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Abstract

Diffusion MRI plays a very important role in studying biological tissue structure and functioning 

both in health and disease. Proper interpretation of experimental data requires development of 

theoretical models that connect the diffusion MRI signal to salient features of tissue microstructure 

at the cellular level. In this review, we present some models (mostly, relevant to the brain) for 

describing diffusion attenuated MR signals. These range from the simplest approach, where the 

signal is described in terms of an apparent diffusion coefficient, to rather complicated models, 

where consideration is given to signals originating from extra- and intracellular spaces and where 

account is taken of the specific geometry and orientation distribution of cells. To better understand 

the characteristics of the diffusion attenuated MR signal arising from the complex structure of 

whole tissue, it is instructive to appreciate first the characteristics of the signal arising from simple 

single-cell-like structures. For this purpose, we also present here a theoretical analysis of models 

allowing exact analytical calculation of the MR signal, specifically, a single-compartment model 

with impermeable boundaries and a periodic structure of identical cells separated by permeable 

membranes. Such pure theoretical models give important insights into mechanisms contributing to 

the MR signal formation in the presence of diffusion. In this review we targeted both scientists just 

entering the MR field and more experienced MR researchers interested in applying diffusion 

methods to study biological tissues. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Diffusion MRI is a technique that is capable of providing in vivo images with a contrast 

uniquely sensitive to molecular displacement motion at cellular and sub-cellular length 

scales. Despite a rather long history and substantial progress in both clinical and research 

applications, the biophysical mechanisms underlying this contrast are not always 

understood. This is not surprising because biological tissues have very complicated 
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composition and geometrical architecture––factors that influence diffusion weighted MRI 

signal in multiple ways. For example, even a very small imaging MRI voxel positioned in 

the central nervous system (CNS) will always have a very complicated content due to the 

presence of myriads of cells with different sizes, intracellular milieu, membrane properties, 

etc. Consider that there are 107 neurons in 1 mm3 of mouse cortex and each neuron has 

about 5 cm of axonal tree, 4 mm of dendrite tree and 8000 synapses; the average diameter of 

axons and dendrites is about 0.5 μm and 0.9 μm correspondingly; relatively large structures, 

like cell bodies with the size of 10 mm, occupy 12% of cortex volume while the rest is 

occupied by neuropil (34% by axons, 35% by dendrites, 14% by spines and 6% by 

extracellular space) (1). These statistical data represent gross approximations and are not 

always consistent among different published reports. Usually, extracellular space is assumed 

to occupy 15% to 20% of brain tissue (2,3), however, sometimes it is claimed to be 

negligible [2.5% in (4)].

The average diffusion coefficient for water in the CNS is about 1 μm2/ms and the typical 

MR diffusion experiment employs a diffusion 20time Δ of –80 ms. Thus, the average water 

molecule probes a length scale on the order of 5–20 μm, making diffusion MR sensitive to a 

wide range of tissue microstructural parameters. The ultimate goal of MR diffusion theory is 

to quantitatively relate these microstructural and physiological parameters to the diffusion 

weighted MR signal. Due to the above mentioned highly complex tissue structure, these 

theories can never be perfect and can never ideally fit experimental data. However, as long as 

they reflect tissue properties of interest, they serve the purpose. The MR relevant range of 

length scales for restrictions and hindrances to water diffusion should be reflected in any 

model of MR diffusion data from biological systems. The critical issue is how best to do 

this. A few important effects should be taken into consideration:

• Molecules residing in the extracellular space will experience hindrances to their 

motion but, diffusion time permitted, could travel distances much longer than 

characteristic cellular sizes. For long diffusion times diffusion can be considered 

as quasi-Gaussian with a reduced ‘effective’ diffusion coefficient Deff ≈ Dfree/

λ2, where λ is the tortuosity constant, λ ~ 1.6 under normal physiological 

conditions [see, for example, (3,5,6)].

• Molecules residing inside elongated cells, like axons and dendrites, will 

experience ‘guided’ diffusion that is practically Gaussian along the principal 

orientation axis of these cells and substantially restricted in the perpendicular 

directions.

• Molecules residing inside non-elongated cells will experience restricted diffusion 

in all directions.

• Depending on molecular species and cell types, cellular membranes might be 

considered either permeable or impermeable to molecular diffusion during time 

∆ of the MR experiment. For example, myelinated axonal membranes are 

practically impermeable to water and other metabolites. In other cells, like 

astrocytes, membranes are populated by aquaporins that greatly facilitate water 

transfer between intracellular and extra-cellular spaces (by orders of magnitude) 

Yablonskiy and Sukstanskii Page 2

NMR Biomed. Author manuscript; available in PMC 2019 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7,8). The predominant CNS aquaporin family, aquaporin-4, has been found to 

be almost exclusively expressed in astrocytes (9).

A number of attempts have been made to incorporate these effects into theories of diffusion 

in biological tissues [see, for example, (10–21)]. While a comprehensive theory of diffusion 

in such a complicated environment remains under development, with contributions from 

many laboratories, in this review we will discuss how some of the above mentioned effects 

are reflected in the diffusion weighted MR signal.

STEJSKAL-TANNER EXPERIMENT

Most MR methods for measuring molecular displacement rely on a Stejskal-Tanner pulsed 

gradient (PG) experiment (22) with bipolar diffusion-sensitizing magnetic field gradient 

pulses. Here, the first gradient pulse, with a duration δ, encodes initial positions of nuclei 

through their MR signal phase and the second pulse, applied after time delay Δ (usually 

called diffusion time), decodes the final positions of these nuclei. The encoding and 

decoding gradient pulses shown in Figure 1 have either opposite polarity or are separated by 

a 180° refocusing RF pulse. From the point of view of the diffusion-attenuated MR signal, 

both sequences are identical (the difference becomes important when analyzing the 

influence of background gradients). For simplicity, all equations below are derived for the 

case of diffusion-sensitizing gradients of opposite polarity; however, all the final results are 

applicable for both cases.

In the case of sufficiently short gradient pulses, when molecular diffusion during time d can 

be ignored, each molecule accumulates phase only at two points of its trajectory: at its initial 

position r0 at time t = 0,φ0 = γGr0δ, and at its final position r at time t = T = Δ, φT = γGrδ

Here G is the field gradient and γ is the nuclear gyromagnetic ratio. The net MR signal after 

the bipolar gradient pulse can be written as:

S = S0 ⋅ ∫ ∫
V

drdr0ρ(r0)P(r, r0, Δ)exp[ − iγG(r − r0)δ] (1)

where ρ(r0) is an initial spin density (usually, ρ(r0) is homogeneous, ρ(r0) = 1/V); P(r, r0, Δ) 

is a diffusion propagator describing the probability for a molecule to move from point r0 to 

point r during diffusion time Δ, S0 is the MR signal amplitude without diffusion sensitizing 

gradients and integration is over all the initial and final positions of molecules in the 

system’s volume V. The diffusion propagator P(r, r0, Δ)is a solution to the diffusion 

equation,

∂P
∂t = D∇2P (2)

(D is the diffusion coefficient) with the initial condition P(r, r0, 0) = δ(r – r0), where δ(r – 

r0) is the Dirac delta function, and with specific boundary conditions. Clearly, greater 
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molecule displacement during diffusion time Δ leads to a larger phase difference (φT − φ0)

and stronger decay of the MR signal, Eq. [1]. Hence, the MR signal decay in the Stejskal-

Tanner PG experiment is a measure of nuclear displacement. For an arbitrary pulse gradient 

waveform G(t) applied over a total time T, the phase accumulated by a molecule moving 

along a given trajectory r = r(t) can be written as:

φ(T) = γ∫
0

T

dt G(t)r(t) . (3)

It is important to emphasize that the phase in Eq. [3] is determined not only by the initial and 

final positions of the molecule (as in the case of narrow pulses) but by all the points along 

the full displacement trajectory. To obtain the net diffusion attenuated MR signal, 

contributions of individual molecules should be averaged over all initial positions and 

possible trajectories (23):

S = S0 exp( − iφ(T)) . (4)

The expression in Eq [4] for the signal can also be presented in the form first proposed in 

(24):

S = S0 ⋅ ∫
−∞

∞

dφP(φ) exp( − iφ) (5)

where P(φ) is a distribution function for the phases in Eq.[4].

Another approach for calculating the MR signal is based on the Bloch-Torrey equation (25):

∂m(r, t)
∂t = D∇2m(r, t) + iγbz(r, t)m(r, t),

m(r, 0) = ρ0(r)
(6)

where m(r, t) is a circular component of transverse spatial magnetization distribution (m = 

mx + imy) at time t after the excitation RF pulse, and bz r, t   = B0 + G(t) ⋅ r. By solving this 

equation in the presence of Stejskal-Tanner gradients, one can then calculate an expression 

for the diffusion attenuated MR signal:

S = ∫
V

dr m(r, T), (7)
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where integration is over the system volume V.

In the case of narrow pulses, the magnetization distribution m(r, Δ) is given by (26):

m(r, Δ) = exp( − iγGrδ) ⋅ ∫
V

dr0ρ(r0)P(r, r0, Δ) exp(iγGr0δ) . (8)

The above approaches for calculating the MR signal are tightly connected. They are similar 

to the Lagrangian and Eulerian descriptions of fluid dynamics. In the approach described by 

Eqs. [1]–[5], we are following the magnetization of diffusing molecules along their 

trajectories; in the Bloch-Torrey approach, Eqs. [6]–[8], we are looking at the magnetization 

distribution at a given spatial point r at a given diffusion time t.

UNRESTRICTED DIFFUSION

In a homogeneous unbounded media (e.g. water) thermal molecular motion is random, i.e. 

diffusion. In this case, the diffusion propagator P(r, r0, Δ) has a well known Gaussian form:

P(r, r0, Δ) = 1
(4πD0Δ)3/2exp −(r − r0)2/4D0Δ (9)

(this is why free diffusion is usually called ‘Gaussian diffusion’). Here D0 is the free 

diffusion coefficient for water or other MR active species under consideration. For Gaussian 

diffusion, as in Eq. [9], MR signal decay given by Eq. [1] can be readily calculated. The 

result is a simple mono-exponential function (22):

S = S0exp( − b D0) (10)

where b is the so-called b-value equal to b = (γGδ)2Δ for the narrow pulse approximation. If 

signal attenuation during time is taken into account, the expression for b-value is (22):

b = (γGδ)2(Δ − 1
3δ) . (11)

Equation [11] can also be obtained by solving the Bloch-Torrey equation, Eq. [6]. During 

the first gradient lobe in Figure 1, one finds that:

m(r, t) = m(0) ⋅ exp(iγ Gr t) ⋅ exp −
D0
3 (γG)2t3 . (12)

Because during the first gradient lobe the magnetization has acquired a spatially varied 

phase, the magnitude of the local magnetization will continue to decay due to diffusion even 
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in the interval between lobes, δ < t < Δ, when G = 0. The solution to the Bloch-Torrey 

equation for this time interval is:

m(r, t) = m(r, t = δ) ⋅ exp −D0(γGδ)2(t − δ) . (13)

Finally, after applying the second Stejskal-Tanner gradient lobe, we find:

m(r, t = Δ + δ)

= m(r, t = Δ) ⋅ exp( − iγGrδ) ⋅ exp −
D0
3 (γG)2t3 =

= m(0) ⋅ exp( − bD0)

(14)

which exactly coincides with Eq. [10] with b-value defined according to Eq. [11].

