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Abstract

This study investigates the numerical solutions of MHD boundary layer and heat

transfer of the Williamson fluid flow on the exponentially vertical shrinking

sheet, having variable thickness and thermal conductivity under effects of the

velocity and thermal slip parameters. It is also assumed that shrinking/stretching

velocity, as well as the wall temperature, has the exponential function form. In

this study, the continuity, momentum and energy equations with buoyancy

parameter and Hartmann number are incorporated especially in the Williamson

fluid flow case. Similarity transformation variables have been employed to

formulate the ordinary differential equations (ODEs) from partial differential

equations (PDEs). The resultant ODEs are solved by shooting method with

Runge Kutta of fourth order method in Maple software. The effects of the

different applied non-dimensional physical parameters on the boundary layer and

heat transfer flow problems are presented in graphs. The effects of Williamson

parameter, Prandtl number, and slip parameters on velocity and temperature

profiles have been thoroughly demonstrated and discussed. The numerical results

show that the buoyancy force and the slip parameters contribute to the

occurrence of the dual solutions on the boundary layer and heat transfer flow
.e01345
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problems. Furthermore, the stability analysis suggests that the first solution is stable

and physically possible.

Keywords: Computational mathematics, Electromagnetism, Mechanics

1. Introduction

The boundary layer pseudo-plastic fluids flows have vast industrial applications such

as solutions of the polymers with higher molecular weight, emulsion covered sheets

such as polymer sheets extrusion and photographic films etc. Since Navier-Stokes

equations are not able to define all kinds of fluid flows, a comprehensive study is

required to explore the rheological characteristics of all kind of fluids such type of

the deficiency different type of the rheological models have been introduced. To

study the behavior of the pseudo-plastic (shear thinning) fluids several models are

introduced such as Cross model, Ellis model, Carreaus model, the power law models

any many other non-Newtonian models, see [1, 2, 3, 4, 5]. However, there has been a

little attention given to investigate the multiple solutions of Williamson fluid over a

shrinking/stretching surface in presence of MHD.

TheWilliamson fluid was firstly introduced byWilliamson [6] in his pioneer research

of pseudo-plastic materials flow. He described the flow of pseudo-plastic fluids by

developing a model equation and verified this hypothesis with the experiment. Since

then, many other researchers worked on theWilliamson fluid, such as [7, 8, 9]. A flow

of a thin layer of the Williamson fluid in the presence of a gravitational field over an

inclined surface was studied by Lyubimov and Perminov [10]. The perturbation

method to the Williamson fluid inserted in the fracture of the rock was developed

by Dapra and Scarpi [11]. The effect of the presence of an inclined magnetic field

over the Williamson peristaltic flow fluid in the inclined asymmetric or symmetric

channel was analyzed by Nadeem and Akram [12, 13]. Meanwhile, the Williamson

peristaltic pumping fluid flow and heat transfer over the porous medium was studied

by Vasudev et al., [14]. Cramer et al. [15], indicated that the Williamson fluid model

is perfect for the experimental data of the polymeric solutions as well as suspensions

of the particle as compared to the other previous fluid models. Mixed convection flow

of different fluids has been considered by many researchers such as Mabood [16] and

Turkyilmazoglu [17]. For the shear thinning fluids, power law model indicates that

the dynamic viscosity decreases indefinitely when shear rate increases. This implies

that there will be zero viscosity when shear rate tends infinity and infinite viscosity

when the shear rate is zero or at the rest. Each real fluid may have both maximum

and minimum dynamic viscosities depending on the fluid’s molecular structure. In

the present Williamson model, both viscosities maximum (m0) and the minimum

(mN) are taken into account. But in the case of pseudo-plastic fluids, the apparent vis-

cosity cannot be zero at infinity, so this model gives better results.
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Due to numerous applications in engineering and industries, MHD fluid flows on

shrinking sheet have gained much attention nowadays [18, 19, 20, 21]. Such appli-

cations include liquid coating on photographic films, extrusion of the polymeric

sheet from expire, boundary layer through the liquid film in the concentration pro-

