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Abstract

The American Diabetes Association recommends annual assessment of glomerular filtration rate 

(GFR) to screen for diabetic nephropathy. GFR is measured indirectly using markers that, ideally, 

are eliminated only by glomerular filtration. Measured GFR, although the gold standard, remains 

cumbersome and expensive. GFR is therefore routinely estimated using creatinine and/or cystatin 

C and clinical variables. In pediatrics, the Schwartz creatinine-based equation is most frequently 

used even though combined creatinine and cystatin C-based equations demonstrate stronger 

agreement with measured GFR. In adults, the CKD Epidemiology Collaboration (CKD-EPI) 

equations with creatinine and/or cystatin C are the most accurate and precise estimating equations. 

Despite recent advances, current estimates of GFR lack precision and accuracy before chronic 

kidney disease stage 3 (GFR<60mL/min/1.73m2). There is therefore an urgent need to improve the 

methods for estimating and measuring GFR. In this review we examine the current literature and 

data addressing measurement and estimation of GFR in diabetes.
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Introduction

Assessment of renal function through the measurement of glomerular filtration rate (GFR) is 

an essential tool for nephrologists and diabetologists caring for patients with type 1 and 2 

diabetes. GFR evaluation is crucial for the diagnosis of early (renal hyperfiltration [GFR 

greater than 120–150mL/min/1.73m2) and rapid GFR decline [annual GFR loss greater than 

3mL/min/1.73m2 or > 3.3%/year] as well as late phenotypes of diabetic kidney disease 

(impaired GFR [<60mL/min/1.73m2]). Furthermore, individual GFR trajectories over time 

are strongly associated with incident chronic kidney disease (1, 2). Accordingly, the 

American Diabetes Association recommends routine screening of GFR in adults with 

diabetes, and recently expanded screening recommendations to include adolescents with 

diabetes (3, 4).

The first widely used GFR estimating equations were developed four decades ago to 

estimate GFR in adults from serum creatinine concentrations. In recent years, a number of 

new equations have been developed based on serum creatinine and cystatin C assays. 

Despite advances in GFR measurement, current estimates of GFR lack precision (i.e. too 

much random error) and accuracy (i.e. too much systematic error) before chronic kidney 

disease stage 3 (GFR <60 mL/min/1.73m2) (5). A recent DCCT-EDIC paper also reported 

that changes in eGFR over a 3 year period may not reflect changes in measured GFR (6, 7). 

This is of particular concern in adolescents and young adults with diabetes, in whom renal 

hyperfiltration is present in approximately 50% of individuals and which may promote renal 

injury (8, 9). The dissociation between changes in eGFR vs. measured GFR is of further 

concern since rapid changes in GFR may be missed due to a lack of acceptable screening 

methods for subtle changes in renal function (10).

Diabetic nephropathy is the leading cause of end-stage renal disease and dialysis in the US, 

and is characterized by a long clinically silent period without signs or symptoms of disease 

(10, 11). In 2009, overall Medicare expenditure for people with chronic kidney disease and 

diabetes accounted for $18 billion (11). There is therefore an urgent need for improved 

methods of estimating and measuring GFR. Accordingly, in this review we examine the 

current literature and data addressing measurement and estimation of GFR in diabetes. We 

also focus on the early phenotypes of diabetic kidney disease and their potential treatment, 

including renal hyperfiltration and rapid GFR decline, review of current methods to estimate 

and measure GFR, challenges that are specific to diabetes, and current and potential 

treatments to prevent diabetic kidney disease.

Early Diabetic Kidney Disease

Diabetic nephropathy is the leading cause of end-stage renal disease (ESRD) in the western 

world (10, 12–14). In fact, the 2011 US Renal Data System showed that diabetic 

nephropathy accounted for 44.5% of all cases of ESRD in the United States in 2009 (11). 

