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Abstract

Traumatic brain and spinal cord injuries cause permanent disability. Although
progress has been made in understanding the cellular and molecular
mechanisms underlying the pathophysiological changes that affect both
structure and function after injury to the brain or spinal cord, there are currently
no cures for either condition. This may change with the development and
application of multi-layer omics, new sophisticated bioinformatics tools, and
cutting-edge imaging techniques. Already, these technical advances, when
combined, are revealing an unprecedented number of novel cellular and
molecular targets that could be manipulated alone or in combination to repair
the injured central nervous system with precision. In this review, we highlight
recent advances in applying these new technologies to the study of axon
regeneration and rebuilding of injured neural circuitry. We then discuss the
challenges ahead to translate results produced by these technologies into
clinical application to help improve the lives of individuals who have a brain or
spinal cord injury.
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Introduction

Central nervous system (CNS) trauma causes permanent disability,
imposing huge economic and emotional burdens on affected
family and society. No therapies exist that will effectively
restore function to individuals who have an injury to the brain or
spinal cord. Recovery of brain and spinal cord functions in adults
might be achieved by promoting axon sprouting and regen-
eration, either alone or in combination with other promising
approaches such as neuroprotection', cell reprogramming
and transplantation*, brain—-computer interface and epidural
stimulation’*. In the injured adult mammalian CNS, however,
axon sprouting and regeneration are limited and this is due in
part to both the poor intrinsic regenerative potential of adult CNS
neurons' ' and the hostile cellular and molecular environment
that develops at the site of injury'’>!. These are major obstacles
that must be overcome to effectively promote axon regeneration,
sprouting, and functional recovery after CNS trauma®‘. Recent
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example, it is feasible to reprogram adult mammalian neurons
into a growth-competent state and remove extracellular growth
inhibitors to promote regrowth of axons that project to the brain
and spinal cord'*>~2,

Here, we review the most recent data, emphasizing how omics
technologies are improving our insight into novel mechanisms
that regulate axon regeneration and also the feasibility of
rebuilding functional neuronal circuits after CNS injury. We also
discuss the challenges to applying these new discoveries in the
clinic to maximize recovery of function.

Omics approaches to study spinal cord injury

High-throughput omics technologies, including epigenomics,
transcriptomics, proteomics, metabolomics, metagenomics, immu-
nolomics, connectomics, and lipidomics have revolutionized the
way we study brain and spinal cord injury (SCI)”***! (Figure 1).

data indicate that it is possible to overcome such barriers. For When combined with high-content screening”*, data from
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Figure 1. A multi-layer omics approach to study axon regeneration. A schematic representation of omics approaches to study axon
regeneration is shown. Epigenomics studies epigenetic modifications on DNA or histone proteins that alter gene expression. DNA methylation
and histone modifications are the most well-characterized epigenetic modifications. Transcriptomics examines the transcriptome that
comprises all RNA transcripts (for example, mRNA and non-coding RNAs) in a given cell population. New technologies, including RNA
sequencing at single-cell resolution, have been developed that allow the identification of genes and transcript variants that are actively
expressed, co-expressed, or repressed. After epigenomics and transcriptomics, proteomics represents the next step in the study of any given
biological system. Indeed, proteomics is the large-scale study of the proteome (for example, the set of proteins produced in an organism,
system, or biological context). Protein activity is also regulated by many different factors in health and disease other than the gene expression
level. Modern high-throughput technologies allow the investigation of protein location, turnover, post-translational modification, activity, and
interactions in depth. Phosphoproteomics represents a branch of proteomics that focuses entirely on the identification and characterization
of phosphorylated proteins. Metabolomics is the study of substrates and products (also called metabolites) of cellular metabolism and their
interactions within a biological system. Each cellular activity is reflected by the presence of specific metabolites. Therefore, metabolomics
represents a powerful approach to study the state and phenotype of any given biological system. Metagenomics is the genomic analysis
of microbial communities from environmental and biological samples, such as the gut microbiota. Indeed, metagenomics allows the study
of intestinal microbiome diversity and dysbiosis as well as its relationship between human health and disease. Immunolomics profiles cells
of the immune system, antibodies, and cytokine responses in a comprehensive manner. With the advent of powerful imaging methods and
molecular and genetic tools, it is now possible to create comprehensive maps of connections within the nervous system. Connectomics refers
to the production and study of such connections and the molecular interactions that pair cells. One of the emerging fields of biomedical
research is certainly lipidomics. Lipidomics is the large-scale study of cellular lipids at both the structural and functional levels.
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these technologies are providing unprecedented insight into
how an injury to the brain or spinal cord affects the roles and
interrelationships of various genes, molecules, cells, and body
systems. As a result, novel targets and pathways are emerging as
critical regulators of effective axon growth as well as regenera-
tion and remodeling of both injured and spared neural circuits. In
this review, we will focus on a subset of new omics data, using
examples from epigenomics, transcriptomics, kinomics, phos-
phoproteomics, and metagenomics studies. We will then discuss
how these technologies have helped identify novel biological
mechanisms, such as neuronal metabolism and mitochondria
transport, that contribute to axon regeneration failure.