cess, aerodynamic extrusion of plastic sheets, etc. Turkyilmazoglu [22] dealt with

the MHD flow through analytical approach. Mabood et al. [23], considered MHD

flow of rotating fluid over a vertical surface. Akbar et al. [24] studied “partial slip

and heat transfer peristaltic flow behavior of the Williamson fluid through the in-

clined asymmetric channel”. This study was later extended by incorporating nano-

particle. Vajravelu et al. [25] analyzed Williamson fluid flow (peristaltic) in

asymmetric channels with permeable walls having different amplitudes and phases.

They have also discussed the effect of the various waveforms on the fluid flow

pattern. Akram et al. [26], analyzed the effects of an induced magnetic field over

the peristaltic flow of the Williamson fluid by analytical and numerical techniques.

Bhatti and Rashidi [27] suggested the thermal radiation and thermos diffusion effects

of the flow pattern of the Williamson nanofluid on shrinking/stretching porous sheet.

The aim of this study is to investigate the multiple solutions numerically of MHD

mixed convectional flow of the Williamson fluid on an exponentially shrinking/

stretching sheet with combined effects of the velocity and the thermal slip condi-

tions. The nonlinear coupled governing equations in partial differential equations

form are transformed into ordinary differential equations form by using similarity

transformations. Then, the equations are solved by applying the shooting method,

it is already implicated successfully such as [28, 29]. The calculations are obtained

for the different applied physical parameters until the desired level of the accuracy

obtained. The results of the shear stress, as well as the temperature gradient, are

calculated at the wall of the solid surface. It is expected that the findings of the pre-

sent study will prove fruitful in the future research to enhance the development in

science and technology.
2. Model

Let us consider the MHD two-dimensional incompressible steady laminar William-

son fluid flow on the vertical exponential shrinking/stretching sheet along with slip

boundary condition placed in the plane y ¼ 0. The plate is shrieked and stretched

exponentially along x-axis at the velocity uw ¼ C e
x =

l with a wall temperature Tw.

The fluid taken into account is electrically conducting and the applied magnetic field

is perpendicular to the sheet. Due to the small Reynolds number, the polarization of

magnetic field is ignored. The rheological equations of Williamson fluid are taken as

mentioned by Reddy et al., [30]. In case of Williamson fluid flow, Cauchy stress

tensor (S) will be written as
on.2019.e01345
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S¼�pIþ t ð1Þ

t¼
�
mN þ m0 � mN

1� ffiffiffi
_g

p
�
A1 ð2Þ

where S stands for the extra stress tensor, mN restrictive viscosity with infinite shear

rate, m0 restrictive viscosity with zero shear rate, A1 first Rivlin Erickson tensor, G

> 0 is the constant of time and _g will be written as

_g¼
ffiffiffi
p

2

r
;p¼ trace

�
A2
1

�
: ð3Þ

It is considered that

mN ¼ 0;
ffiffiffi
_g

p
< 1 ð4Þ

which leads to

t¼
�

m0

1� ffiffiffi
_g

p
�
A1: ð5Þ

Applying binomial expansion on (5), which gives

t¼ m0

�
1�

ffiffiffi
_g

p �
A1: ð6Þ

Under the given conditions, the boundary layer and heat transfer flow equations

without viscous dissipation with magnetic force will be (refer [31])

vu
vx

þ vv
vy

¼ 0 ð7Þ

u
vu
vx

þ v
vu
vy

¼ w
v2u
vy2

þ
ffiffiffi
2

p
vG

vu
vy

v2u
vy2

þ gbðT � TNÞ � sB2u
r

ð8Þ

u
vT
vx

þ v
vT
vy

¼ a
v2T
vy2

ð9Þ

subjected to initial and boundary conditions below

v¼ vw ; u¼ uw þNw
vu
vy

T ¼ TwðxÞ þK
vT
vy

; at y¼ 0

u/0 ; T/TN as y/N ð10Þ

where,
�
uw ¼ C e

x =

l
�
and Tw ¼ TN þ T0 e

2x=l. In the above mentioned conditions

N ¼ N1 e
�x=2l and K ¼ K1 e

�x=2l indicate the velocity slip and the thermal slip fac-

tors that vary with x (but at the values N ¼ 0 and K ¼ 0, the no-slip cases are
on.2019.e01345
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examined), N1and K1 are values of initial velocity and thermal slips factors respec-

