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Abstract

Accurate segmentation of perivascular spaces (PVSs) is an important step for quantitative study of 

PVS morphology. However, since PVSs are the thin tubular structures with relatively low contrast 

and also the number of PVSs is often large, it is challenging and time-consuming for manual 

delineation of PVSs. Although several automatic/semi-automatic methods, especially the 

traditional learning-based approaches, have been proposed for segmentation of 3D PVSs, their 

performance often depends on the hand-crafted image features, as well as sophisticated 

preprocessing operations prior to segmentation (e.g., specially defined regions-of-interest (ROIs)). 

In this paper, a novel fully convolutional neural network (FCN) with no requirement of any 

specified hand-crafted features and ROIs is proposed for efficient segmentation of PVSs. 

Particularly, the original T2-weighted 7T magnetic resonance (MR) images are first filtered via a 

non-local Haar-transform-based line singularity representation method to enhance the thin tubular 

structures. Both the original and enhanced MR images are used as multi-channel inputs to 

complementarily provide detailed image information and enhanced tubular structural information 

for the localization of PVSs. Multi-scale features are then automatically learned to characterize the 

spatial associations between PVSs and adjacent brain tissues. Finally, the produced PVS 

probability maps are recursively loaded into the network as an additional channel of inputs to 

provide the auxiliary contextual information for further refining the segmentation results. The 

proposed multi-channel multi-scale FCN has been evaluated on the 7T brain MR images scanned 

from 20 subjects. The experimental results show its superior performance compared with several 

state-of-the-art methods.
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1. Introduction

Perivascular spaces (PVSs) or Virchow-Robin spaces are the cerebrospinal fluid (CSF)-filled 

cavities around the penetrating small blood vessels in the brain (Zhang et al., 1990). As a 

part of the brain’s lymphatic system, the PVSs play a significant role in clearing interstitial 

wastes from the brain (Iliff et al., 2013; Kress et al., 2014), as well as in regulating 

immunological responses (Wuerfel et al., 2008). Increasing number of studies demonstrates 

that the dilation of PVSs indicates neuronal dys-functions, and strongly correlates with the 

incidence of multiple neurological diseases, including Alzheimer’s disease (Chen et al., 

2011), small vessel diseases (Zhu et al., 2010), and multiple sclerosis (Etemadifar et al., 

2011). Thus, quantitative study of PVS morphology is a pivotal pre-step to effectively 

analyze pathophysiological processes of PVS abnormality, as well as to understand 

functional status of PVSs. Although the new-generation 7T magnetic resonance (MR) 

scanner facilitates the visualization of PVSs even for healthy and young subjects, the reliable 

quantification of PVSs is still a challenging task, given the fact that it is tedious and time-

consuming for manual delineation of thin PVSs with weak signals in noisy images (see Fig. 

1). Therefore, it is highly desirable to develop automatic methods to precisely segment PVSs 

in MR images.

Several automatic or semi-automatic segmentation methods (Descombes et al., 2004; 

Uchiyama et al., 2008; Park et al., 2016; Zhang et al., 2017a) have been proposed for 

delineation of PVSs, among which the traditional learning-based approaches (Park et al., 

2016; Zhang et al., 2017a) show competitive performance due to specifically-defined image 

features as well as structured learning strategies. However, these traditional learning-based 

methods generally require complicated pre-processing steps before segmentation, e.g., 

specifying regions-of-interest (ROIs) to guide the segmentation procedure. Moreover, their 

performances are of- ten influenced by the quality of hand-crafted image features used for 

MR images.