Epigenomics

Recent data indicate that the induction of regenerative gene
expression, a prerequisite for activating axon growth programs,
relies partly on creating a more permissive chromatin environ-
ment in the nucleus of injured neurons*~'. Epigenomic screens of
adult dorsal root ganglia (DRG) neurons injured by a peripheral
nerve lesion (PNL), an experimental condition that switches
DRG neurons into a regenerative-competent state, identified Tet
methylcytosine dioxygenase 3 (Tet3) as a critical regulator
of axon growth and regeneration. After PNL, Tet3 is upregu-
lated along with the epigenetic mark 5-hydroxymethylcytosine
(5hmC) in DRG neurons™. By oxidizing ShmC, Tet3 reverses
DNA methylation. Interestingly, epigenomic mapping in DRG
neurons after injury to the peripheral (regenerative) or central
(no regenerative effect) projecting axons triggered differen-
tial ShmC changes that were associated with distinct signaling
pathways’”. Nearly half of the genes that were differentially
regulated after peripheral lesion contain ShmC alterations™, sug-
gesting that ShmC is a previously unrecognized mechanism
that controls the regenerative potential of injured neurons.

Although transcriptional events that turn on the expression of
regeneration-associated genes are recognized as important steps
in the activation of cell-autonomous regeneration programs™,
far less is known about how gene inactivation affects these
programs. A recent study identified ubiquitin-like containing
PHD ring finger 1 (UHRF1)-dependent DNA methylation as a
critical epigenetic mechanism responsible for silencing expres-
sion of genes that are required to promote axon regeneration in
DRG neurons™. After PNL, a decrease in miR-9 causes a tran-
sient increase in the expression of the REl-silencing transcrip-
tion factor (REST) and UHRFI1*. During embryogenesis, REST
acts as master regulator by inhibiting the expression of many
neuronal genes”. While a transient increase in REST primes
injured DRG neurons for enhanced axon regeneration, UHRF1
interacts with DNA methyltransferases and methyl groups on
histone H3, creating epigenetic marks that silence promoter
elements of tumor suppressor genes such as the phosphatase and
tensin homolog (PTEN) and REST>. Since sustained expression
of REST in neurons is known to cause axon guidance defects™,
UHRF1-dependent epigenetic silencing may be required to
fine-tune REST activity and thus axon regeneration programs.
Together, these data support the idea that neurons may need to
revert to an immature or intermediate state to successfully unlock
developmental programs for axon regeneration®-%,
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Transcriptomics

Advanced transcriptomics analyses have identified several genes
and gene networks that regulate axon regeneration success and
failure”’**%%**, However, the efficiency and success of transla-
tion of these genes have received less attention. By ribosome
pull-down and metabolic isotopic labeling, a recent study
analyzed gene translation and protein synthesis within the
regeneration-associated program in DRG neurons. Of the proteins
that undergo de novo synthesis in regenerating DRG neurons,
apolipoprotein E (ApoE), which has been previously implicated
in axon growth and regeneration®*, is one of the most robustly
synthesized proteins®. DRG neurons cultured in the presence of
an ApoE receptor inhibitor extend shorter neurites, providing
evidence that neuronal ApoE is an autocrine regulator of axon
growth®. It is likely, though speculative, that ApoE facilitates
recycling of cholesterol from degenerating axons for integration
into new membranes during the process of axon regeneration.
Alternatively, cholesterol may be synthesized in the cell body
and then efficiently delivered to the axonal compartment via
anterograde transport of lipid-containing vesicles.