tively, uw is shrinking/stretching velocity with Uw as a shrinking/stretching con-

stant, the velocity components are u and v along x and the y-directions,

respectively. l is characteristic length of the sheet and B¼B0e
x =

l is a magnetic field

in which B0 is the constant of magnetic field.

Velocity components will be written as

u¼ vj

vy
; v¼�vj

vx
; ð11Þ

For relations of (11), (7) is satisfied automatically and (8, 9) takes the form:

vj

vy
v2j

vxvy
� vj

vx
v2j

vy2
¼ w

v3j

vy3
þ

ffiffiffi
2

p
vG

v2j

vy2
v3j

vy3
þ gbðT � TNÞ � sB2

r

vj

vy
ð12Þ

vj

vy
vT
vx

� vj

vx
vT
vy

¼ a
v2T
vy2

ð13Þ

The boundary conditions in (10) will then be reduced to

�vj
vx ¼ vw ; vj

vy ¼ uw þNw v2j
vy2

; T ¼ TwðxÞ þ K vT
vy; at y ¼ 0

vj

vy
/0; T/TN as y/N ð14Þ

To get the similarity solutions, the following similarity transformations are used

j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wlUw

p
ex=2lf ðhÞ; qðhÞ ¼ ðT � TNÞ

ðTw � TNÞ ; h¼ y

ffiffiffiffiffiffiffi
Uw

2wl

r
ex=2l ð15Þ

where h represents the similarity variable and vwðxÞ is denoted by

vwðxÞ ¼ �
ffiffiffiffiffiffiffiffiffi
wUw

2l

r
ex=2l S ð16Þ

Using similarity transformations in Equations (12), (13) produces,

f 000ðhÞ þ lf 00ðhÞf 000ðhÞ � 2 f 02ðhÞ þ f ðhÞ f 00ðhÞ �Mf 0ðhÞ þ 2 s qðhÞ ¼ 0 ð17Þ

q00ðhÞ þPrf ðhÞq0ðhÞ � 4Prf 0ðhÞqðhÞ ¼ 0 ð18Þ

The related boundary conditions will be,

f ð0Þ ¼ S; f 0ð0Þ ¼ xþ df 00ð0Þ;
�
where x¼ c

Uw

�
; qð0Þ ¼ 1þ bq0ð0Þ
on.2019.e01345
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f 0ðhÞ/0; qðhÞ/0 as h/N ð19Þ

where b ¼ K1

ffiffiffiffiffi
Uw

2wl

q
and d ¼ N1

ffiffiffiffiffiffiffi
wUw

2l

q
are thermal and velocity slip parameters [32],

M ¼ 2sB2
0l

rUw
is Hartmann number, l ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

w expð3x=lÞ
wl

q
is dimensionless Williamson

fluid parameter, the mixed convection parameter is s ¼ Gr
Re2

(Gr¼gbl2T2

w2 ; Re ¼
Uwl
w
), and Pr ¼ w

a
is Prandtl number. At l ¼ 0, the Eq. (13) will be reduced to

the form of the classical boundary layer equation in case of viscous fluid flow.

