Skip to main content
. 2019 Feb 26;20(5):1019. doi: 10.3390/ijms20051019

Figure 1.

Figure 1

The proposed mechanisms underlying the efficacy of ethylenediaminetetraacetic acid (EDTA) chelation therapy against neurotoxicity. Toxic agents, (toxic metals, organophosphorus pesticides (OP), pathogens, air pollution, some drugs) can damage neurons and/or glial cells and endothelial cells directly (·). Activated glial cells and endothelium produce reactive oxygen species (ROS) and pro-inflammatory cytokines (IL-1, TNFα), which are able to further damage neurons. Treatment with EDTA (●) has the following effects: (1) Protection against endothelial activation; (2) removal of toxic metals; (3) possible anti-inflammatory functions (limiting pathogen infections and cytokine production); and (4) antioxidant activity (reducing ROS levels).