It is also important to emphasize that for free diffusion, Eq. [10] remains valid for an 

arbitrary diffusion-sensitizing gradient pulse waveform G(t) applied during a total time T, 

with b-value calculated according to equation (27):

b = γ2∫
0

T
dt ∫

0

t
dt′G(t′)

2
. (15)

The results for different waveforms can be found in (28). Hence, by measuring MR signal 

intensity as a function of b-value and fitting Eq. [10] to the obtained MR signal, one can 

determine diffusion coefficient D0.

GAUSSIAN PHASE APPROXIMATION

Another way to derive Eqs. [10]–[11] is based on Eq. [5]. Douglass and McCall (24) 

demonstrated for the case of free diffusion that the phase distribution function is of the 

Gaussian type

P(φ, T) = 1
(2π φ2(T) )1/2exp − φ2

2 φ2(T)
. (16)

The MR signal corresponding to P(φ, t) in Eq. [16] is equal to:

S = S0 ⋅ exp − 1
2 φ2(T) (17)
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(without loss of generality, we consider . Averaging rather than the exponent in Eq. [4]] is a 

substantially less challenging problem because the expression for can be written in a closed 

form:

〈φ2(T)〉 = 2γ2

V ∫
0

T

dt1∫
0

t1

dt2∫
V

dr1∫
V

dr2(G(t1)r1)

× (G(t2)r2)P(r1, r2, t1 − t2) .

(18)

In the case of unrestricted diffusion, when the propagator has a form of Eq. [9], the integrals 

in Eq. [18] can be readily calculated (24) leading to the same signal as in Eqs. [10]–[11].

If diffusion is restricted by some barriers or if the field gradients are non-uniform (as in the 

case of susceptibility-induced field inhomogeneities), the phase distribution function P(φ, t), 
is, in general, not Gaussian. However, in some cases it can be well approximated by a 

Gaussian function in Eq. [16]––the so called Gaussian phase approximation (not to be 

confused with Gaussian diffusion). The quantity < φ2(T) > and, consequently, the signal in 

Eq. [17] can be readily calculated in systems for which the diffusion propagator P(r1, r2, t) 
is available. Some important examples of these calculations can be found in (29).

In the Gaussian phase approximation φ2(T)  in Eq. [18] is proportional to the square of the 

diffusion gradient amplitude, hence can be written in the form φ2(T) = G2 ⋅ f φ where the 

function fφ depends only on the timing of the diffusion sensitizing gradient waveform and 

the properties of the diffusing spins. Since b-value in Eq. [15] is also proportional to the 

square of the diffusion gradient amplitude, it can also be written in the form b = G2 ⋅ f b with 

fb depending only on the timing of the diffusion sensitizing gradient waveform. 

Consequently, in the Gaussian phase approximation we can present the result for the 

diffusion attenuated MR signal in Eq. [17] as:

S = S0 ⋅ exp( − b ⋅ ADC), ADC = 1
2

f φ
f b

, (19)

where ADC is the so called apparent diffusion coefficient (see further comments in the next 

section). As we demonstrated above, for free diffusion ADC = D0 (i.e. the free diffusion 

coefficient). In general case, ADC depends on the ‘timing’ parameters of the gradient 

waveform and, of course, on the structure and properties of the environment in which spins 

diffuse. However, in the Gaussian phase approximation ADC does not depend on the 

strength of diffusion gradients (for fixed ‘timing’ parameters of the gradient waveform).
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The quadratic dependence of ln S on the diffusion gradient G, ln S ~ G2, is a ‘hallmark’ of 

the Gaussian phase approximation. The adequateness of the Gaussian phase approximation 

has been discussed by many authors (29–33). A detailed quantitative comparison of the 

Gaussian phase approximation with exact results for some models of restricted diffusion in 

the presence of a constant field gradient was given in (33) for a broad range of system 

parameters. First, this approximation is valid at short diffusion times, when phase 

accumulated by diffusing spins is small, φ < < 1. Assuming that φ = 0, one can get 

exp(iφ) ≈ 1 − φ2 /2 ≈ exp(− φ2 /2). Second, it can be valid at long diffusion times (this 

condition is necessary but not sufficient!), when all diffusing spins have encountered 

boundaries many times, their trajectories become statistically identical, and the central limit 

theorem can be applied. Obviously, this is not always true. For instance, in the case of 

narrow pulses, the diffusion attenuated MR signal from a single restricted compound 

demonstrates a quasi-periodic dependence on G [a so called ‘diffusion diffraction’ effect 

(30)]. An interesting regime with ln S ~ G2/3was predicted in (34) and then confirmed in 

(35) in a model system.

ADC APPROACH

A simple and compelling temptation to describe the diffusion attenuated MR signal in 

biological tissues is to use an equation similar to Eq. [10] by introducing ADC:

S = S0exp( − b ⋅ ADC) . (20)

As we already discussed above, this approach is adequate in the Gaussian phase 

approximation with ADC defined by Eq. [19]. More generally, the ADC should be 

considered as a phenomenological parameter that incorporates integrative information on 

tissue microstructure. While it is quite insensitive to the details of this microstructure, it has 

played a very important role as a biomarker, especially in identifying pathology such as 

stroke (36). Usually, ADC is determined by measuring the diffusion attenuated MR signal at 

two b-values – zero and b, so that ADC = ln(S0/ S(b))/b. This measurement however is not 

unambiguous because dependence of the diffusion attenuation MR signal on b-value in CNS 

is not mono-exponential. Numerous studies of the diffusion of water and/or other 

metabolites in brain tissue and other biological systems have documented this non-mono-

exponential behavior of the MR signal S as a function of the b-value at fixed diffusion times 

(e.g. (12,37–48)). Originally this deviation of MR signal from mono-exponential behavior 

was treated as an evidence for a presence of two compartments and most authors reported 

that their data were fit well by a bi-exponential function with two different diffusion 

coefficients (large/fast and small/slow), ascribing the two exponential components to two 

physical compartments (extra- and intra-cellular) in a tissue. It is clear today that such a 

simple explanation is rarely valid. For example, Sehy et al. (49) have directly observed non-

mono-exponential diffusion MR signal behavior even within the intracellular space of a 

single cell, the frog oocyte. In most in vivo experiments, each imaging or spectroscopic 

voxel contains numerous cells with different cell types, sizes, geometries, orientations, 

membrane permeabilities, and presumably different T2 and T1 relaxation time constants. 
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Practically any of the above-mentioned issues can lead to a deviation from mono-

exponential behavior––a point clearly illustrated by Chin et al. (50). These authors carried 

out numerical simulations for a realistic geometrical structure of rat spinal cord and 

concluded that ‘assignment of fractions obtained from biexponential fits of fast and slow 

diffusion attenuation to ECS and ICS volume ratios is not correct; rather, the observed 

multicomponent diffusion behavior is caused by motional restriction and limited inter-

compartmental water exchange’. An insightful and entertaining discussion of this problem 

can be found in a recent paper by Mulkern et al. (51). Quite a few theoretical models have 

been proposed to explain this phenomenon. In this review we will discuss only several of 

them and show how different mechanisms could lead to non-mono-exponentiality of the 

diffusion attenuated MR signal, both in the simple situation of a single homogeneous 

compartment as well as in situations corresponding to the complexity of biological tissue.

KURTOSIS APPROACH

A model-independent way to quantify non-Gaussian water diffusion (when the MR signal’s 

non-mono-exponentially depends on b-value) was proposed by Jensen et al. (52) (see also 

53). It is based on a cumulant expansion of the signal S(b), which is, in fact, a Taylor series 

of ln S(b):

ln S(b) = − bD + K
6 (bD)2 + … (21)

where K is a so called kurtosis. As shown in (52), in the narrow pulse approximation, the 

parameter K is related to the fourth moment of spin displacement. In the case of free 

(Gaussian) diffusion, when the spin displacement is described by the Gaussian distribution 

function, the kurtosis K in Eq. [21] (and all higher order terms in this expansion) is equal to 

0. All tissue inhomogeneities (cell membranes, intracellular substructures, etc.) leading to 

non-Gaussian diffusion, contribute to the kurtosis K. In a simple one-dimensional system 

with impermeable boundaries, the kurtosis was calculated analytically in (54,55). Further 

details on Kurtosis approach and its applications in brain can be found in (56–58) and the 

review paper by Jensen et al. published in this issue of NMR in Biomedicine.

Even though such approach does not directly offer biophysical insight, it allows estimation 

of some empirical parameters related to tissue characteristics that might change with disease 

progression. Hence, such an approach may play an important role by providing an empirical 

biomarker of tissue status in health and disease (52).

STATISTICAL APPROACH

The ADC approach, Eq. [20], describes the MR signal in terms of an average apparent 

diffusion coefficient characterizing global properties of tissue in the imaging voxel. Given 

the tremendous complexity of tissue structure, the next logical step is to develop a strategy 

that would allow not only provide an evaluation of the mean diffusion coefficient but also 

the distribution of diffusion coefficients in the imaging voxel. In what follows, we introduce 

a statistical method/model (15) which reflects, in a well-defined manner, the consequences 
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of a distribution of length scales for restrictions and hindrances to diffusion. This general 

phenomenological model can describe a large number of experimental results related to the 

structure of the PG diffusion attenuated MR signal in biological systems.

Several rather general assumptions are made to describe the diffusion attenuated MR signal 

in terms of a statistical approach (15). It is assumed that the MR signal from a given voxel 

containing a variety of cells, and intercellular and extracellular spaces, can be described as a 

sum of signals from a large number of individual spin packets originating from different 

positions within the voxel. Because spin packets originate from different positions, travel 

through different displacement trajectories, and are confronted with different restrictions and 

hindrances to displacement, their individual contributions to the signal are described by Eq. 

[20] with different apparent diffusion coefficients:

ADC = ADC(Ω; b), (22)

where Ω represents a set of parameters that can be used to characterize (mark) spin packets. 

The ADC generally depends on the b-value, as was discussed in the previous section 

(Kurtosis approach). With this approach the total MR signal can be described in terms of a 

distribution function F(Ω) that gives the fraction of spin packets characterized by a given Ω:

S = S0 ⋅ ∫ dΩ ⋅ F(Ω)exp[ − b ⋅ ADC(Ω; b)], (23)

where the integration is over all values of parameters V. This expression is more general than 

was originally proposed in (15). In what follows, we will specify different distribution 

functions that depend on specific details of the biological system under consideration and on 

characteristics of the diffusion gradient waveform.

In case when the Gaussian phase approximation is valid, Eq. [23] can be reduced to:

S = S0 ⋅ ∫
0

∞

dD P(D)exp( − b D), (24)

where P(D) is simply a distribution function of ADCs. We should note, however, that P(D) 

depends on the pulse gradient waveform structure (gradient direction, duration, shape and 

diffusion time). For the sake of simplicity, we keep these dependences in mind but omit 

them in the notations.

If the Gaussian phase approximation is not valid, the signal can still be formally represented 

in the form of Eq. [24], however, the function P(D) loses its meaning as a distribution 

function of ADC. From mathematical point of view, the signal in Eq. [24] is a Laplace 

transform of the function P(D), hence the inverse Laplace transform should reconstruct the 

function P(D). However, the inverse Laplace transform requires knowledge of S(b) in a 
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complex plane of b, and therefore is unavailable from experimental data. Employing a 

numerical approach to solve Eq. [24] from experimental data is a well known ill-posed 

problem [e.g. discussion in (59)].

For the limiting case of free diffusion, the distribution function is a d-function and the MR 

signal reduces to a mono-exponential, Eq. [10]. If a voxel were to contain several 

identifiable pools, the signal would be a discrete sum of weighted mono-exponentials. 