The parameter l ¼ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

w expð3x=lÞ
wl

q
does not allow the problem to be self-similar,

henceforth, this analysis is considered as a local similar. Nu represents the gradient

of the wall temperature and Cf for the coefficient of the skin friction are important

interesting physical quantities that are to be measured. The coordinate system and

flow regime are illustrated in Fig. 1. By boundary layer approximations, tw and

qw take the form

tw ¼ m0

 
vu
vy

þ Gffiffiffi
2

p
�
vu
vy

�2
!
and qw ¼ �a

�
vT
vy

�
y¼0

ð20Þ

That are written as,

Cf ¼ tw

rU2
w

; Nu ¼ xqw
aðTw � TNÞ ð21Þ
Fig. 1. Physical model and coordinate system.
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In the dimensionless form, both parameters above can be written as

ffiffiffiffiffiffiffiffi
2Re

p
e�3x=2lCf ¼

�
f 00ð0Þ þ l

2
ð f 00ð0ÞÞ2

�
; �q0ð0Þ ¼

ffiffiffiffiffiffi
2
Re

r
e�x=2lNu ð22Þ

2.1. Stability analysis

In this regard, unsteady state of our governing model has been considered to do a

stability analysis on the present problem. While Eq. (7) continues as before, Eqs.

(8) and (9) supplanted by as pursues:

vu
vt

þ u
vu
vx

þ v
vu
vy

¼ w
v2u
vy2

þ
ffiffiffi
2

p
vG

vu
vy

v2u
vy2

þ gbðT � TNÞ � sB2u
r

ð23Þ

vT
vt

þ u
vT
vx

þ v
vT
vy

¼ a
v2T
vy2

ð24Þ

subjected to new boundary conditions

v¼ vw ; u¼ uw þNw
vu
vy

T ¼ TwðxÞ þK
vT
vy

; at y¼ 0

u/0 ; T/TN as y/N ð25Þ

Another dimensionless variable t is presented, where t is uniform with the problem

of which solutions will be related with problem of an initial value and physically

feasible. With the presentation of new dimensionless variable t in Eq. (15), we

now have

j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2wlUw

p
ex=2lf ðh;tÞ;qðh;tÞ ¼ ðT � TNÞ=ðTw � TNÞ;

h¼ y

ffiffiffiffiffiffiffi
Uw

2wl

r
e

x
2l ; t¼ Uw

2l
e
x
l :t ð26Þ

Substituting Eq. (26) into Eqs. (23) and (24) yields

v3f ðh; tÞ
vh3

þ l
v2f ðh; tÞ

vh2

v3f ðh; tÞ
vh3

� 2
�
vf ðh; tÞ

vh

�2

þ f ðh; tÞv
2f ðh; tÞ
vh2

þ 2s qðh;tÞ �M
vf ðh; tÞ

vh
� v2f ðh; tÞ

vtvh
¼ 0

ð27Þ

1
Pr

v2qðh;tÞ
vh2

þ f ðh; tÞvqðh;tÞ
vh

� 4
vf ðh; tÞ

vh
qðh;tÞ � vqðh;tÞ

vt
¼ 0 ð28Þ

The boundary conditions, in Eq. (25), become
on.2019.e01345
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f ð0;tÞ ¼ S;
vf ð0; tÞ

vh
¼ xþ d

v2f ð0; tÞ
vh2

; qð0;tÞ ¼ 1þ b
vq0ð0; tÞ

vh

vf ðh; tÞ
vh

/0; qðh;tÞ/0; as h/N ð29Þ

The stability of solution of fðhÞ ¼ f0ðhÞ and qðhÞ ¼ q0ðhÞ is tested in order to satisfy
the boundary value problems in Eq. (19) as proposed by Merkin [33] and Weidman

et al., [34]

f ðh;tÞ ¼ f0ðhÞ þ e�εtFðh;tÞ

qðh;tÞ ¼ q0ðhÞ þ e�εtGðh;tÞ ð30Þ
where the unknown eigenvalue is ε or likewise can be depicted as the rate of devel-

opment or disturbances decay. A set of infinite eigenvalues ε1 < ε2 < ε3::: is given

by the eigenvalue solutions. Furthermore, if the values of smallest eigenvalue are

positive (initial decay of disturbances) which means that solution is stable and phys-

ical possible. On the other hand, the negative values of smallest eigenvalue show

the initial disturbances growth which mean flow is unstable.