Diabetic nephropathy is also an important risk factor for coronary artery disease (CAD) (15–

17) and overall mortality (15, 18). The natural history of diabetic nephropathy is 

characterized by a long silent period without overt clinical signs and symptoms of 

nephropathy (Figure 1). For that reason, early detection of diabetic nephropathy may have a 
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pivotal role in the prevention of ESRD in diabetes (19). While the appearance of 

microalbuminuria is often the earliest clinical sign of diabetic nephropathy, this classical 

paradigm has been questioned over the past few years after the demonstration that 

microalbuminuria does not necessarily imply progressive nephropathy, and may in fact 

regress to normoalbuminuria (20, 21), and that CKD stage 3 can develop in the absence of 

microalbuminuria (7, 22). Albuminuria is still an important risk factor in diabetes as it is 

strongly associated with dyslipidemia and cardiovascular disease (23, 24). Renal 

hyperfiltration is typically defined by a glomerular filtration rate (GFR) of between 120 

mL/min to 150 mL/min/1.73m2, or greater than 2 standard deviations above the mean GFR 

in normal, healthy individuals (9), and is thought to represent the earliest hemodynamic 

abnormality seen in diabetes (25). Phenotypes of early diabetic nephropathy prior to the loss 

of renal function, such as renal hyperfiltration and rapid GFR decline are considered 

stronger predictors of nephropathy progression in type 1 diabetes than albuminuria (10, 26–

30). For that reason, GFR is the most clinically relevant measure of kidney function in 

diabetes. The American Diabetes Association, National Kidney Foundation and 

International Society of Nephrology recommend annual measurement of estimated 

glomerular filtration rate to identify and monitor diabetic nephropathy (31–33). However, as 

we will review, current methods to measure or estimate GFR early in the pathogenesis of 

diabetic nephropathy in the normal to elevated GFR range present a particular challenge for 

physicians managing patients with diabetes.

Measurement of Glomerular Filtration Rate

GFR is measured indirectly as the clearance of exogenous filtration markers that are 

eliminated exclusively by glomerular filtration (Table 1). Such markers include inulin 

(which is considered the gold standard), iohexol, iothalamate, technetium 99m 

diethylenetriamine pentaacetic acid (99mTc-DTPA) and chromium 51-

ethylenediaminetetraacetic acid (51Cr-EDTA). As an alternative, urinary clearance 

techniques are another direct method that can be used to measure GFR, but this remains 

inconvenient and associated with errors around the timing of urine collections. For these 

reasons, it is more common to measure GFR by plasma clearance. The major disadvantage 

of plasma clearance is the duration of testing needed to calculate the clearance curve 

accurately, which can be up to 8 hours. GFR measurements, by either urinary or plasma 

clearance techniques, therefore remain impractical and expensive and as a result are not 

routinely performed in clinical practice. For that reason, GFR is typically estimated through 

the use of serum concentrations of endogenous filtration markers (i.e. serum creatinine 

and/or cystatin C, as described below). Although estimated GFR is sufficient for clinical 

decision making in many circumstances, particularly when GFR is <60 ml/min/1.73m2 (34), 

patients with diabetes would likely benefit from having their GFR measured using more 

accurate and precise techniques, due to their increased risk of kidney disease. Furthermore, 

GFR measurements are estimates of renal function and are affected by excessive intake of 

drinks containing caffeine (35), protein load (36), exercise (37) and certain medications (e.g. 

diuretics, antibiotics) (38). Another major challenge specific to diabetes when estimating 

and measuring GFR is hyperglycemia which is known to influence GFR, as reviewed in 

detail below (39). The early diagnosis of declining renal function may be important due to 
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the potential for early interventions aimed at delaying the progression to ESRD. 

Accordingly, to diagnose early diabetic nephropathy, accurate and precise diagnostic tools 

are necessary.

Estimation of Glomerular Filtration Rate

i. Estimation of GFR in adults

There are several equations available to estimate GFR in adults using endogenous filtration 

markers (serum creatinine and/or cystatin C) (Table 2). The most state-of-the-art equations 

are the three CKD-EPI equations: CKD-EPI Creatinine, CKD-EPI Cystatin C and CKD-EPI 

Creatinine and Cystatin C (5). The number of available equations is in part due to the 

nonequivalent results obtained from using different creatinine and cystatin C assays (40). 

More recently the accuracy of creatinine measurements has improved with the availability of 

higher-order reference methods (isotope dilution-mass spectrometry (IDMS) reference 

methods) (41, 42). Similarly, the number of equations using cystatin C is due to previous 

lack of an international cystatin C calibrator (40). In 2010, the first certified reference 

material for serum cystatin C was published (ERM-DA471/IFCC (43, 44). Assay 

reproducibility over time and between laboratories is important with GFR as it is a 

longitudinal measure of renal function in research and clinical care.