However, as noted earlier, biological tissue possesses an exceedingly complex structural 

micro-architecture and postulating a small number of identifiable pools to describe water 

displacement would seem counter intuitive. Indeed, it is far more likely that each of the large 

number of spin packets within a voxel experiences a net displacement somewhat different 

from all the other spin packets. Hence, we expect that the appropriate distribution function 

should be continuous rather than discrete. In the general case, its shape is rather complicated 

and we will consider different examples in corresponding sections below. In certain 

situations, however, quite general assumptions can simplify the problem. For example, if our 

system consists of numerous cells with relatively narrow distribution of cell sizes, we can 

expect that the distribution function P(D) will be a peak-shaped with the peak width 

reflecting the width of cellular distributions (see example with HeLa cells below). If the 

distribution of cell sizes is not narrow but cellular membranes are permeable on the diffusion 

time scale and the diffusion time Δ is much longer than the characteristic time required for 

molecules to encounter a multitude of hindrances and restrictions to displacement, then 

diffusion is quasi-Gaussian and most spin packets can be expected to sample similar 

displacement trajectories and environments. This physical model also results in a peak-

shaped distribution function, P(D). The exact shape depends on the details of the structural 

micro-architecture within the voxel. However, under a realistic assumption that a large 

number of ‘similar’ cells reside in a voxel, the width of the distribution should be rather 

small and the ‘tails’ of the distribution should decay rather fast. Obviously, these 

assumptions can be satisfied by a Gaussian -type function:

P(D) =
Aexp −(D − Dm)2/2σ2 , D > 0

0, D < 0
(25)

where A is a normalization constant,

A−1 = σ π /2 1 + Φ Dm/σ 2 , (26)

Dm corresponds to the position of the distribution maximum (peak), σ is the width of the 

distribution, and Φ is the error function. The mean value of D (analog of ADC) in this model 

is equal to:
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D = ∫
0

∞

dD ⋅ P(D, Dm, σ) ⋅ D = Dm + σ 2
π .

exp( − Dm
2 /2σ2)

[1 + Φ(Dm/σ 2)] . (27)

Substitution of Eqs. [25]–[26] in Eq. [24] gives an explicit expression for MR signal:

S = S0
1 + Φ(Dm/σ 2 − bσ / 2)

1 + Φ(Dm/σ 2) exp( − b Dm + 1
2b2σ2) (28)

Note that both the exponential and pre-exponential factors are functions of b-value. In case 

of unrestricted diffusion, σ tends to zero and the distribution function P(D) in Eq. [25] tends 

to a delta-function reducing the signal in Eq. [28] to Eq. [10].

For small b-values, Eq. [28] reduces to a mono-exponential function as in Eq. [10], however, 

as b grows, the decay rate becomes slower due to the positive term b2σ2=2. Nevertheless, the 

positive term b2σ2/2 never leads to signal growth because it is compensated for by a similar 

negative term in the pre-exponential error function. For large b-values, Eq. [28] decays as 

1/b:

S S0 ⋅
2/πexp( − Dm

2 /2σ2)
1 + Φ(Dm/σ 2) . 1

bσ − Dm/σ (29)

It is also interesting to compare Eq. [28] with a cumulant expansion, Eq. [21]. Expanding ln 

S(b)Þ with S(b) from Eq. [28] in

Taylor series, we get for the kurtosis K:

K = 3
D2 ⋅ (σ2 − D2 + D ⋅ Dm), (30)

where D is given by Eq. [27]. It is important to emphasize that the statistical model, Eq. [28], 

can be used to describe diffusion attenuated MR signal for arbitrary b-values as it converges 

for large b-values (see Eq. [28]), while Eq. [21] can only be used for small b-values as it 

diverges for large b-values.

Applying this technique to a human brain, one can obtain images that describe the mean D
values (or positions of distribution function maxima Dm) and the distribution width of these 

values for different anatomical regions. An example of such images is shown in Figure 2. 

Data were obtained on a whole body 1.5 T Siemens Magnetom Sonata. Axial 2D spin echo 

EPI images with b = 0.15, 0.3, .. ., 2.25 ms/μm2 were taken for each direction of diffusion-
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sensitizing gradients. Three orthogonal sets of diffusion sensitizing gradients (along the slice 

direction, along read-out and phase encoding directions) were applied.

Data from all brain tissues (except for CSF in ventricles) show substantial non-mono-

exponential diffusion attenuation. The brightest regions in the Dm map correspond to CSF in 

ventricles and subarachnoid spaces. On the s map, CSF in ventricles is dark but remains 

bright at the ventricular edges and in subarachnoid spaces. The latter is most likely due to 

the partial volume effect (presence of tissue and CSF that have substantially different Dm in 

the same voxel) that leads to artificial broadening of the distribution function.

The average Dm across all ROIs for data shown in Figure 2 and Figure 3 is 0.90 ± 0.27 

μm2/ms and the average s is 0.31 ± 0.07 μm2/ms or 36 ± 9% if calculated on a per voxel 

basis as a percentage of corresponding Dm. Similar results were found for other subjects.

These results demonstrate that for practically all human brain regions, the diffusion 

attenuated MR signal shows non-mono-exponential behavior that can be quantified in terms 

of a statistical model with a Gaussian-type distribution function in Eq. [25]. In this model, 

the mean diffusion coefficient D has a value close to ADC values determined previously by 

standard MR diffusion methods. It was also found that the distribution width σ was 

relatively constant across different brain tissues in both absolute units (about 0.3 μm2/ms) 

and relative to ADC units (about 36%).

For very large b-values, the major contribution to the signal comes from slowly diffusing 

spin packets. If physical consideration of the object precludes the presence of spin packets 

with zero diffusivities, special care should be taken with regard to the behavior of the 

distribution function at small D because the Gaussian distribution Eq. [25] has a nonzero 

value at D = 0. Other distribution functions can be used to address this issue (see examples 

below). However, for a typical s of about 36% of ADC, which we found in a human brain, 

P(D) reduces rapidly and for small D is proportional to exp( − 0.5 Dm
2 /σ2) ≈ 0.02. Also, due to 

this ‘narrowness’ of the distribution function, it remains symmetrical for most D, hence the 

difference between position of its maximum Dm and mean diffusion coefficient D is 

minimal.

We should note that applying the statistical approach with a Gaussian distribution function 

to brain tissue provides a phenomenological rather than structural description of diffusion in 

brain. It ignores specific details of the geometrical microstructure of cells, specifically - 

elongated geometry of axons and dendrites. These details will be addressed in the next 

sections of this review.

In the study by Zhao et al. (60), the statistical approach with the distribution function P(D) 

given by Eq. [25] was used for analysis of experimental MR diffusion data obtained from 

cultured HeLa cells. Microbeads coated with HeLa cell monolayers were packed into a 6.0-

mm-ID glass tube and perfused with pre-warmed and oxygenated media. The signal from 

intracellular water was measured in a broad range of diffusion times Δ--from 3 ms to 314 

ms. Equation [28] provided an excellent fit to the signal from intracellular water, allowing 

estimation of the parameters Dm and σ. In experiments (60), the cells had a shape of hemi-
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spheres of radius R. For this geometry, Zhao et al. found that for sufficiently long diffusion 

times Dm = k ·Δ−1; k = 49R2/320. Thus, the slope of a plot of Dm vs. 1/Δ yields an estimate 

of HeLa cell radius. The dependence of Dm on Δ−1 is shown in Figure 4. An average radius 

R found from these data is 10.1 μm and is in a good agreement with the average size of 

HeLa cells directly measured by optical microscopy.

Obviously, the truncated Gaussian distribution function, Eq. [25], is not a single choice for 

P(D). For example, one can consider the distribution function based on the gamma 

distribution:

P(D) =

1
DmΓ(a) ⋅ aD

Dm

a
exp − aD

Dm
, D > 0

0, D < 0
(31)

where Г(a) is the gamma-function. As well as P(D) in Eq. [25], this distribution function is 

also characterized by two parameters: the position of the maximum, Dm, and the parameter a 
> −1 (note that for a < 0 the parameter Dm < 0 as well). The mean value of D and the signal 

S corresponding to the distribution function in Eq.[31] are as follows:

S = S0 ⋅ a
a + bDm

a + 1
; D = Dm ⋅ a + 1

a (32)

The distribution functions in Eqs. [25] and [31] have infinite ‘tails’; that is not realistic 

because the diffusion coefficient D, obviously, cannot exceed the value of free diffusion 

coefficient D0. This shortcoming is absent in the distribution function based on the classical 

beta-function:

P(D) =

1
D0

⋅ Γ(α + β)
Γ(α)Γ(β) ⋅ D

D0

α − 1
1 − D

D0

β − 1
, 0 < D < D0

0, otherwise

(33)

The distribution function in Eq. [33] is characterized by two parameters: α > 0 and β > 0. 

Generally speaking, the ‘free’ diffusion coefficient D0 is usually also not known and, 

therefore, can be considered as a parameter as well. The mean value of D and the signal S 
corresponding to the distribution function in Eq. [33] are as follows:
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S = S0 ⋅ Fch(α, α + β; − bD0); D = D0 ⋅ α
α + β (34)

where Fch is the confluent hypergeometric function.

Summarizing, the statistical approach provides a framework for analysis of diffusion 

attenuated MR signal formation in complex biological systems. It relies on a statistical 

model that introduces a distribution function for the tissue ADC. At least two or three 

parameters are needed for each direction of the diffusion-sensitizing gradients to quantify 

diffusion in biological tissue with distributed parameters. This framework allows 

measurement of an intrinsic tissue specific ADC for a given diffusion time, independent of 

the strength of diffusion sensitizing gradients.

DIFFUSION ANISOTROPY--DTI MODEL

While accounting for complexity of CNS structure in a phenomenological manner, the 

statistical approach does not take into account the specific geometrical structure of cells. In 

particular, the presence of elongated cells, such as axons and dendrites, affects trajectories of 

diffusing molecules, making their diffusion along the main axes of these cells less obstructed 

than in a direction orthogonal to the main axes. Anisotropic diffusion creates the basis for 

diffusion tensor imaging (DTI) as proposed by Basser et al. (61). In this approach, diffusion 

is characterized by a diffusion tensor Dij and Eq. [10] is transformed in:

S = S0exp −∑
i, j

bi jDi j (35)

where indices i and j are spatial coordinates x, y and z and:

bi j = γ2∫
0

T
dt ∫

0

t
dt′Gi(t′) ⋅ ∫

0

t
dt′G j(t′) . (36)

Diffusion anisotropy is most important in white matter (WM) of CNS, but can also alter the 

diffusion attenuated MR signal in grey matter (GM) where diffusion is mostly isotropic on a 

macroscopic scale but is anisotropic on a microscopic scale (16,18) (see further discussion in 

the following sections of this article). Equation [35], while taking into consideration 

diffusion anisotropy, still assumes Gaussian diffusion, as in Eq. [9], only with different 

diffusion coefficients in different directions. DTI and its numerous derivatives are highly 

effective techniques to study CNS structure at the cellular level, both in health and disease. 

However, we will not discuss this subject here as numerous other reviews [see for example 

(62,63)], including several in this issue of NMR in Biomedicine, are devoted to this subject. 