In recent years, deep convolutional neural networks (CNNs) have dominated traditional 

learning algorithms in various natural and medical image computing tasks, such as image 

recognition (Krizhevsky et al., 2012; Chan et al., 2015; Simonyan and Zisser- man, 2015; He 

et al., 2016), semantic segmentation (Noh et al., 2015; Shelhamer et al., 2016; Liu et al., 

2017a), anatomical land- mark detection (Zhang et al., 2016, 2017b, 2017c), computer-aided 

diagnosis/detection (Gao et al., 2015; Shin et al., 2016; Suk et al., 2017; Liu et al., 2017b, 

2018), or volumetric image segmentation (Guo et al., 2016; Rajchl et al., 2017; Chen et al., 

2017; Kamnitsas et al., 2017; Dou et al., 2017). As the state-of-the-art deep learning models 

for image segmentation, fully convolutional networks (FCNs) (Shelhamer et al., 2016) can 

efficiently produce end-to-end segmentation by seamlessly combining global semantic 

information with local details by using advanced encoder-decoder architectures. However, 

existing FCN models in the literature (e.g., U-Net (Ronneberger et al., 2015)) usually 

perform segmentation by using only one source of information (e.g., original images), thus 

ignoring the fact that the additional guidance from other complementary information sources 

may be beneficial for improving the segmentation results. To this end, a new multi-channel 
multi-scale deep convolutional encoder-decoder network (M 2 EDN) is proposed in this 

paper for the task of PVS segmentation. A schematic diagram of the proposed M 2 EDN is 
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shown in Fig. 2. As an extension of the original FCNs, the proposed method also applies 

volumetric operations (i.e., convolution, pooling, and up-sampling) to achieving structured 

end-to-end prediction. Particularly, it adopts complementary multi-channel inputs to provide 

both enhanced tubular structural information and detailed image information for precise 

localization of PVSs. Then, high-level and multi-scale image features are automatically 

learned to better characterize spatial associations between PVSs and their neighboring brain 

tissues. Finally, the proposed network is effectively trained from scratch by taking into 

account the severe imbalance between PVS voxels and background voxels. The output PVS 

probability map is further used as auxiliary contextual information to refine the whole 

network for more accurate segmentation of PVSs. Experimental results on 7T brain MR 

images from 20 subjects demonstrate superior performance of the proposed method, 

compared with several state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, previous studies that relate to our 

work are briefly reviewed. In Section 3.2, both the proposed M 2 EDN method and the 

studied data are introduced. In Section 4, the proposed method is compared with existing 

PVS segmentation methods, and the role of each specific module of our method is analyzed. 

In Section 5, we further discuss about the training and generalization of the proposed 

network, as well as the limitations of its current implementation. Finally, a conclusion of this 

paper is presented in Section 6.

2. Related work

Available vessel segmentation methods, i.e., learning-based approaches (Ricci and Perfetti, 

2007; Marín et al., 2011; Schneider et al., 2015) and filtering methods (Hoover et al., 20 0 0; 

Xiao et al., 2013; Roychowdhury et al., 2015), are potentially applicable to PVS 

segmentation. However, direct use of these general methods in the specific task of PVS 

segmentation is challenging, especially considering that PVSs are very thin tubular 

structures with various directions and also with lower contrast compared with surrounding 

tissues (see Fig. 1).

Up to now, only a few automatic/semi-automatic approaches have been developed for PVS 

segmentation. These approaches can be roughly divided into two categories: (1) 

unsupervised methods and (2) supervised methods. The unsupervised methods are usually 

based on simple thresholding, edge detection and/or enhancement, and morphological 

operations (Frangi et al., 1998; De- scombes et al., 2004; Uchiyama et al., 2008; Wuerfel et 

al., 2008). For instance, Descombes et al. (2004) applied a region-growing algorithm to 

initially segment PVSs which were first detected by image filters and then segmented by the 

Markov chain Monte Carlo method. Uchiyama et al. (2008) used an intensity thresholding 

method to annotate PVSs in MR images, which were enhanced by a morphological 

operation. In Wuerfel et al. (2008), an adaptive thresholding method was integrated into a 

semi-automatic software to delineate PVS structures. Although these unsupervised methods 

are intuitive, their performance is often limited by manual intermediate steps that are used to 

heuristically determine the tuning parameters (e.g., thresholds). In particular, these methods 

do not consider the contextual knowledge on spatial locations of PVSs.
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Different from these unsupervised methods, the supervised methods can seamlessly include 

contextual information to guide the segmentation procedure with carefully-defined image 

features and/or structured learning strategies. Currently, various supervised learning-based 

methods have been proposed to segment general vessels. For example, Ricci and Perfetti 

(2007) adopted a specific line detector to extract features, based on which a support vector 

machine (SVM) was then trained to segment vessels in retinal images. Schneider et al. 