Both serum creatinine and cystatin C are affected by factors other than GFR, i.e. non-GFR 

determinants, (Table 3), but cystatin C is considered to be less biased by age and weight 

compared to creatinine-based measurements, and correlates more closely with direct 

measures of GFR over a wide spectrum of plasma glucose levels compared to creatinine 

based measures in experimental studies (45, 46). These data suggest that cystatin C more 

accurately reflects measured GFR in subjects with type 1 diabetes, favoring its use as an 

estimate of GFR in this population. Cystatin C has also been shown to be associated with fat 

mass rather than lean mass in some but not all studies, which may impair the accuracy of 

GFR estimates by cystatin C in obese patients and in those with significant changes in 

adiposity (5, 6). The Prevention of Renal and Vascular End-Stage Disease (PREVEND) 

study also demonstrated an association between cystatin C and c-reactive protein (47), which 

may explain the association between fat mass and cystatin C, since higher body mass being 

associated with inflammation and insulin resistance (48, 49). In contrast to cystatin C based 

equations, creatinine-based GFR estimates are influenced by other confounders, including 

filtration fraction (FF = GFR/effective renal plasma flow) (50). This implies that creatinine 

is affected by hyperfiltration and therefore weakens its diagnostic performance as a GFR 

marker in the presence of hyperfiltration (50), an interaction that has been reported by our 

group (46).

GFR estimated by cystatin C also appears to better predict micro- and macrovascular 

complications in subjects with type 1 diabetes compared to creatinine-based equations (17, 

26, 49, 51). Cystatin C more accurately detects rapid GFR decline than creatinine-based 

measurements in type 1 diabetes subjects with normal renal function (51). Rapid GFR 

decline estimated by cystatin C is also associated with a higher risk for cardiovascular 

complications and mortality than creatinine based GFR estimated (52, 53). Furthermore, 

Skupien et al demonstrated that GFR staging with cystatin C is superior for predicting 
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ESRD and mortality compared to GFR with creatinine and cystatin C, which suggests that 

serum creatinine counters the predictive ability of serum cystatin C in adults with type 1 

diabetes (54). Finally, Shlipak et al demonstrated that the use of cystatin C compared to 

creatinine strengthens the association between eGFR and risk of death and ESRD in 11 

diverse general-population studies that included both diabetic and non-diabetic participants 

(27). One limitation to the use of cystatin C has been the cost (approximately USD $5–6 vs. 

$1–3 for serum creatinine), although this difference is much less than in the past.

Despite the possible superiority of cystatin C compared to creatinine, estimates of GFR by 

both serum creatinine and cystatin remain imperfect (17, 55, 56). The creatinine and 

cystatin-C based eGFR equations are associated with greater variability when eGFR >60 

mL/min/1.73m2 (5). However, by the time eGFR is ≤60 mL/min/1.73m2 almost half of renal 

function has already been lost (32). A study by Rognant et al. demonstrated that the mean 

absolute bias of CKD-EPI creatinine was −12.7 ± 12 mL/min/1.73 m2 compared to 

measured GFR, with an interquartile range of 16 mL/min/1.73m2, and 10% (P10) and 30% 

(P30) accuracies were, respectively 28.0 and 80.1% (57). In other words, 28% of study 

participants had GFR estimates with less than a 10% bias, and 80.1% had GFR estimates 

with a bias up to 30% compared to measured GFR (this would be an eGFR of 70–130 

mL/min/1.73 m2 for a ‘true’ GFR of 100 mL/min/1.73 m2). Furthermore, when eGFR is 

>90mL/min/1.73m2, agreement (concordance) between eGFR calculated by CKD-EPI 

cystatin C and eGFR calculated by CKD-EPI creatinine in the same individual has been 

reported to be as low as 56% (53, 58). For that reason, improved methods to easily and 

accurately measure GFR as well as changes in renal function in the normal and 

hyperfiltration range are needed (10, 59).

ii. Estimation of GFR in pediatrics

The American Diabetes Association recently recommended routine screening of glomerular 

filtration rate (GFR) in adolescents with type 1 diabetes in the Type 1 Diabetes Through the 

Life Span: A Position Statement of the American Diabetes Association from 2014 and in the 