In this review paper we will only discuss a few theoretical models that could provide a 

quantitative basis for studying diffusion anisotropy at the cellular level.
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Tissue anisotropy and MR signal phase

Herein we should also mention another approach that provides information on the 

anisotropic structure of biological tissue from MRI experiments. As recently reported by 

Duyn et al. (64) and Marques et al. (65), the contrast in phase images of human and animal 

brains obtained with gradient recalled echo MRI at high fields holds great promise for the in 
vivo study of biological tissue structures with substantially improved resolution. The origins 

of this contrast were investigated by He and Yablonskiy (66) who demonstrated that this 

contrast depends on the tissue’s ‘magnetic architecture’ at the sub-cellular and cellular 

levels. This architecture is mostly determined by the structural arrangements of proteins, 

lipids, non-heme tissue iron and deoxyhemoglobin, and their magnetic susceptibilities. This 

magnetic environment shifts the magnetic resonance frequencies of water molecules 

diffusing in the tissue. The theoretical framework developed in (66) is based upon the 

concept of a generalized Lorentzian approximation. This theory predicts the dependence of 

the signal phase on the orientation of WM fibers and thus holds promise as an additional tool 

for fiber tracking applications.

MICROSCOPIC DIFFUSION ANISOTROPY IN AXONS AND DENDRITES

As we already mentioned, an important characteristic of in situ neuronal structure is the high 

degree of anisotropy exhibited by neurons on the mm scale. Axons and dendrites are known 

to extend well beyond 10 mm, but are in most cases less than 2, or even 1 μm in diameter 

[see Table 1 in (67), for example]. While water molecules are present in all cells and 

interstitial spaces of the CNS, some of the metabolites, like N-acetyl-L-aspartate (NAA), are 

present mostly within the neuronal intracellular space making this molecule a useful 

endogenous probe for studying diffusion inside axons and dendrites. The extracellular NAA 

concentration is low (approximately 0.09 mM) (68), therefore the high concentration (>10 

mM) of NAA known to exist in the brain (69–71) is localized to the neuronal intracellular 

space (71,72).

Evidence of the anisotropic NAA diffusion has been directly observed in the orientational 

dependence of NAA ADC measurements within the excised bovine optic nerve (39) and 

human corpus callosum (16). To incorporate this known property of neuronal structure into 

the analysis of diffusion data from NAA in situ, Kroenke et al. (16) introduced a relatively 

simple mathematical model similar to the one that had been previously derived in the study 

of gaseous 3He diffusion in lung airspaces (73):

According to (16) the NAA MR signal from a large voxel within the brain represents a sum 

of signals from individual cellular structures. On the local scale, NAA displacements 

perpendicular to the approximately cylindrical (axonal or dendritic) structure are restricted 

because the diameter of these cellular structures (1–2 μm or less) is much less than the ‘free’ 

root-mean-squared displacement during a typical 50-ms diffusion time (~6 μm). 

Displacements parallel to the cylinder axis are, ideally, not restricted by cell membranes 

because axons and dendrites are known to be much longer than the ~10 μm. Using DL and 

DT to describe the apparent diffusion coefficients parallel and perpendicular to the cylinder 

axis, principal respectively, the diffusion-weighted MR signal obtained using a diffusionsen-

sitizing gradient pair (Fig. 1) directed at some angle ϑ relative to the local cylinder axis is:
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S = S0exp( − b(DLcos2ϑ + DTsin2ϑ)) (37)

Within a large voxel, or within grey matter, the NAA MR signal arises from many different 

neuronal structures that are oriented at different angles, ϑ, relative to the diffusion-

sensitizing gradient pair. The MR signal is therefore:

S = S0 ⋅ ∫
0

π

dϑ P ϑ exp( − b(DLcos2ϑ + DTsin2ϑ)) (38)

in which P(ϑ) is the distribution probability of cylinder axis orientations. We will introduce 

different distribution functions corresponding to different brain regions in the following 

section of this paper. Herein, we start from an assumption of an unbiased (macroscopically 

isotropic) distribution of neuronal structures where P(ϑ) = (sin ϑ)/2. Then the expression for 

the MR signal becomes:

S = S0exp( − bD⊥) π
4b(DL − DT)

1/2
Φ (b(DL − DT))1/2 (39)

in which Φ(x) is the error function of x. This expression coincides with the one obtained for 
3He gas diffusion attenuated MR signal in lung (73,74). If the expected mean-squared 

displacement, < r2 >, perpendicular to neuronal extensions is equated with typical axon or 

dendrite diameters of less than 1 μm, the expected D of < r2 >/4Δ for diffusion time of 50 

ms is extremely small (less than 0.01 μm2/ms). Therefore, as a realistic first approximation, 

it can be assumed that DT ≈ 0. In this case, Eq. [39] simplifies to:

S = S0 ⋅ π
4bDL

1/2
Φ (bDL)1/2 (40)

an expression that has the same number of adjustable parameters (S0 and DL) as that for 

ADC model in Eq. [20]. Two important features are characteristic for the theoretical result in 

Eq. [40]. First we note that in contrast to Eq. [20] the signal dependence in Eq. [40] on b-

value is substantially non-mono-exponential. Secondly, Eq. [40] predicts that, as long as 

diffusion length is smaller than the characteristic length of axons and dendrites, diffusion 

attenuated MR signal depends on diffusion time Δ only through the b-value.

Equation [38] has the general structure of a diffusion MR signal described by the statistical 

approach in Eq. [23], where parameters Ω correspond to the angles defining the orientation 

of cylindrical cells with respect to the direction of diffusion gradient. In this case, general 

Eq. [23] can also be reduced to a simplified form in Eq. [24]. Such a result can be obtained 
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by substituting D = DT + (DL – DT) ⋅ cos2ϑ in Eq. [38], which reduces it to Eq. [24] with a 

‘powder-type’ distribution function that reflects an unbiased distribution of cylinder 

directions:

P(D) =

1
2[(DL − DT) ⋅ (D − DT)]1/2 , DT < D < DL

0, otherwise
(41)

Clearly, this function is very different from the Gaussian distribution function that reflects a 

symmetric peak-type distribution of diffusion coefficients.

To test these theoretical predictions, Kroenke et al. (16) obtained diffusion-weighted 1H MR 

spectra, using multiple diffusion-sensitizing gradient settings, from five rats. Data were 

obtained froma large voxelcoveringa substantialpart of the brainofeachrat. To examine 

whether macroscopic anisotropy of NAA diffusion is present in the large volume selected for 

localized spectroscopy, diffusion was measured using Δ = 50 ms, and gradient pulses 

directed in three orthogonal directions. Only very slight systematic differences were seen in 

the comparison of data obtained with different diffusion-sensitization directions [Fig. 3a in 

(16)], indicating a small degree of macroscopic anisotropy.

The diffusion attenuated MR signal was also investigated over varying diffusion times (Δ 

from 50 to 100 ms), revealing practically no diffusion time dependence [Fig. 3b in (16)]––

i.e. the signal depended only on b-value.

Figure 5 shows results of signal dependence on b-value for diffusion time Δ of 50 ms. To 

maximize the signal to noise ratio and to average any net diffusion anisotropy in the selected 

volume elements, the S(b) curves corresponding to three orthogonal directions were summed 

together to generate the data plotted in Figure 5. The expected non-mono-exponential 

character of the NAA diffusion attenuation is clearly observed in Figure 5. Importantly, the 

theoretical, microscopically anisotropic, macroscopically isotropic model with DT = 0 

(hence only two adjustable parameters), given by Eq. [40], provides a close fit to the data. 

The DL obtained from the fit displayed in Figure 5 is 0.36 ± 0.01 μm2/ms. Attempts to 

determine the transverse diffusivity using the more general Eq. [39] and constraining DT to 

be non-negative yielded the best fit at DT = 0. This drawback however can be cured by a 

theory proposed recently by Sukstanskii and Yablonskiy (75) and discussed at the end of this 

section.

Figure 5 shows that, despite its simplicity, the diffusion model given by Eq. [40] provides an 

excellent fit to the experimentally measured S(b) values, substantially better than the mono-

exponential model in Eq. [20]. Quantitatively, Eq. [40] provides an almost 20-fold reduction 

in the χ2 value compared to Eq. [20]. The obtained results are in agreement with other NAA 

ADC measurements. Indeed, as discussed in (76) and (73), for low b-values the exponential 

decay rate typically associated with the macroscopic ADC is the average of the three 

orthogonally-directed microscopic ADC values, ADC = (DL + 2DT)/3. Using DL of 0.36 
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μm2/ms and DT of zero, an in vivo macroscopic ADC measurement using low b values is 

predicted to be 0.12 μm2/ms. Literature reports of the NAA ADC obtained using smaller b-

values than those employed by Kroenke et al. (16) closely match this predicted value (77).

As we already mentioned, the theory of NAA diffusion in brain tissue (Eq. [39]) is similar to 

the theory of 3He gas diffusion in lung acinar airways (73,74). Recently, Sukstanskii and 

Yablonskiy (75) have demonstrated that a substantial improvement to the theory of 3He gas 

diffusion in lung acinar airways can be achieved by including a non-Gaussian component 

that results from interaction of diffusing atoms with a sleeve of alveolar walls that create 

hindrances to atoms diffusing along lung acinar airways. Similar phenomenon, of course, 

might exist for molecules diffusing along axons and dendrites due to the presence of 

multiple intra-cellular structures as well as spines attached to cells’ membranes (analog of 

alveoli in lung acinar airways). To include this effect, we need to substitute DL in Eqs. [39] 

or [40] by:

DL = DL0 ⋅ (1 − βL ⋅ bDL0) (42)

where βL is a parameter similar to kurtosis term in Eq. [21] and DL0 is a diffusivity of 

atoms/molecules diffusing along cells as determined in the limit of bDL0 → 0. A similar 

term can also be included for transverse diffusion, however its contribution is negligible due 

to the overall smallness of the transverse diffusivity. Analyzing data shown in Figure 5, we 

find that DL0 = 0:39 μm2/ms; DT = 0:002 mm2=ms and βL = 0:024. The contribution of the 

kurtosis term is small but noticeable--it changes the MRI-estimated longitudinal diffusion 

coefficient from DL0 = 0:39 μm2/ms for small b-values to DL = 0:32 μm2/ms for b = 20 

μs/mm2. The longitudinal diffusion coefficient DL = 0:36 μm/ms determined when the 

kurtosis term is not taken into account, is a weighted average over all b-values. Importantly, 

in this improved model, DT is positive (as it should be) and very small, as expected.

In principle, further improvement in the model may be achieved by taking into consideration 

variations in fiber lengths and diameters and deviations from cylindrical symmetry in 

structures such as cell bodies. Meaningful parameter estimation from more elaborate signal 

models that account for these finer aspects of tissue structure will, however, require higher 

signal-to-noise experimental data.