(2015) extracted features based on rotation-invariant steerable filters, followed by 

construction of a random forest (RF) model to segment vessels in the rat visual cortex 

images. Fraz et al. (2012) used an ensemble classifier trained with orientation analysis-based 

features to segment retinal vessels. In particular, several supervised learning-based 

approaches have also been proposed to automatically delineate thin PVS structures in MR 

images. Park et al. (2016) described local patch appearance using orientation-normalized 

Haar features. Then, they trained sequential RFs to perform PVS segmentation in an ROI 

defined based on anatomical brain structures and vesselness filtering (Frangi et al., 1998). 

Zhang et al. (2017a) first adopted multiple vascular filters to extract complementary vascular 

features for image voxels in the ROI, and then trained a structured RF (SRF) model to 

smoothly segment PVSs via a patch-based structured prediction. Although these traditional 

learning-based methods have shown overall good performance, several limitations still exist: 

(1) their performance often depends on the hand-crafted features, while such features could 

be heterogeneous to subsequent classification/regression models and thus may degrade the 

segmentation performance; (2) the discriminative capacity of hand- crafted features could be 

hampered by the weak signals of thin PVSs and also by the inherent noise in MR images; (3) 

a carefully defined ROI is desired (e.g., Park et al., 2016; Zhang et al., 2017a) to ensure 

effective segmentation, which inevitably increases the complexity in both training and 

testing, since expertise knowledge is often required to this end.

As the state-of-the-art deep learning models for image segmentation, fully convolutional 

networks (FCNs) (Shelhamer et al., 2016), e.g., SegNet (Badrinarayanan et al., 2015) and U-

Net (Ronneberger et al., 2015), can efficiently produce pixel-wise dense prediction due to 

their advanced encoder-decoder architectures. Generally, an encoder-decoder architecture 

consists of a contracting sub-network and a successive expanding sub-network. The encoder 

part (i.e., contracting sub-network) can capture long-range cue (i.e., global contextual 

knowledge) by analyzing the whole input images, while the subsequent decoder part (i.e., 

expanding sub-network) can produce precise end-to-end segmentation by fusing global long-

range cue with complementary local details. However, previous FCN-based methods (e.g., 

U-Net) usually learn a model for segmentation using solely the original images, which 

ignores critical guidance from other complementary information sources, such as auto-

contextual guidance from class confidence (or discriminative probability) maps that are 

generated by initial networks (trained using the original images) (Tu and Bai, 2010).

Similar to U-Net (Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2015), the 

proposed M 2 EDN is also constructed by an encoder sub-network and a decoder sub-

network to capture both the global and local information of PVSs in MR images. On the 

other hand, it additionally owns the following unique properties: (1) Using the combination 

of different volumetric operation strategies, the complementary multi-scale image features 

can be automatically learned and fused in the encoder sub-network to comprehensively 
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capture morphological characteristics of PVSs and also spatial associations between PVSs 

and neighboring brain tissues. (2) Considering that PVSs are the thin tubular structures with 

weak signals in the noisy MR images, two complementary channels of inputs are initially 

included in the network. Specifically, using a non-local Haar-transform-based line 

singularity representation method (Hou et al., 2017), one channel provides the processed T2-

weighted MR images with enhanced tubular structural information, but with reduced image 

details. In parallel, the other channel provides the original noisy T2-weighted MR images 

with fine local details. (3) Since PVS probability maps generated by the network can 

naturally provide contextual information of PVSs (Tu and Bai, 2010), we recursively 

incorporate these maps into the network as an additional input channel to further refine the 

whole model for achieving more accurate segmentation of PVSs.