Substituting Eq. (30) into Eqs. (27) and (28); gives

F000
0 þ lf 000F

000
0 þ lF00

0f
000
0 � 4f 00F

0
0 þ f0F00

0 þF0f 000 þ 2sG0 �MF0
0 þ εF0

0 ¼ 0 ð31Þ

1
Pr

G00
0 þþf0G0

0 þF0q
0
0 � 4f 00G0 � 4F0

0q0 þ εG0 ¼ 0 ð32Þ

subjected to boundary conditions below

F0ð0Þ ¼ 0;F0
0ð0Þ ¼ dF00

0ð0Þ;G0ð0Þ ¼ bG0
0ð0Þ;

F0
0ðhÞ/0; G0ðhÞ/0; as h/N: ð33Þ

The smallest number of eigenvalue ε determines the stability of dual solutions. Ac-

cording to Rehman et al. [35], we have to relax the G0ðhÞ on our initial boundary

condition. In this manner, we solved the equations with new boundary condition

of G0
0ðhÞ ¼ 1, which is relaxed from G0ðhÞ/0 as h / N. Finally, we determine

a fixed smallest value of ε, which is called smallest eigen value.
3. Result & discussion

The computation of Eqs. (17) and (18) with initial and boundary conditions given by

(19) have been done by applying shooting method. The results of the skin friction

coefficient f00ð0Þ and the heat transfer rate �q0ð0Þ at various values of applied pa-

rameters as Hartmann number (M), velocity slip parameter (dÞ and the thermal
on.2019.e01345
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slip parameter ðbÞ are obtained numerically. Furthermore, the velocity and temper-

ature profiles are determined by solving nonlinear ordinary differential equations.

Numerical solutions are presented with the help of graphs to examine the effects

of the different parameters such as velocity slip parameter (d), thermal slip parameter

(b), magnetic parameter (M), Williamson fluid parameter (l) Prandtl number (Pr).

Variation of the skin friction coefficient f00ð0Þ and heat transfer rate �q0ð0Þ with
respect to Hartmann number (M) for various values of all the mentioned parameters

are presented in Table 1. In order to verify our applied numerical method, our results

have been compared with the results of bvp4c method in Table 2. Table 2 shows an

excellent agreement between shooting method and three-stage labatoo three-A-

formula in bvp4c solver in MATLAB. f00ð0Þ and �q0ð0Þ are presented graphically

in Figs. 10 and 11 respectively.

Fig. 2: demonstrates the impact of the momentum (hydrodynamic) slip parameter d

on the velocity distribution profiles. It can clearly be examined that the velocity dis-

tribution profiles are decreasing as the slip parameter are increasing and momentum

boundary layer thickness decreases in first solution. On the other hand, the numerical

result show that no change occurs in momentum boundary layer thickness in second

solution with increments in velocity slip parameter ðdÞ. The effect of thermal slip

parameter b over temperature distribution is enlightened in Fig. 3. In the case of

the 1st solution, the increment in thermal slip parameter b decreases the temperature

and the thickness of the thermal boundary layer that is also mostly observed in
Table 1. The values of the skin friction coefficient and rate of the heat transfer of

considered Parameters.

M d b l S s Pr x f 00ð0Þ L q0ð0Þ

1st Solution 2nd Solution 1st Solution 2nd Solution

0.8 0 0 0.1 2 -0.25 2 -1 1.213807 1.038613 0.252532 -0.67397

0.1 0.1 1.376217 0.725463 1.515805 -1.60832

0.5 0.5 0.984085 0.382931 1.201361 -1.07531

2 0 0 2.273161 0.889304 1.815061 -11.4029

0.1 0.1 1.924793 0.656778 1.948979 -9.32232

0.5 0.5 1.119306 0.323239 1.239023 -5.02345

1 0.1 0.1 0.1 1.510519 0.688307 1.65597 -2.93329

0 1.382296 0.7017285 1.538828 2.667072

0.1 2.5 2.04788 -0.1605 2.7438 -12.4147

4 3.194703 -4.53368 4.26351 4.77032

2 0 1.70550 ——— 1.80370 ———

-0.5 1.237112 0.813012 1.36303 0.076830

-0.25 1 -2.085813 -3.46665 3.35283 -8.370184

on.2019.e01345
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Table 2. Comparison of numerical methods for various values of different

parameters.