2015 Standards of Care, although this is not yet routinely performed clinically (3, 4). There 

are developmental changes during childhood and adolescence that affect measurement of 

GFR, including growth spurts due to the rapid increase in muscle mass and extracellular 

volume (60). Numerous equations have been formulated to estimate GFR in pediatric and 

adolescent patients (61, 62) (Table 4). These equations are derived from different 

populations with a variety of underlying nephropathies and with significant variability in 

GFR (Table 4). To our knowledge, no single equation has been specifically developed or 

validated in adolescents with type 1 or type 2 diabetes. Furthermore, the majority of GFR 

equations have been based on non-standardized creatinine and cystatin C assays (63). The 

Schwartz creatinine based equation from 2009, adjusted to be traceable to isotope dilution 

mass spectrometry, is the most widely used in clinical practice, but has been demonstrated to 

be most accurate in the range of 25–75 mL/min/1.73m2 (64). Stronger agreement with 

measured GFR is observed with cystatin C and combined creatinine and cystatin C 

equations (e.g. CKiD, Schwartz, Bouvet combined creatinine and cystatin C equations) 

compared to creatinine equations (62, 64). Berg et al. recently reported unstable 

performance of standardized creatinine based equations across levels of measured GFR in 
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comparison with standardized cystatin C equations in children (63). The diagnostic accuracy 

of the various cystatin C and combined creatinine cystatin C equations varies with GFR (65), 

which is in part a function of the GFR levels in the cohorts of patients used to derive the 

equations (Table 4). For instance, the CKiD and Zappitelli equations demonstrate higher 

accuracy in GFR <90mL/min/1.73m2, whereas the Bouvet, Bokenkamp and Filler equations 

have greater accuracy in GFR categories ≥135mL/min/1.73m2 (65). For that reason, 

applying these equations in clinical practice and research requires knowledge of the 

expected GFR, which is not always possible. The lack of a single equation that performs 

well across the span of GFR in pediatrics has limited the use of estimating equations to 

measure longitudinal changes in GFR. Recently, Berg et al. demonstrated accuracy (P30, 

percentage of GFR estimates within 30% of measured GFR) of 75%, 85%, 88%, 83% and 

95% for GFR estimated by Berg cystatin C equation in children with inulin measured GFR 

of <30, 30–59, 60–89, 90–119 and ≥120 mL/min/1.73m2 respectively (63). Caucasian and 

Asian pediatric and adult subjects (CAPA) equations also performed well across the span of 

GFR with accuracy of 80%, 85%, 98%, 84% and 90% for inulin measured GFR of <30, 30–

59, 60–89, 90–119 and ≥120 mL/min/1.73m2 respectively (63).

While these newer standardized equations hold promise, there are no currently published 

equations that have been validated against measured GFR in youth with diabetes. An 

additional challenge in measuring GFR in diabetes is the acute effect of blood glucose, as 

discussed below. This is of particular concern in adolescents and young adults with type 1 

diabetes, in whom renal hyperfiltration is common and may promote renal injury, or rapid 

change in GFR may be missed due to lack of accurate screening method for GFR.

Acute hyperglycemia increases GFR

Multiple factors can influence GFR measurements, but in people with diabetes, an additional 

challenge in measuring GFR is the acute effect of blood glucose, which was established in 

studies dating back to the 1970s, although generally not accounted for in current clinical or 

research assessments of GFR in people with diabetes. Hyperglycemia is known to affect 

renal hemodynamic function and increase GFR by up to 20 mL/min/1.73 m2 (46, 66–69). 

The mechanism responsible for the increase GFR in the setting of acute glycemia is 

incompletely understood, but has been in part attributed to the effect of hyperglycemia on 

renin–angiotensin–aldosterone system (RAAS) (70, 71). We have previously demonstrated 

that RAAS blockade by aliskiren (a direct renin inhibitor) blunts the increased GFR as 

measured by inulin clearance provoked by hyperglycemia (72). Moreover, hyperglycemia 

has been proposed to increase proximal tubular glucose delivery causing a maladaptive 

increase in glucose reabsorption along with sodium via sodium-glucose cotransporter 2 

(SGLT-2) in the proximal tube. Distal sodium chloride delivery to the macula densa is 

subsequently decreased, and perceived as low effective circulating volume by the 

juxtaglomerular apparatus, which causes vasodilation of the afferent renal arteriole, renal 

hyperperfusion and an increase in GFR (73). Figure 2 illustrates these proposed 

mechanisms.