3. Materials and method

3.1. Materials

Twenty healthy subjects aged from 25 to 55 were included in this study. The original MR 

images were acquired with a 7T Siemens scanner (Siemens Healthineers, Erlangen, 

Germany). Seventeen subjects were acquired using a single channel transmit and 32 channel 

receive coil (Nova Medical, Wilmington, MA), while the other three subjects were acquired 

using 8 channel transmit and 32 channel receive coil. The total scan time was around 483 

seconds. Both T1- and T2-weighted MR images were scanned for each subject. The T1-

weighted MR images were acquired using the MPRAGE sequence (Mugler and Brookeman, 

1990) with the spatial resolution of 0. 65 × 0. 65 × 0. 65 mm 3 or 0. 9 × 0. 9 × 1. 0 mm 3, 

while the T2-weighted MR images were acquired using the 3D variable flip angle turbo-spin 

echo sequence (Busse et al., 2006) with the spatial resolution of 0. 5 × 0. 5 × 0. 5 mm 3 or 0. 

4 × 0. 4 × 0. 4 mm 3. The reconstructed images had the same voxel sizes as those acquired 

images, and no interpolation was applied during image re-construction.

The T2-weighted MR images for all studied subjects are used to segment PVSs, as PVSs are 

usually more visible in T2-weighted MR images (Hernández et al., 2013). The ground-truth 

segmentation was defined cooperatively by an MR imaging physicist and a computer 

scientist specialized in medical image analysis. Since manual annotation is a highly time-

consuming task, the whole brain PVS masks were created just for 6 subjects, while the right 

hemisphere PVS masks were created for all the remaining 14 subjects. More detailed 

information about the studied data can be found in Zong et al. (2016).

3.2. Method

In this part, the proposed multi-channel multi-scale encoder-decoder network (M 2 EDN) is 

introduced in detail. First, we describe the overall network architecture, followed by 

introduction of each key module one-by-one. Then, we discuss the training and testing 

procedures, including some specific operations to mitigate severe imbalanced learning issue 

in our task of PVS segmentation.

3.2.1. Network architecture—As shown in Fig. 2, the proposed M 2 EDN is a variant 

FCN model (Shelhamer et al., 2016) that consists of multiple convolutional layers, pooling 
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layers, and up-sampling layers. Specifically, it includes an encoder sub-network and a 

decoder sub-network. In the encoder sub-network, the blue blocks first perform 64 channels 

of 3 × 3 × 3 convolution with the stride of 1 and zero padding, and then calculate the 

rectified linear unit (ReLU) activations (Krizhevsky et al., 2012). Besides, the orange blocks 

per- form 2 × 2 × 2 max pooling with the stride of 2, while the yellow block performs 4 × 4 

× 4 max pooling with the stride of 4. It can be observed that the network inputs are down-

sampled three times in this encoder sub-network, i.e., the included convolutional and 

pooling operations are arranged and orderly executed at three de- creasing resolution levels. 

In this way, we attempt to comprehensively capture the global contextual information of 

PVSs by using the combination of different volumetric operation strategies.

Symmetric to the encoder sub-network, the subsequent de-coder sub-network consists of 

operations arranged at three increasing resolution levels. The blue blocks in this sub-network 

perform the same convolutional processing as those in the encoder sub-network, while the 

followed purple blocks up-sample the obtained feature maps using 2 × 2 × 2 kernels with the 

stride of 2. At each resolution level, a skip connection is included to fuse the up-sampled 

feature maps with the same level feature maps obtained from the previous encoder sub-

network, in order to complementarily combine global contextual information with spatial 

details for precise detection and localization of PVSs. The final magenta block performs 1 × 

1 × 1 convolution and sigmoid activation to calculate voxel-wise PVS probability maps from 

high-dimensional feature maps.

Both the encoder sub-network and the decoder sub-network contain the combination 

operations (i.e., the symbol ⊕ in Fig. 2) for the fusion of feature tensors with equal 

resolution. Multiple alternatives can be applied to this step, e.g., the voxel-wise addition, 

voxel-wise averaging, and tensor concatenation. Similar to that in U-Net (Ronneberger et al., 

2015), the concatenation operation is adopted in this paper as it shows overall best 

performance. The coefficients of the network shown in Fig. 2 can be learned using the 

training images with ground-truth segmentations of PVSs.