Summarizing, based on the prior knowledge that NAA is confined to neuronal fibers and that 

a large number of fibers of varying orientations are present within a typical voxel used for 

NAA diffusion studies, a theoretical model that allows a quantitative description of the NAA 

diffusion MR signal has been proposed (16). The model fits experimental data strikingly 

well, and also provides a physical explanation of the previously observed deviation in the 

NAA diffusion signal from mono-exponential decay (38–40). Diffusion of NAA inside each 

individual fiber is strongly anisotropic, characterized by DL of about 0.36 μm2/ms and DT of 

essentially zero. In contrast, the macroscopic diffusivity of NAA is practically isotropic due 

to averaging of fiber orientations. Given the kurtosis term is very small, it is reasoned that 

diffusion parallel to the fiber axes is only marginally affected by intra-cellular structures and 

spines.
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WATER DIFFUSION IN BRAIN TISSUE

Previous section described theoretical model for NAA diffusion in brain tissue. It 

demonstrated that modeling diffusion attenuated MR signal as originated from multiple 

cylindrical compartments, provided an excellent fit to experimental data in a wide range of 

b-values (from 0 to b DL ≈ 8) using only two fitting parameters. To generalize this model for 

diffusion of water in brain tissue, we need to take into account that water is located both 

inside and outside the axons and dendrites with certain probability of exchange between ‘in’ 

and ‘out’ spaces. Here we describe such a theory developed by Jespersen et al. (18). The 

model is based on a simplified neural cytoarchitecture intended to capture the essential 

features important for water diffusion as measured by MR. Two components contribute to 

the signal in this model: (i) the dendrites and axons, which are modeled as long cylinders 

with two diffusion coefficients, parallel (DL) and perpendicular (DT ) to the cylindrical axis 

(similar to the previous section of NAA diffusion), and (ii) an isotropic monoexponential 

diffusion component describing water diffusion within and across all other structures, i.e. in 

extracellular space and glia cells. A possibility for such separation rests on the observation 

that the water permeability of cell membranes differs by orders of magnitude, and most of 

this variability reflects the differential expression of aquaporin water channels (7,8). The 

predominant CNS aquaporin family, aquaporin-4, has been found to be almost exclusively 

expressed in astrocytes (9). The underlying assumption is that the water molecules have time 

to diffuse back and forth between glia cells and extracellular space, the diffusion coefficient 

thereby reflecting the average properties of both compartments. A promising aspect of this 

model is that it allows experimental access to several cytoarchitectural parameters 

noninvasively, one of the more interesting being the axon and dendrite density. This is a 

physiological variable that plays a central role in normal brain function and development 

and, as such, would be of great value for monitoring the progress of several diseases of the 

central nervous system.

Hence, in the approach proposed by Jespersen et al. (18), the diffusion signal is modeled as 

arising from two separate, non-exchanging components, one from compartments with 

cylindrical symmetry (dendrites and axons), sc, and one from a compartment with spherical 

(isotropic) symmetry, si:

S = S0 ⋅ [(1 − ν) si + νsc] (43)

where vis the volume fraction of water associated with cylinders (dendrites).

As a first approximation, the diffusion of water molecules not associated with the cylinders 

is modeled as isotropic Gaussian diffusion, i.e. a monoexponential diffusion signal si ≈ 
exp(–bDeff). The effective diffusion constant Deff reflects the tortuosity of the extra-

cylindrical space, increased viscosity inside glia cells and hindrances imposed by their cell 

membranes.

Similar to the case of NAA, neuronal processes can be described as a collection of long 

cylinders contributing to the diffusion signal per Eq. [38]. It is assumed that on the timescale 
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of a typical diffusion experiment, the processes are nearly impermeable to water; this is 

necessary in order to enforce the strict compartmentalization required for the signal to be 

written as a sum of two contributions. Note that the mathematical treatment of the 

cylindrical diffusion process in Eq. [37] is only approximate, since interactions of the water 

molecules with the boundaries will add non-Gaussian corrections to the signal expression as 

discussed in the previous section; these effects are small and will be ignored here. In brain 

tissue, heterogeneous collections of cylinder orientations are encountered. The orientations 

of a collection of cylinders in a given voxel are described by f (θ, φ)dΩ, the fraction of 

dendrites or axons in the solid angle dΩ specified by spherical polar angles u and ‘ in the 

laboratory frame. In the white matter fiber tracts, the distribution of cylinders tends to peak 

along the direction of the fiber tract (78,79), whereas in grey matter, f (θ, φ) tends to be 

closer in appearance to a sphere. In general, f (θ, φ) can be expanded in spherical harmonics 

Y lm(θ, φ):

f (θ, φ) = ∑
lm

f lmY lm(θ, φ) . (44)

Experimental data demonstrate that l = 2 usually provides sufficient accuracy for describing 

data in grey matter with a total of 10 free parameters to be estimated in each voxel. In this 

case the explicit expression for the signal is:

S/S0 = (1 − ν)e
−b Deff + ν π e

−b DT f 00
π

bDA

1/2
Φ (bDA)1/2 Y00(θ, φ) +

+ π
4bDA

1/2
Φ (bDA)1/2 3

2bDA
− 1 − 3

2bDA
e
−bDA ∑

m
f 2mY2m(θ, φ)

where Φ is the error function and DA = DL — DT . The first term for the cylindrical 

component in this expression coincides, of course, with Eq. [39] for NAA diffusion model.

Experimental data in (18) were obtained from an immersion- fixed brain from a two-day old 

baboon. One hundred and fifty three diffusion weighted images were acquired using a spin 

echo diffusion weighted pulse sequence with a nonselective 180° pulse. The diffusion 

parameters were δ/Δ =5ms/50ms, and 17 b-values ranging linearly from zero to 15 ms/μm2. 

For each b-value, nine different orientations were selected from one hemi-sphere of an 18-

point spherical 5-design (80), and this scheme was randomly rotated for each b-value.

Figure 6 displays results for main model parameters. The dendrite volume fraction shows 

relatively complex contrast across the brain: there is a thin superficial layer of relatively high 

volume fraction, followed by an extended subcortical region of somewhat lower values, and 

finally in the deeper brain regions the cylindrical volume fraction increases again. Average 

value for this parameter is 0.72. Sherwood et al. (81) measured the volume fraction of cell 

bodies (glia and neurons) in the primary motor cortex of anthropoid primates by Nissl 

staining, and found a value of approximately 15% in a 10-year old baboon. Assuming that 

the dendritic spines occupy approximately 14% of brain tissue (1) and neglecting 
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extracellular space [which is not always preserved in fixed tissue (3)], the volume fraction of 

cylindrical cells should be about 0.71, which is in a good agreement with our estimate of 

0.72. This number also compares favorably with the total volume fraction of axons and 

dendrites in the mice brain [v = 0.69 (1)]).

The parallel cylindrical diffusion constant DL averages to approximately 0.8 mm2/ms, 

slightly less than half of the diffusion constant in the formalin (1.8 μm2/ms). This difference 

can be explained by the viscosity of the intracellular fluid. Kroenke et al. (16) found, for 

NAA, that intracellular viscosity was the dominant determinant of DL, and estimated this 

viscosity to be roughly twice that of a temperature matched dilute aqueous solution in 

agreement with the data of this study. Similar information was reported by Zhao et al. (82) 

for the intracellular diffusion constant in HeLa cells.

The effective diffusion constant Deff varies between brain regions: in the internal capsule it 

has a value of about 0.2 μm2/ms, and everywhere else it is about 0.3 to 0.5 μm2/ms. The 

reduced value as compared with the average DL = 0.8μm2/ms, reflects most likely tortuosity 

λ due to impermeable dendrites and resistance that water molecules encounter during 

motion between intracellular (glia) and extracellular spaces. If the tortuosity λ = 1:6 (5) of 

the extracellular space alone were responsible, a value of about DL/λ2 ≈ 0.3μm2/ms would 

be predicted in reasonable agreement with experimental data.

The transverse diffusivity DT is much smaller than the other diffusion constants of the 

model. Its value is very small in white matter regions, about 0.03 μm2/ms in the internal 

capsule, which is similar to DT of NAA reported in the previous section. However, it is 

higher in the grey matter where it averages about 0.1 μm2/ ms. This increase in grey matter 

DT can be understood based on the assumption that DT reflects non-vanishing permeability 

of the processes in the grey matter, where they are much less myelinated as compared to 

white matter.

The above described method deals with the situation when cylindrical cells form an arbitrary 

angular configuration in space. For simpler geometries when cylindrical cells form parallel 

configurations, similar methods were used by Assaf et al. (20) and Ong et al. (83) for 

evaluation of axonal diameter distributions. These authors found a rather good agreement 

between MR diffusion measurements and histological data.

Summarizing, a theoretical model of water diffusion in brain tissue developed by Jespersen 

et al. (18) contains two independent components, one with distribution of objects with 

cylindrical symmetry reflecting diffusion in dendrites and axons, and one with isotropic 

symmetry reflecting diffusion within and across all other structures. By describing the 

spatial distribution of cylindrical components within a voxel as a second order spherical 

harmonic expansion, the experimental data−-153 diffusion weighted images--are modeled 

quite well in most structures of a neonatal baboon brain. The obtained parameter values 

compare favorably to literature derived values and correlate well to DTI parameters. The 

possibility of measuring dendrite density shows a promising potential. Recently, Jespersen et 
al. (21) demonstrated that the model predictions of neurite density in rats are in good 

agreement with optical myelin staining intensity and stereological estimation of neurite 
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volume fraction using electron microscopy. Hence, the present framework constitutes an 

important step towards a better understanding of water diffusion in neural tissue.

A SINGLE-COMPARTMENT MODEL--EDGE ENHANCEMENT EFFECT

To better understand the characteristics of the diffusion attenuated MR signal arising from 

the complex structure of whole tissue, it behooves us to appreciate the characteristics of the 

signal arising from a single compartment or cell. First, we will describe a theory that deals 

with the spatial distribution of magnetization inside an idealized cell-like single 

compartment with impermeable membrane (84). Then we demonstrate how membrane 

permeability affects this magnetization distribution and, consequently, diffusion attenuated 

MR signal (26). In this review, major features of MR signal will be demonstrated using only 

one dimensional (1D) model of diffusion. Results for 2D and 3D cases are similar. In what 

follows we consider two extreme cases of Stejskal-Tanner pulse sequence in Figure 1--

narrow pulse (NP) case when δ << Δ, and spin echo (SE) case when δ = Δ.

Consider 1D diffusion case when molecules diffuse between two infinite parallel planes 

positioned at x = 0 and x = a, and the gradient G applied along X axis. For the NP case, the 

expression for the signal is well known (22):

S = 4sin2(qa/2)
(qa)2

+ 4(qa)2 ⋅ ∑
k = 1

∞ exp − πk 2 ⋅ Δ/tD 1 − ( − 1)kcos(qa)

(qa)2 − π2k2 2 ,

(46)

where q = γGδ and tD = a2/D0 is the characteristic diffusion time. The magnetization 

distribution can also be presented in an analytical form (26):

m(x, Δ) = ie−iqx 1 − eiqa

qa + 2qa ⋅ ∑
k = 1

∞ exp − πk 2 ⋅ Δ/tD cos(πk x/a) 1 − ( − 1)keiqa

(qa)2 − π2k2 2 (47)

[note here that we are using here the system size a rather than 2a in (84)].