Despite these observations, the effect of blood glucose on renal function is generally not 

accounted for when measuring GFR in people with type 1 diabetes (65, 74–76). Therefore, 
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failure to maintain euglycemia, or possibly account for hyperglycemia, could potentially 

result in differential misclassification and bias in measurement (and estimation) of GFR, 

thereby hindering the ability to determine early changes in GFR within an individual (46, 58, 

77). Accounting for ambient blood glucose could improve intra-individual precision in GFR 

measurement, as well as changes in renal function over time in people diabetes.

New methods to evaluate GFR

Similar to clinical practice, a significant barrier in diabetic kidney research is a clinically 

easy and accurate method to measure GFR in adolescents and adults with diabetes (78). 

Improved methods should be less cumbersome and time consuming than current methods to 

measure GFR and provide more accurate and precise assessment of GFR than estimates 

from equations.

i. Beta-trace protein

Beta-trace protein (BTP), a low molecular weight protein, is a promising endogenous marker 

used to estimate GFR. It shares many of the features of cystatin C as a marker for GFR (79, 

80). In contrast to cystatin C which is strongly positively charged, BTP is more isoelectric 

(85). Recent data support the use of BTP to estimate GFR in newborns (81), in children who 

have had a renal transplant and in pregnancy (82, 83). Equations have been developed and 

validated in children and adults. For example, Witzel et al recently presented sex-specific 

equations to estimate GFR with BTP in children, which demonstrated better accuracy 

estimating GFR than previous equations at GFR levels ≥60mL/min/1.73m2 (84). To our 

knowledge these equations have not been validated in children or adults with diabetes.

ii. GFR measured by magnetic resonance imaging (MRI)

Blood-oxygen-level dependent functional MRI (BOLD-MRI) is a promising method to non-

invasively assess renal function without contrast media, but recent data have been 

inconsistent. Inoue et al. demonstrated a relationship between BOLD-MRI values and eGFR 

in non-diabetic nephropathy, but these associations were not significant in diabetic 

nephropathy (85). Furthermore, recent data demonstrated the failure of BOLD-MRI to 

distinguish between patients with different stages of chronic kidney disease (86). Additional 

studies are needed to evaluate the utility of BOLD-MRI in diabetic nephropathy.

iii. GFR measured by iohexol clearance on dried blood spots

Recently, a practical method of measuring GFR by iohexol clearance using dried capillary 

blood spots (DBS) was developed in non-diabetic patients (87, 88). In 2006 Niculescu-

Duvaz et al. demonstrated that iohexol clearance measured on dried blood spots (DBS) on 

filter paper provided GFR measurements comparable to the iohexol plasma clearance, but at 

a significantly reduced time and cost (87). This method is ideally suited for patients with 

type 1 diabetes who routinely prick their fingers to obtain glucose measurements. We 

recently demonstrated that GFR by iohexol clearance using dried capillary blood spots on 

filter paper measured GFR accurately in adults with type 1 diabetes (89). This method could 

be translated to screening for early kidney disease in people with type 1 diabetes (89). This 

method was piloted for feasibility in adolescents and adults with type 1 diabetes (89, 90). 
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GFR measured in DBS was comparable to the gold standard method of GFR plasma iohexol 

and more accurate, precise and less biased than GFR estimated by CKD-EPI creatinine, 

CKD-EPI cystatin C and CKD-EPI both in adults with type 1 diabetes (89). Furthermore, 

GFR-DBS offers a more convenient approach to quantify GFR, as the bias in the GFR-DBS 

measurements (2 or 5-spots) compared to GFR plasma iohexol was minimal and very 

similar to that previously reported in non-diabetic subjects (− 1.17, 95% CI: − 16.12–13.78) 

(87, 88). In addition, in adolescents with type 1 diabetes, there appeared to be less variability 

of GFR calculated by iohexol clearance on DBS than the estimated GFR methods (Bouvet 

and Schwartz) (90), and using 2 spots at 120 and 240 minutes was comparable to using 5 

spots (89). All of the adolescent participants also agreed or strongly agreed that the iohexol 

injection and DBS collection was preferable to an overnight urine sample (90).