3.2.2. Multi-channel inputs—As illustrated in Fig. 2, the proposed M 2 EDN has two 

complementary input channels. That is, one channel loads the preprocessed T2-weighted 

MR images with high-contrast tubular structural information, and another channel loads the 

original T2-weighted MR images for providing image details that are obscured during the 

preprocessing procedure (i.e., for image enhancement and denoising).

A non-local image filtering method (i.e., BM4D, Maggioni et al., 2013) and its variant with 

Haar-transformation-based line singularity representation (Hou et al., 2017) are adopted to 

remove noise and enhance the thin tubular structures, respectively. More specifically, each 

original T2-weighted MR image is divided into multiple reference cubes with the size of S × 

S × S. The Haar transformation is then performed on a group of K nonlocal cubes within a 

small neighborhood (i.e., 3 × 3 × 3) of the center of each reference cube, based on which the 

tubular structural information can be effectively represented in the transformed sub-bands. 

The transformation coefficients are then nonlinearly mapped to enhance signals relevant to 

PVSs. Given the transformation coefficients after processing, the enhanced reference cubes 

are then reconstructed by the inverse Haar transformation, which are finally aggregated 
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together as the enhanced T2-weighted MR image. Finally, the enhanced T2-weighted MR 

image is further processed by the BM4D method to suppress the remaining noise.

Fig. 3 shows an example of axial T2-weighted MR slice (i.e., at the left-panel), as well as the 

enhanced and denoised counterpart (i.e., at the right-panel). We can observe that the tubular 

structures are effectively enhanced in the preprocessed images (e.g., in the blue circles), 

while sacrificing some image details (e.g., in the yellow boxes). In our experiments, two 

parameters S and K used in the nonlocal image enhancement were set as 7 and 8, 

respectively. More information regarding this non-local image enhancement method can be 

found in Hou et al. (2017).

3.2.3. Multi-scale feature learning—To robustly quantify the structural information of 

PVSs and adjacent brain tissues, the proposed M 2 EDN is designed to learn multi-scale 

features in the encoder sub-network.

As shown in Fig. 2, at the first two decreasing resolution levels (i.e., the 1st-level and the 

2nd-level feature extraction), besides the commonly used modules of convolution plus 

pooling, the input images are simultaneously down-sampled first, followed by executing of 

convolutional operations on the down-sampled images. Specifically, the input images are 

simply half-sized using 2 × 2 × 2 max pooling with the stride of 2 at the 1st-level feature 

extraction, while quarter-sized using 4 × 4 × 4 max pooling with the stride of 4 at the 2nd-

level feature extraction. In this way, different scales of features at each resolution level can 

be efficiently quantified in parallel, which are then fused as the input to the subsequent 

resolution level. It is also worth noting that this operation is not applied to the last decreasing 

resolution, mainly considering that PVSs are the thin tubular structures which could be 

invisible after one-eighth down-sampling.

An illustration of the above procedure for a 2D input image (with the size of 12 × 12) is 

shown in Fig. 4, where multi-scale features are hierarchically learned at two successive 

feature extraction stages. At each stage, two different scales of feature representations are 

extracted for the input image. For instance, for the 1st- level feature extraction, the orange 

pixel in the 1st-scale feature map (top) is generated by performing 3 × 3 convolution 

followed by 2 × 2 max pooling on the 4 × 4 orange region in the input image, while the 

corresponding blue pixel in the 2nd-scale feature map (bottom) is generated by performing 2 

× 2 max pooling followed by 3 × 3 convolution on the 6 × 6 blue region in the input image. 