An unbiased genome-wide loss-of-function screen in cerebral
cortical projection neurons in vitro identified Rab27b, a mem-
ber of the Rab subfamily of GTPases, as a cell-autonomous
factor that restricts axon regeneration’. Adult worms lacking
Rab27 exhibit greater regeneration of GABA neurons. Moreover,
optic nerve regeneration, raphespinal sprouting, and locomotor
recovery all are enhanced in mice lacking Rab27%. Interestingly,
Caenorhabditis elegans Rab27 mutants have defects in synap-
tic transmission”. Given that Rab27 localizes in synaptic-rich
regions and participates in the transport of synaptic vesicles’',
removing or blocking Rab27 in adult neurons may promote axon
regeneration by shifting the trafficking of new cell membrane
from synapses to the axolemma. Indeed, new membrane insertion
is necessary for axon elongation’.

Interestingly, data from an independent study show that selective
exclusion of Rabll vesicles, which are needed for axon elon-
gation, contributes to axon regeneration failure. Rab GTPases
coordinate vesicle trafficking’’, thereby allowing growth-
promoting cargoes to be delivered to the axon. In cultured rat
cortical neurons, overexpressing Rabll decreases axon retrac-
tion and augments new growth cone formation and enhanced
axon regeneration occurs in an integrin-dependent manner’”.
It is likely that changes in spatiotemporal interaction between
Rab GTPases and specific guanine nucleotide exchange factors
contribute to diversify the role of Rab GTPases in axon growth
and regeneration.

When the transcriptional landscape of mouse DRG neurons was
explored in both growth-competent and -incompetent states
at different developmental stages, Cacna2d2, the gene encod-
ing the 0282 subunit of voltage-gated calcium channels”, was
identified as a developmental switch that limits axon growth and
regeneration’’ (Figure 2). Interestingly, in these neurons, the
developmental transition from a growth-competent (electrically
dormant) to a transmitting (electrically active) phase is associ-
ated with a marked increase in the expression of genes that control
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Figure 2. The transcriptional landscape of mouse dorsal root ganglia (DRG) neurons in both growth-competent and -incompetent
states. DRG neurons have been instrumental in dissecting key molecular mechanisms of axon growth and regeneration failure. Whole
transcriptome sequencing of DRG neurons from different stages of axon growth, including a developmental transition from axon growth to
synapse formation, a shift from arborizing to elongating growth, and axon regeneration after a peripheral nerve lesion (PNL), has identified
novel negative regulators of axon growth and regeneration, thus expanding the number of targets that could be manipulated for therapeutic

gain. E, embryonic day.

synapse formation and synaptic transmission. Deletion or silenc-
ing of Cacna2d2 in adult DRG neurons promotes axon growth
in vitro. Pharmacological blockade of 0282 via systemic injec-
tion of gabapentinoids promotes regeneration of sensory axons
after SCI in adult mice”’. Precisely how gabapentinoids enhance
axon regeneration is unknown, but a mechanistic understanding
is important, especially since these drugs are often used in
humans to treat various neurological disorders, including
neuropathic pain. Moreover, a multi-center cohort study found
that motor recovery is improved in SCI individuals receiving
gabapentinoids’®. Together, these data highlight the need to
consider repurposing gabapentinoids as a novel treatment for
CNS repair.

During development, a discrete number of transcription factors
act as master regulators of gene expression. Among others, Sox//
is highly expressed in many developing organs and its expres-
sion is turned off in adults. Whereas SoxII expression is not

changed after CNS injury, its expression increases after peripheral
injury, facilitating regeneration of injured peripheral nerves™’’.
In normally non-regenerative cortical motor neurons, forcing
Sox11 expression enables sprouting and regeneration of corti-
cospinal tract (CST) axons after unilateral pyramidotomy and
cervical SCI, respectively”. However, forced expression of Sox/1
in CST neurons impairs, rather than improves, skilled forelimb
functions”. Thus, improved axon regeneration does not neces-
sarily predict that functional recovery also will improve. Intui-
tively, this makes sense since functionally significant axon
regeneration is a multi-step repair process in which regenerating
axons must re-establish proper synaptic connectivity in order to
effectively integrate into existing or regrowing neuronal cir-
cuitry. Another study tested whether overexpression of Sox/]/
or other master regulators of gene transcription can enhance
regeneration of retinal ganglion cell (RGC) axons after optic
nerve crush injury in adult mice. Only overexpression of Sox/],
among the seven candidates tested, robustly increased RGC
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regeneration™. Interestingly, a gene ontology analysis of tran-
scriptomics data derived from RGC neurons overexpressing
Soxl11 revealed that most genes that are suppressed by Sox// are
associated with synaptic transmission®, highlighting similarities
with the 0282 findings described above. Together, these data
suggest that genetic gain-of-function manipulations can rejuve-
nate adult neurons, enhancing their growth potential; however,
these same manipulations may inadvertently impair synaptic
function in the neural circuitry.