M d b l S s Pr x f 00ð0Þ

Shooting Results BVP4C Results

0 0 0 0 0 0 1 1 -1.28181638 -1.28181639

0.5 0 0 0 0 0 1 1 -1.46644548 -1.46644548

1 0.1 0.1 0.1 2 -0.25 1 1 -2.12641933 -2.12641933

0 0 0 0 2.5 0 1 -1 1.64190906 1.64190906

1 0.1 0.1 0.1 2 0 1 -1 1.705508323 1.70550832

1 0 0 0 2 0 1 -1 1.70939369 1.70939368

1 0.1 0.1 0.5 2 -0.25 2 -1 1.55546734 1.55546685

Fig. 2. Variation of velocity profile f 0ðhÞ at various values of slip parameters.
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literature. In the second solution, the heat transfer rate and thickness of the thermal

boundary layers increase by increasing thermal slip parameter.

The effects of Prandtl number (Pr) over velocity distribution profile is represented in

Fig. 4. The figure shows that velocity and thickness of momentum boundary layer

reduce as the Prandtl number (Pr) is increasing in the first solution. On contrary,

in the second solution the reverse effect is observed. Fig. 5 shows that in the first so-

lution the heat transfer rate decreases as the Prandtl number increase. As a sample,

MATLAB program for Fig. 5 is given in Appendix A. This behavior resembles with

the first solution observed in Fig. 3. It is examined that the increasing value of Pr
on.2019.e01345
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Fig. 3. Variation of temperature profile qðhÞ at various values of slip parameters.
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decreases rate of the heat transfer in fluid considerably and the boundary layer comes

closer to wall because the increasing value of the Prandtl number decreases rate of

thermal diffusivity so in the result thinning boundary layer. However, thickness of

thermal boundary layer and temperature rise in the first solution. However, in the

second solution at start it is rising but after a point it is decreasing by increasing

in Prandtl number.
Fig. 4. Variation velocity profile f 0ðhÞ at various values of Prandtl number.
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Fig. 5. Variation of temperature profile qðhÞ at various values of Prandtl number.
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Fig. 6 represents the effect of the Hartman number (M) over the velocity distribution

profile. Figure shows that the velocity and thickness of momentum boundary layer

decline by the increasing value of the Hartmann number (M), the one of the reason is

that the Lorentz force is increasing by increasing in Hartman number (M) that pro-

duce resistance in flow of the fluid. Furthermore, the thickness of boundary layer and

velocity distribution has remained same when Hartmann number increases in second

solution. Fig. 7 shows that the heat transfer rate is increasing as magnetic parameter
Fig. 6. Variation of velocity profile f 0ðhÞ at various values of the Hartmann number.
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Fig. 7. Variation of temperature profile qðhÞ at various values of the Hartmann number (M).
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(M) is increased in both solutions. The influence of the magnetic field is main reason

behind the rise of thermal boundary layer thickness as well as rate of the heat

transfer.

Fig. 8 illustrates the influence of dimensionless Williamson fluid parameter lon ve-

locity profile. This number lis present only in momentum equation in combined de-

rivative form as lf00ðhÞf000ðhÞ. This is number also named as Weissenberg number (l)
Fig. 8. Variation of Velocity profile f 0ðhÞ at various values of Williamson parameter (l).
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which measures the relative effects of viscosity to elasticity. The l ¼ 0 and l ¼
N represent Newtonian fluid and elastic solid respectively. The middle values stand

for polymeric viscoelastic fluid properties. The magnitude of the velocity is

increased along the boundary layer as value of l is increased, so it decreases the

cohesive forces between the fluid molecules and flowing layer therefore flowing

fluid is accelerated with greater Weissenberg number. In present study, it is observed

that the dual solution exists only in range of 0 � l � 0:1. The velocity distribution

profile decreases in first solution as l increases but no effect is observed in the second

solution in spite of increasing l.