For the SE case, our method is based on the random walk approach for describing spin’s 

diffusion when spin’s trajectories are divided into N small time intervals Δt, t = N·Δt, and 

using the diffusion propagator P(r, r0, Δt) for describing spin’s diffusion on each time 

interval (33). From the mathematical point of view, it is similar to the multiple pulse 

approximation proposed by Caprihan et al. (85) for calculating the net MR signal. Callaghan 

(86) reformulated this method in an elegant and simple-to-use form, which enables 

calculation of the signal for an arbitrary gradient waveform as a product of matrices. In (33), 

a similar approach has been used for calculating not only the net signal but the 

magnetization distribution as well.
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The magnitude of the magnetization distribution |m(x, Δ)| is shown in Figure 7 for both NP 

and SE cases. The different curves in Figure 7 correspond to different values of the 

parameter

α = Δ
tD

1/2
= 1

a (D0Δ)1/2 (48)

As we see, for α = 0:05 there is a substantial area in the center part of the compartment 

where the magnitude of magnetization |m| is small and flat, whereas at the edges of the 

compartment it is significantly higher (edge enhancement effect). The physical origin of 

such an inhomogeneous magnetization distribution is rather simple: for sufficiently short 

diffusion times, when α << 1 (the characteristic diffusion length (D0Δ)1/2 is small compared 

to the system size a), diffusion of molecules located far from the boundaries can be 

considered as unrestricted and the decay of the transverse magnetization of these molecules 

can be described by an effective ‘free’ diffusion constant D0. Diffusion of molecules located 

near the boundaries (at distance ~(D0Δ)1/2) is restricted due to encounters with the 

boundaries; here the decay of the transverse magnetization can be described by the ADC 
value D1, D1< D0. Calculations show that for α < 0:2 the magnetizations in the center (m0) 

and at the edges (m1) are practically independent of a. Such a behavior allows for 

considering magnetization distribution in terms of two pools (or quasi-compartments): the 

magnetization in the central area (first pool), where diffusion can be considered as 

unrestricted, is m0 = exp(–bD0) ≈ 0:368 for bD0 = 1. Whereas molecules located near the 

boundary (second pool) do not encounter the opposite boundary and therefore the value of 

D1 is independent of the compartment size a. Therefore the value of m1 in this regime is: m1 

= exp(–bD1) ≈ 0:7 for the same b value (bD0 = 1). With increase in Δ (the parameter α 
increases), the central region (first pool) narrows, whereas the region corresponding to the 

slow-diffusion component (second pool) broadens. As the number of spins encountering the 

boundaries increases with time as Δ1/2, it should be expected that the ‘volume fraction’ of 

the slow-diffusion component also scales as Δ1/2.

It is rather instructive to consider the MR signal in terms of the distribution function P(D) 

introduced in Eq. [24]. It is easy to verify that for our case P(D) = 1/ ∂D/ ∂x , where D(x, Δ) 

is a ‘local ADC’ defined by Eq. [49]:

m(x, Δ) = exp( − bD(x, Δ)) (49)

The distribution function P(D), for two different values of diffusion time: (a) α = 0:1 (Δ = 

0:01 tD) and (b) α = 0:5 (Δ = tD) is displayed in Figure 8 for the NP signal. In the short-time 

regime, α = 0:1, the function P(D) has two peaks located at D = D1 and D = D2 ≈D0.These 

peaks correspond to slow and fast diffusing pools as described above and the relative heights 

and widths of the peaks reflect the pools’ ‘volume fractions’. Though peaks in the 

distribution P(D) in the short-time regime are not exactly d-functions, all the spin can still be 

roughly divided into two pools and the net signal from the whole system can be well 

approximated in the form of the bi-exponential function:
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Sbi − exp = S0 ⋅ ζexp( − bD1) + (1 − ζ)exp( − bD2) , (50)

where S0 is the signal in the absence of the diffusion sensitizing gradient, ζ is the ‘volume 

fraction’ of the slow-diffusing pool, and the parameters D1 and D2 can be associated with 

the ADCs of the slow- and fast-diffusion pools accordingly. For a α = 0:5, when the 

magnetization is practically flat, the function P(D) has only one sharp maximum (Fig. 8b) 

and the signal can be well described as a single exponential (though kurtosis term is 

important for intermediate diffusion times).

To demonstrate an evolution of the parameters D1, D2, and ζ with diffusion time, the 

function in Eq. [50] was fitted to the net signal S(b), generated by Eq. [46], in the interval 

b ∈ [0, 2] for different diffusion times . The fit is extraordinarily good (x2 < 10—9) and stable 

with respect to initial values of the parameters (in contrast to (55), where instability of their 

fitting routine was reported). The results are shown in Figure 9. At α 0, the volume 

fraction ζ 0, ADC of the fast diffusing pool, D2, as expected, tends to D0, whereas ADC 
of slow diffusing poll, D1 0.22D0 for the SE signal and D1 0.30D0 for the NP signal. 

With diffusion time increases, D1 and D2 monotonically decrease and ζ increases.

For sufficiently short diffusion time ∆, the parameters ζ and D2 depend on a linearly: 

ζ = k1α,with k1 ≈ 1.4 for the SE signal and k1 ≈ 1:2 for the NP signal; 

D2 = D0 ⋅ (1 − k2α),where k2 = 0.84 for the SE signal and k2 = 0:70 for the NP signal. Using 

these results and expanding Eq. [50] for small b values, we can find the mean diffusion 

coefficient:

D ≃ D2 + ζ(D1 − D2) = D0 ⋅ 1 − k3(D0Δ)1/2 ⋅ S
V , (51)

bD0 ≪ 1, α ≪ 1, where S=V is a surface to volume ratio (= 2/a in our 1D case), k3 ≈ 0:95 for 

the SE signal and k3 ≈ 0:76 for the NP signal.

The result in Eq. [51] practically coincides with the one-dimensional analog of the short-

time expansion of the ADC obtained by Mitra et al. for NP (87) and De Swiet and Sen for 

SE (34). (Note that in the one-dimensional case, the surface-to-volume ratio appearing in the 

general result of (34,87) is equal to 2/a; the numerical coefficient in the corresponding 

equations of (34,87) should be tripled because in the system under consideration the 

direction of the field gradient with respect to the boundaries is fixed and angular averaging is 

absent). Hence, the comparison of our results with those obtained in (34,87) enables us to 

infer that the short-time behavior of the ADC derived in (34,87) is valid only under the 

additional condition bD0 << 1. If this condition is not satisfied, more general bi-exponential 

expression for the diffusion signal in Eq. [50] can be employed.
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For α > 0:2, fitting of the signal to the bi-exponential function fails because the transition 

between center and edge regions becomes smooth and, therefore, the concept of two pools or 

‘quasi-compartments’ becomes meaningless. For α > 1, where all the spins encounter the 

boundaries, the local magnetization becomes uniform and increases with increasing a 

(motional narrowing regime).

Above we have discussed some properties of magnetization distribution and MR signal in 

the system when diffusion takes place between two infinite impermeable planes and with 

gradient applied perpendicular to the planes (1D model). Very similar results for the 

magnetization distribution and the net signal can be obtained in more complicated 

geometries, i.e. in a system when diffusion takes place within a cylinder with the gradient 

applied perpendicular to the cylinder principal axis (2D model) (84). Similar to the 1D 

model, at small diffusion time, when the parameter α = (Δ/tD)1/2 < < 1, the net signal in the 

2D system can also be approximated by the bi-exponential function in Eq. [50]. This result 

was directly verified experimentally by Milne and Conradi (88). In their study, the diffusion 

attenuated MR signal, measured from a tube filled with water, was fitted by the bi-

exponential function in Eq. [50]. The parameters of the pulse sequence were chosen in such 

a way as to achieve the short diffusion time regime, where such a fit is possible. Figure 10 

demonstrates an excellent fit of the bi-exponential function to the experimental signal.

It is important to note that the physical background of the bi-exponential behavior of the 

signal at short diffusion time (quasi-compartments) implies a certain upper limit for the 

diffusion time. For typical water diffusion coefficient in biological systems ~ 1 μm2/ms and 

a cell size a ~ 1 μm, the characteristic diffusion time is tD ~ 1 ms. Thus, the bi-exponential 

signal behavior due to the inhomogeneous magnetization distribution in the short diffusion 

time regime can be observed in such cells only at extremely short diffusion time, ∆ < 0.1 ms. 

Such experiments are almost beyond current technology [see however (89,90)]. 

Alternatively, for a currently achievable diffusion time ∆ ~ 10 ms, only much larger cells 

with a ~ 25 μm (tD ~ 600 ms) or greater would reveal the short-time bi-exponential net 

signal behavior. In the experimental study by Takahashi et al. (91) of the Mauthner axon in 

the lamprey spinal cord (diameter ~ 40 μm), the authors analyzed ADC by means of high-

resolution MRI with the voxel size ~ 19 μm and found the absence of diffusion coefficient 

anisotropy for diffusion time ∆ = 11 ms. This result is in agreement with above discussed 

theory because for D0 ≈ 0.98 μm2/ms and a = 40 μm (91), α ≈ 0.16 and the radial 

magnetization distribution should have a clearly visible flat interval similar to that in Figure 

7. If the voxel covers only the center part of the axon, the measured ADC is the ‘local’ ADC 
(in our terminology) and ADC ≈ D1 independent on direction of the diffusion sensitizing 

gradients.

Summarizing, at short diffusion times, the presence of diffusion-restrictive barriers 

(membranes) reduces effective diffusivity near the membranes and leads to an 

inhomogeneous spin magnetization distribution (edge enhancement effect). In this case, the 

MR signal reveals a quasi-two-compartment behavior and can be empirically modeled 

remarkably well by a bi-exponential function. These results may provide a framework for 
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interpretation of experimental MR data on water and metabolite diffusion in giant axons and 

large cells in CNS and other tissues.

THE ROLE OF MEMBRANES PERMEABILITY: 1D PERIODIC STRUCTURE

In the previous section, we discussed a single-compartment model in which spin diffusion is 

restricted by impermeable boundaries. Now we consider effects of membranes permeability 

using a 1D periodic structure of identical compartments of the size a separated by permeable 

membranes with permeability μ. Such a periodic system was analyzed numerically in (92); 

an analytical solution was obtained in (26).

In the periodic structure, the diffusion propagator is a piecewise function defined by 

diffusion Eq. [2] with boundary conditions on the interfaces between compartments, located 

at points x = na, n = 0, ± 1, ± 2, ....

∂Pn − 1
∂x =

∂Pn
∂x , D0

∂Pn
∂x = μ(Pn − Pn − 1) at  x = na, (52)

where Pn = Pn(x, x0, Δ); denotes the propagator in the nth compartment, (n — 1)a ≤ x ≤ na. 

The particular case μ = ∞ corresponds to free diffusion; the case μ = 0 corresponds to 

completely impermeable boundaries.

In the framework of the narrow pulse approximation, the signal S and the magnetization 

distribution m(x; ∆) are determined by Eqs. [1], [8] and are given by the following 

expressions (26):

m(x, Δ) = 2iq ⋅ ∑
j

exp( − k j
2 ⋅ Δ/tD)exp( − iqx) cos k j(1 − x/a) − exp(iq)cos(k jx/a)

q2 − k j
2 2μ + 1 sink j + k jcosk j

(53)

S = S0 ⋅ 2q2

μ ⋅ ∑
j

exp( − k j
2 ⋅ Δ/tD)k j

2sink j

q2 − k j
2 2 2μ + 1 sink j + k jcosk j

(54)

where q = qa, μ = μa/D0 (a reduced permeability), tD = a2/D0. The sums in Eqs. [53]–[54] 

are over all non-negative roots kj of the transcendental equation

2μ ⋅ cosk − cosq − ksink = 0. (55)

In the case μ = 0, corresponding to the impermeable boundaries, Eqs. [53]–[54] reduce to 

Eqs. [46]–[47].
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The spatial distribution of magnetization m(x), while affected by permeability, is to some 

extent similar to that in a single-compartment model described in the previous section: at 

short diffusion times, Δ < < tD, there are clearly distinguished maxima located close to the 

boundaries and substantial areas in the central parts of the compartments where the 

magnetization is uniform and diffusion is practically unrestricted, hence 

m = exp( − bD0) ≈ 0.368 for bD0 = 1. Thus, a concept of two pools is applicable, and the bi-

exponential behavior of the signal is expected. At Δ/tD0.1 the maxima in m(x) merge and at 

Δ/δ ∼ 0.1, the magnetization is practically uniform everywhere and gradually increases with 

diffusion time.