In a search for mechanisms underlying neural plasticity, a recent
study profiled the transcriptome of sprouting intact neurons
isolated from mice lacking Nogo receptor 1 (for example, a recep-
tor for myelin-associated axon growth inhibitors) after incom-
plete SCI. In these mice, structural plasticity and regeneration
of CST axons are enhanced in various CNS injury models™".
The authors found that the lysophosphatidic acid (LPA) signal-
ing modulators, LPPR1 and LPARI, are intrinsic regulators of
axon growth in corticospinal neurons. More specifically, LPPR1
overexpression or LPAR1 inhibition promoted collateral sprout-
ing of intact CST axons and enhanced functional recovery
after unilateral pyramitomy in adult wild-type mice. LPA is
a bioactive lipid species derived from membrane phospholipids,
and among the many cellular mechanisms that LPA signal-
ing is known to affect (including oligodendrocyte maturation,
myelination, astrocyte proliferation, and inflammation), synaptic
transmission is also affected by LPA®.

Single-cell RNA sequencing has emerged as a powerful technol-
ogy that enables researchers to identify expression changes of
thousands of genes in heterogeneous cell populations®*”. A recent
study applied this technology to reveal DRG neuron heteroge-
neity and molecular dynamics after sciatic nerve transection™.
DRG neurons can be classified into several functionally dis-
tinct subtypes with very different gene expression patterns®—*°.
Such heretogeneity is reflected by the fact that injury to the
peripheral branch of DRG neurons is often associated with
mixed responses such as pain, cell death, plasticity, and axon
regeneration. After segregating DRG neurons into different
subtypes, weighted gene co-expression network analysis revealed
injury-responsive gene modules with distinct expression patterns
among the different subtypes. Interestingly, the cell death
genes—programmed cell death-2 and neuron survival-like
ISL LIM homeobox—were upregulated and downregulated,
respectively, in a subset of non-peptidergic nociceptor neurons
3 days after injury*’. The fact that caspase-3 was upregulated in
all injured subtypes suggests that these neurons may be more
susceptible to cell death and therefore not able to regener-
ate. Indeed, a prerequisite for axon regeneration is that injured
neurons survive. Dynamic changes in gene transcription in DRG
neuronal subtypes were identified by completing an analysis
of the transcriptome at 3 and 7 days after axotomy. Genes
related to nervous system development, axonogenesis, regulation
of metabolic process, and actin cytoskeleton reorganization
were gradually upregulated in large myelinated neurons®. In
contrast, many genes related to learning or memory or nucleus
organization were downregulated in these neurons®, further
implicating gene inactivation as an important regulator of axon
growth programs (see above).
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Kinomics

A phenotypic screen of kinase inhibitors (that is, kinomics)
combined with machine learning identified the ribosomal S6
kinase 1 (S6K1) as a negative regulator of axon regeneration in
rodents*. In C. elegans, ribosomal S6 kinase loss of function elic-
its new axon growth cone formation after injury and accelerates
axon elongation®. In vitro, S6K1 inhibition enhances growth of
primary mouse hippocampal neurons. In vivo administration of
a selective S6K1 inhibitor (for example, PF-4708671) promotes
regeneration of CST axons into and beyond the lesion site in a
model of cervical SCI. Functional recovery also is achieved in
SCI animals treated with PF-4708671. The benefits of inhibiting
S6K1, a known effector of the mammalian target of rapamycin
(mTOR), conflict with data showing that mTOR is a positive
regulator of axon regeneration in mammals'®*~*’. Hence, new
kinomics data have enriched our understanding of molecular
mechanisms of axon regeneration by showing that PI3K/mTOR
signaling is negatively regulated by S6K1.