Similarly, for the 2nd-level feature extraction, the yellow and purple pixels in the 1st-scale 

and 2nd-scale feature maps correspond, respectively, to the 10 × 10 yellow region and the 12 

× 12 purple region in the input image. Note that the 2nd-scale feature map (bottom) for the 

2nd-level feature extraction is generated by directly performing 4 × 4 max pooling followed 

by 3 × 3 convolution on the input image, while the corresponding 1st-scale feature map (top) 

is obtained by performing 3 × 3 convolution followed by 2 × 2 max pooling on feature maps 

that are produced by the 1st-level feature extraction. Based on the above operations, at each 

feature extraction stage, two complementary feature maps are extracted from the identical 

center regions to characterize the input in a fine scale (i.e., 4 × 4) and a coarse scale (i.e., 6 × 

6), respectively.
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3.2.4. Auto-contextual information—The strategy of auto-context was first 

introduced by Tu and Bai (2010), which was then successfully applied to various tasks of 

medical image analysis (e.g., Wang et al., 2015; Chen et al., 2017), showing remarkable 

performance. The general idea is to adopt both the original image and the class confidence 

(or discriminative probability) maps generated by a classifier (trained using the original 

images) for recursively learning an updated classifier to refine the output probability map. 

This procedure can be repeated multiple times until convergence to yield sequential 

classification models. Thus, high-level contextual information can be effectively combined 

with low-level image appearance iteratively to improve the learning performance.

Inspired by the idea of this auto-context model (Tu and Bai, 2010), we first train an initial M 
2 EDN model using multi-channel input images (i.e., the original and preprocessed T2- 

weighted MR images) as the low-level image appearance information. Then, besides the two 

original input channels, the PVS probability maps produced by this initial M 2 EDN are also 

included as third input channel (i.e., indicated by a black dotted arrow line in Fig. 2) to 

provide complementary contextual information. This kind of high-level contextual guidance 

could provide implicit shape information to assist the learning of image features in each 

convolutional layer, which could facilitate the training and updating of our network for 

further improving the segmentation results.

3.2.5. Imbalanced learning—In our segmentation task, there exists a severe class-

imbalance issue, where the number of voxels in the PVS regions (i.e., positive observations) 

is much smaller than that in the background (i.e., negative observations). This real-world 

challenge hampers the stability of most standard learning algorithms, since conventional 

methods usually assume balanced distributions or equal misclassification costs (i.e., using 

simple average error rate) across different classes. To deal with this class-imbalance 

problem, two widely-used strategies have been proposed in the literature (He and Garcia, 

2009; Liu et al., 2014; Lian et al., 2016), i.e., (1) data rebalancing, and (2) cost-sensitive 

learning. In this study, we adopt these two strategies in the training phase to ensure the 

effectiveness of our network in identifying the minority PVS voxels from the background.

In consideration of the generalization capacity of the proposed M 2 EDN, the diversity of 

selected training samples is also taken into account during the data rebalancing procedure. 

More specifically, training sub-images in each mini-batch are generated on-the-fly by 

cropping equal-sized volumetric chunks, both randomly from the whole image and randomly 

from the dense PVS regions within the image. In this way, training samples in each epoch 

not only are diversified but also contain a considerable amount of voxels belonging to the 

PVSs. Moreover, the training data is in some sense implicitly augmented due to this 

operation, because a large number of sub-images with partial differences can be randomly 

sampled from a single MR image.

It is worth noting that a sub-image generated by the above procedure is likely to contain 

more background voxels than PVS voxels, even we sample densely from PVS regions. To 

address this is- sue, we further design a cost-sensitive loss function based on F-measure for 

training the proposed network. Let Y = yi i = 1
N  be the ground-truth segmentation for a sub-
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image consisting of N voxels, where y i = 1 denotes that the i th voxel belongs to the PVSs, 

while y i = 0 the background. Accordingly, we assume Y = yi i = 1
N  is the PVS probability 

map produced by the proposed M2EDN, where yi ∈ [0, 1] and i = 1, ..., N. Then, the loss 

function L F used in our network can be represented as

LF = 1 −
1 + β2 ∑i = 1

N yiyi + ϵ

β2∑i = 1
N yi + ∑i = 1

N yi + ϵ
, (1)

where ϵ is a small scalar (e.g., 1e-5) to ensure numerical stability for calculating the loss 

value. The tuning parameter β > 0 determines if precision (i.e., positive prediction value) 

contributes more than recall (i.e., true positive rate or sensitivity) during the training 

procedure, or conversely. We empirically set β= 1, which means precision and recall have 

equal importance in the task of PVS segmentation.