Measuring GFR by iohexol clearance on DBS could be incorporated into current clinical 

research or annual screening tests by placement of a peripheral IV for blood sampling 

followed by injection of iohexol and removal of the IV prior to a regularly scheduled clinic 

visit. This would significantly reduce the time required for a standard iohexol GFR study 

from 4–5 hours. Self-collection of DBS could be performed as an outpatient, since finger-

pricks are a common task for patients with type 1 diabetes, and the filter paper could then be 

mailed back to the lab (88, 90). The relative simplicity of the DBS method and better results 

compared to eGFR suggest that this or similar methodology may improve upon current 

practices used to assess GFR, which are either not feasible or effective in ascertaining early 

renal function loss clinically. Adapting this methodology to an out-patient setting by 

measuring iohexol clearance, as was also recently reported in a Kenyan population (91), to 

assess GFR in youth with type 1 diabetes requires further study to determine if it addresses 

the current need to better screen for early diabetic kidney disease. Given the current 

variability with estimation of GFR at levels >60 mL/min/1.73m2, which encompasses the 

majority of patients with diabetes, particularly adolescents and young adults, better methods 

are required to fulfill the promise of reducing diabetic nephropathy by annual GFR 

screening in people with diabetes.

Therapies for diabetic nephropathy

While there is solid evidence showing benefit of glycemic and blood pressure control in 

preventing microvascular complications in type 1 diabetes (12, 92, 93), optimal control does 

not abolish the risk. Newer therapies, including sodium glucose co-transporter 2 (SGLT2) 

inhibitors and allopurinol hold promise as therapeutic targets to further prevent progression 

of diabetic nephropathy. The SGLT2 inhibitor, empagliflozin, was shown to reduce HbA1c 

and signficantly attenuate renal hyperfiltration in patients with uncomplicated type 1 

diabetes and had no significant effect on GFR in those without hyperfiltration (73). This 

class of agents has also been shown to subacutely lower eGFR in large clinical trials by 5–10 

mL/min/1.73m2, a modest effect that likely reflects expected changes in afferent arteriole 

tone in response to natriuresis caused by this drug class, and which may be responsible for 

lowering albuminuria (94). An additional hypothesis that lowering serum uric acid with 

allopurinol will prevent GFR decline in people with type 1 diabetes is being tested in the 

multi-center double-blind randomized clinical trial “Preventing Early Renal Function Loss – 

PERL” (95). Improved methods to detect GFR changes would allow us to implement 
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therapies at an earlier stage when renal injury may be reversible or at least more responsive 

to interventions that either slow or arrest the progression of disease.

Conclusion

A major challenge in preventing diabetic kidney disease relates to the accurate and early 

identification of high risk patients. The American Diabetes Association now recommends 

annual assessment of glomerular filtration rate (GFR) in adolescents, in addition to adults, 

with diabetes to screen for early diabetic nephropathy. Assessment of GFR is essential to 

accurately diagnose diabetic kidney disease early in the disease process. GFR is, however, 

difficult and impractical to measure directly with current methodologies. Unfortunately, 

GFR estimates using serum creatinine and/or cystatin C based equations are only accurate 

when GFR is <60 ml/min/1.73 m2 (78), a point at which half of renal function may already 

be lost. Improved methods to measure or estimate GFR will lead to a better ability to 

accurately identify early changes in GFR and track GFR changes over time. One such 

method is GFR measured by iohexol clearance on DBS which offers promise as a more 

convenient approach to accurately quantify GFR in patients with diabetes in clinical practice 

and research.
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Figure 1. Stages of Diabetic Nephropathy and Challenges of Determining GFR
The area of the figure colored green represents glomerular filtration rates (GFR) not 

accurately estimated by creatinine and cystatin-C based equations. In contrast, the red area is 

typically accurately estimated by the equations.
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Figure 2. Acute Hyperglycemia Increases GFR
The figure illustrates the effect of hyperglycemia on glomerular filtration. Acute glycemia is 

associated with (1) increase glucose reabsorption at SGLT2 with decreased delivery of NaCl 

to macula densa and subsequent afferent arteriolar vasodilation, and (2) RAAS activation 

and efferent arteriolar vasoconstriction.
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