Phosphoproteomics

Growth cones are specialized structures that are required dur-
ing axon growth and regeneration”. A better understanding of
the signaling pathways that control growth cone activity may be
necessary to gain control of axon growth, guidance, and regen-
eration as well as formation of neural circuits. Reversible protein
phosphorylation is one of the most studied post-translational
modifications. Phosphorylation of proline, serine, threonine,
and tyrosine residues plays a crucial role in function, subcellu-
lar localization, and degradation of proteins, thus participating
in various cellular processes, including signal transduction. A
phosphoproteomic study of growth cone membranes isolated
from postnatal day 1 rat forebrain identified 4596 phosphoryla-
tion sites from 1223 phosphoproteins*'. Of these phosphorylation
sites, proline phosphorylation was the most represented. Analysis
of the identified phosphoproteins suggested that cytoskeletal
components and signaling proteins were the most abundant''.
Using a kinase-specific phosphorylation site prediction tool,
the authors of this study revealed that proline phosphorylation
was due to activation of the mitogen-activated protein kinase
(MAPK) pathway*'. Of note, coordinated activation of highly
conserved MAPK pathways is required for axon growth and
regeneration®’' =, Strikingly, the most abundant phosphorylation
site. was an uncharacterized serine 96 of the growth-associated
protein 43 (GAP-43), which is highly expressed during develop-
ment and regeneration”’. Of the different kinases involved in
signal transduction, c-Jun N-terminus kinase (JNK) was respon-
sible for numerous phosphorylated sites in the phosphoproteomic
data set*'.

Another interesting study applied quantitative phosphopro-
teomics to study changes in protein phosphorylation in primary
cerebellar granule neurons plated on growth-inhibitory chondroi-
tin sulfate proteoglycans (CSPGs). Of the differentially phospho-
rylated proteins, phosphorylation increased on 41 peptides and
decreased on 77 in neurons exposed to CSPGs”™. Cytoskeletal
proteins were the top annotated category, representing 25 of the
118 phosphopeptides identified. Among these cytoskeletal pro-
teins, 14 were of the actin family of cytoskeleton proteins. Cofilin,
an actin depolymerization factor regulated by phosphorylation,
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plays an important role in growth cone behavior and neurite
outgrowth”. In neurons exposed to myelin-associated inhibi-
tor, phosphorylation and inactivation of cofilin have been shown
to be regulated via LIM kinase and slingshot phosphatase'”,
contributing to axon growth inhibition and regeneration failure.
Similarly, overexpression of the transcription factor serum
response factor enhances axon regeneration through cytoplasmic
localization and cofilin-mediated reactivation of actin dynam-
ics in growth-inert retraction bulbs'’'. The top three signaling
pathways representing the 118 phosphopeptides were pyrimidine
metabolism, p38MAPK pathway, and synaptic vesicle traffick-
ing. Together, these results suggest that phosphoproteomics can
serve as a powerful approach to unmask promising targets and
signaling pathways to overcome regeneration failure in the adult
CNS.

Metagenomics

Successful axon regeneration may require a detailed under-
standing of genetic, proteomic, metabolic, and immunologic
functions that occur in the body outside the nervous system.
Metagenomics is a collection of high-throughput genetic analyses
of transorganismal behaviors and the biosphere. Currently, most
metagenomics studies focus on non-eukaryotic microbes, espe-
cially those found in the gastrointestinal tract (that is, the “gut”),
to learn how these microbes affect organs and cells throughout
the body, in both health and disease. Compelling data indicate
that microbial metabolites, derived from gut microbes, directly
affect the function of neurons and glia in the CNS. How or
whether these metabolites will affect regeneration in the injured
CNS has not been explored; however, robust and lasting changes
in gut microbial communities do occur after a brain injury or
SCI'*71%, Injury-induced change in microbial populations is a

Neuron

microtubules
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potentially novel target for regulating the structure and function
of injured neurons. Indeed, the magnitude and diversity of the
microbial “payload” are remarkable—unique microbial genes
outnumber mammalian genes by about 150 to 1'’°, and an impres-
sive number of microbial enzymes and metabolites are already
known to affect the metabolism and function of mammalian
cells, including those in the immune and nervous systems'’’~'%”,
Thus, it is easy to speculate that metagenomic and metabolomic
techniques, when applied in the context of axon regeneration
models, will reveal novel roles for microbes in affecting axon
regeneration.

Although recent progress in the field of axon regeneration clearly
illustrates the power of using omics-based approaches to reveal
novel molecular mechanisms to target for therapeutic enhance-
ment of axon growth, we believe that a better understanding of
the mechanisms controlling presynaptic biogenesis, synaptic
alignment, and connectivity will be necessary to rebuild injured
neural circuits in a functionally meaningful way.