In order to show the existing of dual solutions over stretching surface, Figs. 9 and 10

are drawn. Velocity profile decreases in first solution when suction is increased in

Fig. 9. On the other hand, dual behavior of velocity profile has been noticed.

Fig. 10 demonstrated the effect of suction parameter on temperature profile. When

suction increased, temperature and thickness of thermal boundary layer decrease

in the first solution. However, dual behavior of increasing and decreasing of temper-

ature profile can be seen in the second solution.

Fig. 11, shows the coefficient of skin friction; skin friction diminutions as velocity

slip effect increases in both solutions. However, skin friction is increased in first so-

lution and the reverse behavior is observed in second solution in which skin friction

is decreasing by increment in the magnetic parameter (M).

Graph of local Nusselt number is plotted in Fig. 12, which demonstrates that as the

slip parameter increases heat transfer rate increases in the second solution and
Fig. 9. Variation of Velocity profile f 0ðhÞ at various values of suction parameter (S) over stretching

surface.
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Fig. 10. Variation of Temperature profile f 0ðhÞ at various values of suction parameter (S) over stretching

surface.
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declines monotonically as the Hartmann number is increased. In first solution, no

more change occurs in the heat transfer rate when thermal slip parameters increase.

In like way, because of the presence of double solutions in a chose limit of param-

eters, as appeared in our separate numerical outcomes, an investigation of stability

has been performed to decide the most stable solution between them by verdict

the smallest eigen value ε. With the help of bvp4c solver in MATLAB software,

the Eqs. (31) and (32) along with boundary conditions (33) has been solved
Fig. 11. The profile of coefficient of skin friction f 00ð0Þ with different values of M and d; b when l ¼
0.1, S ¼ 2, z ¼ -1, Pr ¼ 2 and s ¼ -0.25.
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Fig. 12. The profile of heat transfer rate �q0ð0Þ with different values of M and d; b when l ¼ 0.1, S ¼ 2,

z ¼ -1, Pr ¼ 2 and s ¼ -0.25.

Table 3. List of several values of the smallest eigenvalue ε when x < 0 (for

Shrinking surface) and x > 0 (for Stretching surface).

d b x ε

1st Solution 2nd Solution

0.1 0.1 -1 1.0994 -0.94705

0 0.1 -1 0.81561 -0.72048

0 0 -1 0.8375 -0.73862

0.1 0 -1 1.10014 -0.94768

0.1 0.1 1 3.0857 -2.16463

0 0.1 1 3.26891 -2.29312
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numerically. The certain values of d; b and x together with the smallest eigenvalue ε

properly listed in Table 3, when other parameters are fixed such as s ¼ � 0:25; l ¼
0; M ¼ 1; S ¼ 2; and Pr ¼ 2;. From this table, it is seen that the second solutions

demonstrate negative values, while the first solutions indicate positive values. At that

point, it is concluded that the second solution is not stable and not physically

feasible, on the other side, the first solution is stable and physically possible.
4. Conclusion

The MHD flow of Williamson fluid and heat transfer with exponentially vertical

shrinking/stretching sheet is examined unanimously into consideration of velocity

and thermal slip effect. The similarity solutions are obtained by applying similarity

transformations over governing boundary layer partial differential equations in form
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of the ordinary differential equations which have been solved by applying shooting

method with maple software. Moreover, stability equations are derived from un-

steady equations of basic governing equations. The summarized conclusion of the

study is presented here.

1. The magnitude of the coefficient of the skin-friction is decreasing with Hartmann

number.

2. The slip parameters are caused to decrease the velocity and temperature distri-

bution inside the boundary layer in the first solution.

3. The velocity boundary layer thickness of the Williamson fluid is smaller as

compare to the Newtonian fluid.

4. The magnetic parameter reduces the thickness of the velocity boundary layer.

5. The magnetic parameter increases the thickness of the thermal boundary layer.

6. The first solution is stable and physically possible.
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