ might 
be negatively regulating T cell responses. CD8+ T cells acti-
vated ex vivo in the presence of IL-12, however, downregu-
late PD-1 expression upon entering the TME, conferring 
protection against PD-L1/PD-1-mediated suppression.

Elevated PD-1 expression by TILs has been attributed to 
their chronic exposure to high cognate antigen loads within 
the tumor bed, based on experiments using ovalbumin-
transfected tumors as the experimental tumor antigen [14]. 
Under these manipulated conditions, tumor antigen expres-
sion is strictly limited to the tumor, a situation distinct from 
the more physiological scenario in which tumor-reactive T 
cells are often exposed to peripheral antigens homologous 
to the endogenous tumor proteins. Using the Pmel model 

in which the identical antigen is expressed by the periph-
eral melanocytes as well as by tumor melanoma cells, we 
demonstrated that circulating T cells exposed to ubiquitous, 
peripheral antigens, do not upregulate their PD-1 expression. 
This result suggests that tumor antigen load alone may not 
be the main driver of PD-1 upregulation on tumor-reactive 
T cells. Indeed, other factors independent of chronic anti-
gen exposure have been implicated in the induction of T 
cell exhaustion, such as certain cytokines and suppressive 
immune cell types. Molecules associated with exhaustion 
include immunosuppressive cytokines such as IL-10 and 
transforming growth factor-β, as well as proinflammatory 
cytokines such as type I interferons and IL-6. Suppressive 
cell subtypes such as Tregs, myeloid-derived suppressor 
cells (MDSCs), suppressive NK, and CD8+ T cells also con-
tribute to the inhibition of T cell responses [22, 23]. The dis-
proportionate accumulation of all these exhaustion-inducing 
factors within tumors, as compared to the periphery, may 
explain the differential expression of PD-1 that distinguishes 
circulating- from tumor-infiltrating tumor-reactive T cells.

Our findings also suggest that the inhibitory effect that 
IL-12 has on PD-1 expression can occur as a direct effect on 
TILs, which also results in the restoration of IFN-γ secretion. 
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to respond to IFN-γ stimuli have longer in  vivo survival and supe-
rior anti-tumor activity. a Circulating levels of adoptively transferred 
PmelAg or IFNγR−/− PmelAg ex vivo expanded in the presence of anti-
gen plus or minus IL-12  at days 5 and 13 after infusion into wild-
type mice bearing B16 melanoma tumors. Data are presented as the 
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with CTX alone or with either PmelAg, PmelAg+12 or IFNγR−/− 
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A similar effect by IL-12 has been recently described in 
exhausted HBV-specific CD8+ T cells. In this study, in vitro 
exposure to IL-12 resulted in the downregulation of PD-1 
expression and restoration of IFN-γ secretion [24].

IFN-γ can also contribute to the modulation of activated 
CD8+ T cell activity by directly inducing T cell death, i.e., 
by effectively promoting activation-induced cell death 
(AICD) [25, 26]. Conversely, IFN-γ is also known to pro-
mote cell proliferation. The net response to IFN-γ, whether 
it induces proliferation or apoptosis, depends on the rela-
tive expression of the β chain of the IFNγR (also known as 
IFNγR2); when it is upregulated, T cell apoptosis occurs 
[27]. Our data suggest that the protective effect of IL-12 
on tumor-infiltrating activated T cells from IFN-γ-induced 
apoptosis could be in part mediated by downregulating the 
expression of IFNγR2. Experiments using IFNγR−/− Pmel 
mice confirmed the contribution of reduced IFN-γ sensitiv-
ity to enhancing T cell viability, as it prolonged survival and 
improved anti-tumor activity upon adoptive transfer. Recep-
tor modification to induce selective resistance to IFN-γ 
stimuli has also been described during Th1/Th2 generation. 
It has been reported that the differential ability of IFN-γ to 
inhibit the proliferation of Th2 cells, but not that of Th1 
cells, is due to the disproportional upregulation of IFNγR2 
on Th2 cells.

In summary, our data suggest that the sustained secre-
tion of IFN-γ induced by ex vivo conditioning with IL-12 
is crucial for optimal tumor control and depends, at least in 
part, on the ability of activated CD8+ T cells to counteract 

the deleterious effects of IFN-γ (Fig. 6).These results have 
important implications for cancer immunotherapy because 
they suggest that strategies aimed at curbing the negative 
regulatory effects of IFN-γ could prolong the persistence 
of activated TILs, and thus enhance their anti-tumor activ-
ity. Furthermore, given the mounting evidence on the piv-
otal role of IFN-γ in the clinical response to checkpoint 
blockade, a better understanding of the regulatory effects 
of IFN-γ would aid in elucidating the reasons behind the 
lack of response to checkpoint blockade by a significant 
fraction of patients treated.
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