Influence of permeability on the magnetization distribution is demonstrated in Figure 11 for 

short diffusion times when the inhomogeneity of magnetization is most pronounced. As 

expected, the magnetization of the fast-diffusing ‘pool’ in the central part at short diffusion 

times is independent of permeability, whereas the magnetization of the slow-diffusion ‘pool’ 

decreases due to the spin exchange across the boundaries

(corresponding diffusion coefficient increases, approaching D0 as boundaries become 

permeable).

In the important limiting case qa << 1, the phase accumulated by molecules is small, and the 

signal in Eq. [1] is related to mean square displacement of molecules Δx 2 ,

S ≈ S0 ⋅ 1 − q2

2 Δx 2 ≈ S0 ⋅ exp( − bADC), (56)

where b = q2Δ and

ADC =
Δx 2

2Δ

= D0 ⋅ 1
12(μ + 1)2

⋅
tD
Δ + μ

μ + 1 − 8 ⋅
tD
Δ ⋅ ∑

j

exp( − k j
2 ⋅ Δ/tD)sin2(k j/2)

k j
3(k j − sink j)

,

where kj are non-negative roots of transcendental equation

kcot(k /2) + 2μ = 0 (58)

The dependences of the apparent diffusion coefficient ADC on permeability μ and diffusion 

time ∆ are illustrated in Figure 12. It shows that ADC demonstrates a rather monotonic 

behavior as a function of diffusion time. For short diffusion times ADC reduces relatively 

fast as a square root of diffusion time and then approaches a plateau in a long time regime. 
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Both short and long time behavior of ADC depend on permeability. Naturally, in the case of 

free diffusion, μ ∞, ADC = D0. In the short time regime, ∆ << tD, ADC takes the form:

ADC = D0

⋅ 1 − 1
4μ3 1 − 4μ τ

π
1/2

+ 4μ2τ − exp 4μ2τ 1 − Φ(2μτ1/2

Where τ = Δ/tD and Φ(x) is the error function. In the case of Δ < < D0/4μ2 Eq. [59] is further 

simplified to:

ADC = D0 ⋅ 1 − 8
3π1/2

(D0Δ)1/2

a + 2 μΔ
a + O(Δ3/2) . (60)

The first two terms in Eq. [60] are similar to those in a short diffusion time expansion of the 

ADC in the system with impermeable boundaries; in particular, the second term is a one-

dimensional analog of a ‘surface-to-volume’ term found in (87). The term proportional to μ 
describes a contribution to ADC related to the finite permeability of the boundaries. At short 

times this contribution is small as compared to the surface-to-volume term as was previously 

noted in (10). Obviously, for high permeability, the approximation in Eq. [60] takes place 

only at very short diffusion times and is completely invalid in the limit of free diffusion, 

μ ∞.

In the long-time regime, ∆ > tD, the contribution from the sum in Eq. [57] is negligible and:

ADC = D0 ⋅ μa
μa + D0

+ a2

12Δ .
D0

2

μa + D0
2 . (61)

In the case of impermeable boundaries, the ADC is inversely . proportional to diffusion time 

∆: ADC = a2/12∆, and tends to 0 at Δ ∞. For any μ ≠ 0, ADC remains finite at any ∆. The 

first termin Eq. [61] was numerically found by Tanner (92), and noted by Crick (93) for the 

case of steady state diffusion between two distant points of a system such as ours.

Thus, under condition qa << 1, the signal depends on the parameter q and time ∆ only in the 

combination b = q2∆ and can be approximated by a mono-exponential in the b-value 

function in Eq. [56]. Obviously, this is not the case for arbitrary (qa) because the net signal, 

in general, depends on q and D in more complicated combinations (or doesn’t depend on D 

at all). For example, in the long-time regime, ∆ >> tD, and small permeability, 

μ = μa/D0 < < 1, the signal takes the form (26):
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S = S0 ⋅ sinc2 qa
2 ⋅ exp −4sin2 qa/2 μ Δ

a , (62)

q-SPACE ANALYSIS OF 1D PERIODIC STRUCTURE

Equation [1] describing the signal in the NP approximation can be considered as a Fourier 

transformation of the average diffusion propagator

P X, Δ = 1
a∫

0

a

dx0P x0 + X, x0, Δ (63)

with respect to the spin displacement X = (x − x0). This propagator determines a probability 

for a molecule to diffuse a distance X during diffusion time ∆, averaged over the initial 

positions of the molecules. It can be calculated as an inverse Fourier transformation of the 

signal with respect to the parameter q (q-space imaging) (30):

P X, Δ = 1
2π∫

−∞

∞

dq ⋅ S q ⋅ exp i qX . (64)

In the case when the signal is mono-exponential in q2 (as in Eq [56]), the average propagator 

P X, Δ  is Gaussian,

P X, Δ = 4πDΔ −1/2exp −X2/4DΔ (65)

with 2DΔ = X2  providing mean root square displacement of the particles. While in a 

general case P X, Δ  has a more complicated structure, it still can provide information on a 

system’s geometry if properly analyzed (30,94). For example, for a 1D system with 

impermeable boundaries (μ = 0), when the signal is given by Eq. [46], the average 

propagator is (94):

P = u X ≡ X + a + X − a − 2 X /2 . (66)

The function u(X) has a well-known ‘triangle’ form (see Figure 13 below, dashed line) and 

is equal to 0 outside the interval X ≤ a. The ‘full width at half maximum’ (FWHM) of u(X) 

in Eq. [66] is equal to a – the size of compartment. This very

important result led some investigators to believe that a similar relationship between FWHM 

of P X, Δ ; and a characteristic compartment (i.e. cell) size should also exist for arbitrary 
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system of diffusing molecules. Below we demonstrate that using this assumption in systems 

with permeable membranes can lead to misleading conclusions.

For the periodic structure under consideration, in the long-time regime, ∆ >> tD and small 

permeability, μ << D0/a, when the signal is described by Eq. [46], the average propagator 

P X, Δ  can be readily calculated:

P X, Δ = η0 β ⋅ u X + ∑
n = 1

∞
ηn β ⋅ u X − na + u X + na

ηn β = exp −β ⋅ In β

where β = 2μ Δ/a, In are the modified Bessel functions, and u(X) is given by Eq. [66]. In the 

case of impermeable boundaries, β = 0, only the term with n = 0 contributes to Eq. [67] and 

the function P X, Δ  coincides with Eq. [66]. In the case of finite permeability, P X, Δ  is a 

piecewise linear function of the displacement X. Examples of P X, Δ  are shown in Figure 

13 for two values of the parameter β: β = 0 (line 1) and β = 0:5 (line 2).

It is clearly seen that the line 2 in Figure 13 creates the deceiving appearance of a multi 

compartment system with different compartment sizes, while it actually reflects the 

permeable nature of boundaries in a multi compartment system with a single compartment 

size. This effect should be taken into account for correct interpretation of experimental data 

derived by q-space imaging procedures in systems with permeable boundaries.

The structure of the average propagator in Eq. [67], which is a superposition of ‘triangle’ 

functions, allows a rather simple physical interpretation. Although for ∆ > tD the spins’ 

spatial distribution is uniform and there exists no spatially distinct pools (in contrast to the 

short diffusion time regime), there exists an implicit differentiation of diffusing spins 

according to their ‘diffusing history’. All the spins can be conditionally divided into 

populations discriminated by the average displacement traveled during diffusion time ∆. One 

group of spins travels a distance less than the compartment size a, most of spins of this 

group never leaving a compartment they have started from. The relative 

population--’weight’--of spins of this group is equal to η0 β = exp −β ⋅ I0 β . A second 

group comprises spins that sample two neighboring compartments, hence travel distances 

less than 2a, its ‘weight’ is η1 β , and so on. In the case of impermeable boundaries, β = 0, 

only the first group of spins contributes to the sum in Eq. [67] and P X, Δ = u X . For barely 

permeable boundaries, β << 1, when only linear terms in b are taken into account, 

η1 β ∼ β ≠ 0, and the second group of spins becomes ‘visible’; accounting for terms 

proportional to β2 makes the third group ‘visible’ with n = 2, etc. Line 2 in Figure 13 

corresponds to a rather small value of β = 0:5, and therefore the average propagator rapidly 

decreases with X (in Fig. 13 only the contributions of first 3 terms are ‘visible’). As the 

parameter b increases, the central maximum P 0, Δ  decreases whereas the width of P X, Δ
increases. In the limit β >> 1 (very long diffusion time), it can be approximated by the 

Gaussian envelope,
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P X, Δ = 4πDΔ −1/2exp −X2/4DΔ , D = μ a, (68)

though the piecewise linear structure of P X, Δ  holds for any β.

In essence, the presence of permeable boundaries has ‘discretized’ the spin population vis-

a`-vis displacement distance. The physical background of this discretization is absolutely 

different from that in the system with impermeable boundaries in the short-time regime, 

when two ‘pools’ of spins can be distinguished by their locations with respect to the 

boundaries (Fig. 8). However, it also leads to a possibility to approximate the net signal in 

the long-time regime by the bi-exponential function in Eq. [49]. As shown in (26), such an 

approximation is possible if the permeability exceeds a certain threshold value μc depending 

on the diffusion time:

μc = a
120Δ (69)

The condition μ > μc implies a lower limit on the diffusion time ∆. For μ ~ 10—2 - 10—3 

cm/s and cells with a ~ 1 μm, the condition μ > μc is met for the diffusion time ∆ > 1 ms. The 

long diffusion time regime holds for such cells at ∆ > tD ~ 1 ms. Consequently, the bi-

exponential behavior of the signal, caused by finite membrane permeability, can be observed 

at typical experimental diffusion times (10 ms and longer).

Summarizing, finite permeability of cells membranes can substantially modify diffusion MR 

signal. In particular, the signal shape in the q-space might create the deceiving appearance of 

a multi-compartment system with different compartment sizes, while it actually reflects the 

permeable nature of boundaries in a multi-compartment system with a single compartment 

size. This effect should be taken into account for correct interpretation of experimental data 

derived by q-space imaging procedures in systems with permeable boundaries.

CONCLUDING REMARKS

In this review we have discussed several theoretical models for describing MR signals 

arising from brain tissue. As the brain is an extremely complex organ with great variability 

of structural units and parameters, it is not possible to propose a microscopically-based 

model which would be completely adequate. Thus, all the models discussed here and 

anywhere else are, in fact, phenomenological models with different levels of 

‘phenomenologicity’.

The simplest pure phenomenological model is the ADC approach where the signal is 

described by a mono-exponential function, Eq. [20], with a single empirical parameter, 

ADC. The natural generalization of this model, accounting for a non-monoexponential 

dependence of the signal upon b-value, is the cumulant expansion in Eq. [21] proposed by 

Jensen et al. (52). Both these approaches have the ‘highest level of phenomenologicity’ 

because they do not make a direct attempt to relate their parameters to tissue microstructure 
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but rather to general properties of the MR signal. Yet, these parameters are reflective of 

tissue characteristics and might change with the disease progression. Hence, such 

approaches can play an important role by providing empirical biomarkers of tissue status in 

health and disease. Another type of phenomenological models is based on the statistical 

approach (15), where the tissue is characterized by a distribution of ADCs (or, in general, 

any other parameters) with different types of distribution functions as in Eqs. [23], Eqs. [24], 

[31]]–[34], etc. This approach is similar to that used in statistical physics to describe systems 

consisting of large numbers of particles, for example, gases and fluids.

On the opposite end of the spectrum of models are pure mathematical models allowing a 

detailed analysis of MR signal in idealized, very simple geometries (cylinders, spheres, etc.). 