Neuronal metabolism and mitochondrial transport
Promoting successful axon regeneration will likely require that
we understand more than those genes and proteins that directly
affect the physical structure of axons and synapses. Indeed,
axon regeneration is a metabolically active, multi-step process.
Omics technologies have revealed that optimal axon regeneration
also depends on efficient mitochondrial transport and energy
production in injured axons.

Recent evidence indicates that enhancing mitochondrial transport
promotes neuron survival and axon regeneration in experimen-
tal models of axotomy in worms''’ and mice*'"" (Figure 3).

Axon growth &
regeneration

Growth
cone

Mitochondria

Anterograde
—

Figure 3. Mitochondria participate in axon regeneration. Mitochondria are actively transported to axons via axonal microtubules with
their plus ends pointing toward the distal part and their minus ends facing the cell soma. Members of the kinesin family are responsible for
mitochondria anterograde transport. Kinesin motors generate force by hydrolyzing adenosine triphosphate. Given that mitochondria provide
energy for axonal functions (including active transport and membrane fusion), alteration of mitochondrial distribution along the axon leads to
defects during development, maintenance, and regeneration of the nervous system.
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Anterograde mitochondrial transport requires kinesin-1 motors,
whereas dynein motors control retrograde transport back to the
soma'*'"“. Live imaging of laser axotomized GABA motor
neurons in mutant worms with an enhanced regenerative capac-
ity has shown that mitochondrial density increases in regener-
ating axons and that regeneration can be enhanced further by
experimentally boosting mitochondrial transport. Conversely,
axon regeneration is poor in mutant worms with deficient
mitochondrial transport. Mitochondrial localization to the axon is
regulated in part by dual-leucine zipper kinase 1 (DLK-1)'"’, an
evolutionarily conserved intrinsic regulator of axon growth and
regeneration in worms, flies, and mice”'">~""%.

Again, using the optic nerve injury model, high-throughput anal-
ysis of gene expression in RGC neurons has revealed that the
armadillo repeat containing x-linked 1 (Armcx1) is a critical
regulator of mitochondrial transport and plays a key role in pro-
moting axon regeneration after optic nerve crush injury. Armex1
localizes to mitochondria and interacts with components of the
mitochondrial transport machinery, such as Miro 17°. Whereas
Armcx1 overexpression enhances mitochondrial transport in
mouse retinal explants and promotes RGC neuron survival and
regeneration after optic nerve crush injury”, its downregulation
negatively impacts axon regeneration.

Adenosine triphosphate (ATP) is the major source of cellu-
lar energy produced by mitochondria. In injured CNS axons,
mitochondria acutely depolarize, causing energy deficits along
the injured axons'''. Recent data indicate that it is possible to
reverse injury-induced energy loss and restore regenerative
capacity in cultured mouse neurons. Indeed, overexpressing
Miro 1 or knocking down the mitochondria-anchoring pro-
tein syntaphilin enhances mitochondrial transport and restores
the energy balance in injured axons, leading to enhanced axon
regeneration''!.

Using proteomics and bioinformatics techniques to analyze the
injury response in axotomized RGCs, Belin et al. identified
12 signaling hubs, including several neuronal intrinsic regula-
tors of axon growth and regeneration®. The top three connected
nodes are the tumor suppressor p53'"?, c-Myc'?’, and Rictor. The
authors focused on c-myc because of its role as master tran-
scriptional regulator of several target genes that coordinate the
de novo synthesis of new lipids and proteins that are needed for
axon elongation. Indeed, forced expression of c-Myc in RGCs
promotes neuron survival and regeneration after optic nerve
crush injury*. Although it is possible to manipulate oncogenes to
achieve regenerative growth in CNS neurons in animal models,
whether it is safe or prudent to do so in humans is questionable.

A recent study in C. elegans has shed some light on metabolic
regulation controlling neuron repair after axotomy. O-linked
B-N-acetylglucosamine (O-GIcNAc), a post-translational modi-
fication of serine and threonine residues of nuclear and cyto-
plasmic proteins, functions as a nutrient sensor and metabolic
mediator by linking glucose metabolism to the hexosamine bio-
synthetic pathway. Twenty-four hours following laser axotomy
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in vivo, a decrease in O-GIcNAc levels promotes axon regenera-
tion of either the anterior or posterior lateral microtubule neurons
via ARK-1/AKT-1 signaling, using glycolysis as the primary
source of energy'’'. Blocking glucose transport or inhibiting gly-
colysis leads to axon regeneration failure in mutant worms with
decreased O-GlcNAc levels'”'. By contrast, increasing O-GlcNAc
levels acts on mitochondrial function and enhances axon
regeneration in C. elegans through FOXO/DAF-16—dependent
mechanisms'”'. These seemingly contradictory results may be
explained by the fact that O-GlcNAc levels drive distinct branches
of the insulin pathway to promote regeneration in worms.

The liver kinase B1 (LKB1) links cellular metabolism and energy
homeostasis to cell polarity and growth'”>'*. LKBI1 phospho-
rylates the central metabolic sensor AMPK, whose activation
regulates cholesterol, lipid, and glucose metabolism'”’. LKBI1
overexpression in corticospinal neurons of adult mice was recently
shown to promote long-distance regeneration of CST axons in
experimental models of SCI’'. Also, systemic overexpression
of LKBI1 in mice causes descending serotonergic and tyrosine
hydroxylase-positive axons to regrow into caudal segments of the
injured spinal cord. Mechanistically, the AMP-activated protein
kinase alpha, NUAK family SNF1-like kinase 1, and extracellular
signal-regulated kinase act as effectors of LKB1 to promote axon
growth and regeneration’'. Importantly, enhanced axon growth
and regeneration in LKBI-overexpressing mice correlated with
improved recovery of locomotor function’'.

Together, the above examples highlight the importance of achiev-
ing efficient mitochondrial transport and energy production
in injured axons to fuel axon regeneration. Whether boosting
neuronal metabolism and other metabolic pathways are sufficient
to repair the injured CNS requires further investigation.

Conclusions

During the last three years, novel candidates and combinatorial
approaches that can promote structural plasticity, regen-
eration, and some degree of functional recovery have been
identified”’***1**12+-128 " To maximize chances to achieve func-
tional recovery, however, axon regeneration, neuronal metabo-
lism, synapse formation, and functional connectivity need to be
spatially and temporally controlled to allow the establishment,
refinement, and consolidation of essential neural circuitry™.
Thus far, data suggest that prolonged activation of neuron-intrin-
sic pathways causes defects in target innervation in several
experimental injury models™'*'"°. Failure to re-innervate target
neurons negatively impacts functional recovery and can cause
neurobehavioral abnormalities that impair normal daily activi-
ties and thus quality of life. In addition, cardiovascular disease
and autonomic dysfunction have become a growing concern for
individuals with SCI'*""*’. Thus, turning off or reducing intrin-
sic axon growth ability together with cardiovascular rehabilita-
tion, activity-based training, or other facilitators may indeed
facilitate synapse formation, refinement, and consolidation of
functional connectivity in the injured CNS. Several lines of evi-
dence also suggest that adult regenerating axons can be guided
toward specific target areas by providing chemoattraction'**'*.
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Modulating astrocyte behavior to control synapse formation and
elimination represents another intriguing direction for future
studies'*>1,

Several signaling pathways described above are conserved
across different species. This will likely facilitate the transla-
tion of data obtained in smaller organisms and animal models to
larger and more complex mammalian systems, including humans.
Still, genetic variation exists within each model organism*'#7:!%,
so exploring the robustness of treatment strategies across differ-
ent genetic backgrounds, within and between species, will be
prudent before embarking on randomized clinical trials in
humans. Lately, despite the generation of large omics data sets, a
significant amount of information remains hidden. In our
opinion, validation of omics approaches with stringent criteria
and additional assays is an essential step to facilitate transla-
tion of breakthrough discoveries from the laboratory into clinical
practice. Although there is no optimal strategy for integrat-
ing multi-omics data sets, more integration is likely to provide
the most realistic picture about true biology. It is now possible
to integrate data from transcriptomics, phosphoproteomics, and
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metabolomics. When combined with multi-layer omics'*-'*!, the
recent development of powerful computational methods'*~'*,
machine learning and artificial intelligence'*'** will allow data
mining and extracting principles and key biological information
on a broad range of normal and disease conditions. Hence, auto-
mated inference methods should allow the rapid development and
testing of new hypotheses and establish potential causal relation-
ships in large data sets. As we enter a new era of regenerative
medicine, we will be able to select combinations of treatment
strategies for a personalized medicine approach to aid CNS repair.
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