Although such models cannot be directly applied to real systems, they give us some 

instructive clues as to how different biophysical parameters and processes affect MR signal 

formation. For example, a detailed analysis of a single-compartment model (84) revealed a 

mechanism that can result in bi-exponential behavior of the diffusion attenuated MR signal 

at short diffusion times. The analysis of a 1D periodic structure (26) demonstrated the 

important role of membrane permeability in the signal formation and, further, showed that 

the q-space analysis in systems with permeable membranes between compartments may lead 

to a substantially incorrect interpretation of experimental results if permeability is not 

incorporated into signal model. Hence, the suggestion, made by some investigators, that a q-

space analysis could serve as a model-free tool for analyzing geometrical characteristics of 

different systems is not always correct and extreme caution should be exercised in applying 

this tool.

An important role is played by computer-based models of diffusion-attenuated MR signals. 

These models [see, e.g. (10–14, 50,95–97)] make it possible to calculate the signal in rather 

complicated systems comprised of multiple compartments. Such models can take into 

account different geometries of the compartments, their MR characteristics (e.g. T1, T2) and 

diffusion properties, as well as molecule exchange between compartments, etc.

A broad category of models lay between pure phenomenological and pure mathematical 

categories. Being partly phenomenological they, however, take into account some 

biophysical background of the specific tissue systems under consideration: specific 

geometries of cells, their spatial and oriental distributions, etc. By incorporating this 

preliminary information, such models attempt to grasp salient features of the system, 

relevant to a given experiment. If successful, important information on biological system 

structure can be obtained. Examples of such approaches considered in this review are a 

‘cylindrical’ model of dendrites (16) that allowed an adequate description of the diffusion 

attenuated MR signal of the intra-axonal marker NAA, and its generalization to diffusion of 

water molecules in brain tissue (18).

Of course, such a ‘division’ of models in categories is conditional and is evolving with time. 

For instance, a very ‘popular’ 5–10 years ago bi-exponential model [e.g. (12,37–48)] was 

first suggested as having a biophysical basis reflecting the presence of intra- and extra-

cellular spaces with different diffusivities. It is now apparent that such an interpretation is 

too simplistic and that a bi-exponential diffusion attenuated MR signal does not necessarily 
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proves the presence of two distinct tissue compartments. While in some cases a bi-

exponential MR signal can obviously be related to tissue compartmentalization or 

geometrical structure, in most cases it simply reflects the fact that a bi-exponential function 

describes signal behavior better than does a mono-exponential function without a simple 

obvious relationship between the bi-exponential model’s parameters and the physical 

parameters of the system under investigation. This is, of course, in agreement with 

conclusion of Chin et al. (50). An enlightening discussion of the bi-exponential model was 

provided by Mulkern et al. (51).

The category in which to place some recently proposed models is not clear yet. For example, 

a ‘stretched exponent’ model, S = S0exp − bD n , first proposed in (98) as a 

phenomenological model, may now be placed on a more biophysical foundation based on 

ideas of fractal geometry (99,100).

The natural question arises: which signal model should be used for a specific situation? This 

question has no general answer. The typical MR signal profile S(b) is ‘remarkably 

unremarkable’ and usually can be fit by a variety of functions. Here we illustrate this by a 

simple example. The signal S(b) was generated in the framework of the statistical model, Eq. 

[28], with parameters Dm = 1 μm2/ms and σ = 0:4 μm2/ms, that are typical for brain tissue. 

Then the signal was fit by other models: (1) mono-exponential (Eq. [20]), (2) bi-exponential, 

(3) cumulant expansion truncated with three terms (kurtosis model, Eq. [21]), (4) cumulant 

expansion with four terms, (5) ‘cylindrical’ model (Eq. [39]), (6) ‘stretched-exponent’ model 

(98). The results are presented in Figure 14. As is obvious from Figure 14a, for bDm < 2, the 

curves corresponding to all the models are almost indistinguishable. For bDm > 2 only the 

curve corresponding to the mono-exponential function starts to deviate substantially from 

the signal. Only for bDm > 5 do other models start to deviate from the signal generated by 

the statistical model. The results are more visible in the same graph if plotted on a log scale, 

Figure 14b. Although the best fit is provided by model #4 (cumulant expansion with four 

terms), in the interval realistic from an experimental point of view, when the signal has 

decayed to less than 10% of its initial amplitude, the fits are reasonably good for all the 

models. The signal in Figure 14 was generated in an ideal situation without noise. Model 

selection becomes even more challenging in experimental studies where noise is 

unavoidable.

So, how should a model be selected? Some have suggested this should be based upon 

studying the analytical properties of model functions in the complex plane of b-values (101). 

In our opinion, model selection should rather be based upon its ability to reflect the salient 

features of the biological structure under consideration, such as cell geometry, membrane 

permeability, etc. Of course, the model should be tested by fitting model parameters to the 

signal. In cases where prior information is unavailable, any phenomenological model that 

fits the data can be used, fitting parameters being considered as phenomenological 

biomarkers. Of course, some models fit data better than others. However, as demonstrated 

above, selection of the best model requires a very high SNR and a broad range of b-values.

And the last question: which domain to use for data analysis--b-domain that deals with the 

signal S(b), or q-space domain when the signal S(q) is analyzed? The answer is--it does not 
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matter since in both approaches the data are collected in exactly the same manner [see 

discussion of this issue in (51)]. Since the q-space analysis requires Fourier reconstruction of 

data, it is a subject to well known artifacts. From this perspective, the b-domain is 

preferable. Otherwise, it is simply a question of convenience and research goals. In both the 

cases we need a theoretical model if meaningful information of interest is to be extracted.
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Figure 1. 
Two versions of Stejskal-Tanner pulse sequence employed to sensitize the MR signal to 

molecular diffusion. Characteristic parameters of the waveform are the gradient amplitude 

G, the diffusion time Δ and the pulse width δ. The encoding (first) and decoding (second) 

gradient pulses have either opposite polarity (upper diagram) or are separated by a 180° 

refocusing RF pulse (lower diagram).
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Figure 2. 
An example of diffusion data obtained from the human brain using the statistical model, Eq. 

[28]. Images represent maps of the Gaussian peak maximum, Dm, and width, σ, 

corresponding to a diffusion sensitizing gradient direction perpendicular to the imaging slice 

orientation. The scale bars provide references for Dm (from 0 to 4 μm2/ms) and σ (from 0 to 

1 μm2/ms). [Modified from (15)].
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Figure 3. 
Examples of diffusion data obtained from the human brain using the statistical model, Eq. 

[28]. Columns represent Dm and σ pairs in three different directions. The units shown are 

μm2/ms. Results are grouped in eight blocks each representing an ROI: 1--frontal GM, 2-- 

head of caudate nucleus, 3--thalamus, 4--occipital-temporal GM, 5--splenium of corpus 

callosum, 6--occipital WM, 7--frontal WM, 8--external capsule. In each block the first and 

second columns represent Dm and σ corresponding to diffusion perpendicular to slice; the 

third and fourth – in read-out direction (horizontal in Fig. 2); the fifth and sixth columns – in 

phase-encoding direction (vertical in Figure 2). Error bars represent variability across the 

ROI, usually about 10 voxels in size. [Reproduced from (15)].

Yablonskiy and Sukstanskii Page 42

NMR Biomed. Author manuscript; available in PMC 2019 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Position of Dm, the maximum of the distribution function P(D), found from the experimental 

data on HeLa cells, as a function of the inverse diffusion time Δ (symbols); solid line--linear 

regression. (Courtesy of Lin Zhao).
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Figure 5. 
Fit of the model function, Eq. [40], (solid line) to the NAA MR signal obtained from a large 

voxel in a rat brain. The best fit mono-exponential is displayed as a dashed line. It is 

essential that Eq. [40] has only two fitting parameters--S0 and DL, yet can provide a 

practically ideal fit to the data over a rather large range of b-values. [Modified from (16)].
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Figure 6. 
Maps of the estimated model parameters obtained from a newborn primate brain: v- the 

volume fraction of cylindrical cells (dendrites and axons); Deff --effective diffusion 

coefficient in the extra-cylindrical space; DL, and DT--longitudinal and transverse diffusion 

coefficients of water in the cylindrical cells. All diffusion coefficients in μm2/ms. 

[Reproduced from (18)].
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Figure 7. 
The amplitudes of the local magnetization |m| in a single compartment model as functions of 

the reduced coordinate x/a for the SE (solid lines) and NP (dashed lines) signals for different 

values of the parameter α = (Δ/tD)1/2 (identified by numbers near the corresponding curves); 

b-value is fixed at bD0 = 1. [Modified from (84)].
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Figure 8. 
The distribution functions P(D) of ‘local ADCs’ for NP signal in a single compartment 

model. (a) For short diffusion times, Δ = 0:01 tD, the two peaks correspond to slow and fast 

diffusing pools originating from an inhomogeneous distribution of magnetization; (b) for Δ 

= tD the distribution of magnetization is homogeneous resulting in a single peak with a low 

diffusion coefficient. Insets represent corresponding distributions of magnetization |m| as 

functions of the reduced coordinate x/a.
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Figure 9. 
Single compartment model. Diffusion time dependence of the diffusion coefficients D1 and 

D2, corresponding to the slow- and fast-diffusing pools, and the volume fraction of the slow-

diffusion pool z. Solid and dashed lines correspond to δ = ∆ (SE signal) and δ << ∆ (NP 

signal), respectively.
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Figure 10. 
The fit of a bi-exponential function to the signal obtained experimentally from water in a 

cylindrical tube of radius 160 μm at short diffusion time, α = (Δ/tD)1/2 = 0.1. The fitting 

parameters are: ζ = 0.014, D1/D0 = 0.067, D2/D0 = 0.80. (Courtesy of M. Milne and M. 

Conradi).
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Figure 11. 
1D model with permeable boundaries. The magnetization distribution at short diffusion 

times for different values of reduced permeability μa/D0 (identified by numbers near the 

corresponding curves); Δ/tD = 0.01, bD0 = 1. Only one segment of the periodic structure is 

shown. The distribution of magnetization is non-homogeneous, as in the impermeable case 

(Figure 8), leading to the presence of slow and fast pools. The amplitude of the 

magnetization corresponding to the slow pool decreases with increased permeability due to 

the increase of diffusivity caused by spin exchange across the boundaries.
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Figure 12. 
1D model with permeable boundaries. The dependence of ADC (a) on diffusion time ∆ for 

different values of reduced permeability μa/D0 (identified by numbers near the 

corresponding curves) and (b) on reduced permeability for different ∆/tD (identified by 

numbers near the corresponding curves).
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Figure 13. 
q-space analysis. The average propagator P X, Δ  in the periodic structure for μ = 0 (line 1, 

dashed), and μ ∆/a = 0:25 (line 2, solid). The shape of the solid line is suggestive of a multi-

compartment system with different compartment sizes, though it actually reflects the 

permeable nature of boundaries in a multi-compartment system with a single compartment 

size. (Modified from (26)].
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Figure 14. 
Fit of different models to a signal generated by the statistical model, Eq. [28] (symbols) with 

Dm = 1 μm2/ms and σ = 0:4 μm2/ms. (a)--normal scale; (b)--log scale. (1) mono-exponential 

model, (2) bi-exponential model, (3) cumulant expansion truncated at the first three terms 

(kurtosis model), (4) cumulant expansion truncated at four first terms, (5) ‘cylindrical’ 

model, Eq. [39], (6) ‘stretched-exponent’ model.
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