3.2.6. Implementations—The proposed networks were implemented using Python 

based on the Keras package (Chollet, 2015), and the computer we used contains a single 

GPU (i.e., NVIDIA GTX TITAN 12GB). Training images were flipped in the axial plane to 

augment the available training sub-images as well as increase their diversity for better 

generalization of trained networks. Using the procedure described in Section 3.2.5, the size 

of each training sub-image was 96 × 96 × 96, and the size of a mini-batch in each epoch was 

2. The network was trained by the Adam optimizer using recommended parameters. In the 

testing phase, considering FCNs desire large inputs to provide rich semantic information, 

each testing image was divided into 168 × 168 × 168 sub-images that are overlapped with 

each other. After prediction, we only kept segmentation results for the non-overlapped 96 × 

96 × 96 central chunks in the overlapped 168 × 168 × 168 testing sub-images. Finally, the 

non-overlapped central chunks were padded together as the out-put with equal size to the 

original testing image. A 2D illustration of generating the testing sub-images is presented in 

Fig. 5. Our experiments empirically show that the method keeping only the non-overlapped 

central chunks for the final segmentation performs relatively better than the method 

preserving also the overlapped boundaries. It may be because the prediction for the 

boundaries is less accurate than that for the central parts, considering that the convolutional 

layers contain zero-padding operations.

4. Experiments and analyses

In this section, we first present the experimental settings and the competing methods, and 

then compare the segmentation results achieved by different methods. In addition, we verify 

the effectiveness of each key module of the proposed M 2 EDN via evaluating their influence 

on the segmentation performance.
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4.1. Experimental settings

Following the experimental settings in Park et al. (2016), six subjects with whole-brain 

ground-truth masks were used as the training samples, while the remaining fourteen subjects 

with right- hemisphere ground-truth masks were used as the testing samples.

Using manual annotations as the reference, the segmentation performance of our method 

was quantified and compared with that of other methods using three metrics, i.e., (1) the 

Dice similarity coefficient (DSC), (2) the sensitivity (SEN), and (3) the positive prediction 

value (PPV), defined as

DSC = 2TP
2TP + FP + FN; (2)

SEN = TP
TP+FN; (3)

PPV = TP
TP+FP, (4)

where TP (i.e., true positive) denotes the number of predicted PVS voxels inside the ground-

truth PVS segmentation; scalar FP (i.e., false positive) denotes the number of predicted PVS 

voxels out-side the ground-truth PVS segmentation; scalar TN (i.e., true negative) represents 

the number of predicted background voxels out-side the ground-truth PVS segmentation; 

scalar FN (i.e., false negative) represents the number of predicted background voxels inside 

the ground-truth PVS segmentation.

4.2. Competing methods

We first compared our proposed M 2 EDN method with a base- line method, i.e., a 

thresholding method based on Frangi’s vesselness filtering (FT) (Frangi et al., 1998). Then, 

we also compared M 2 EDN with two state-of-the-art methods, including (1) a traditional 

learning-based method, i.e., structured random forest (SRF) (Zhang et al., 2017a), and (2) 

the original U-Net architecture (Ronneberger et al., 2015). These three competing methods 

are briefly introduced as follows.

1. Frangi’s vesselness filtering (FT) (Frangi et al., 1998): The Frangi’s vesselness 

filtering method proposed in Frangi et al. (1998) is a thresholding method. 

Considering that PVSs mainly spread in the white matter (WM) region (Zong et 

al., 2016), the WM tissue in T2-weighted MR image should be extracted first as 

ROI for reliable vessel detection. Then, all possible thin tubular structures in the 

ROI were detected using Frangi’s filter (Frangi et al., 1998) to generate a 

vesselness map. Finally, voxels in the ROI with higher vesselness than a certain 

threshold were determined as the PVS voxels. Several vesselness thresholds were 
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tested, and the optimal thresholds were obtained for different subjects. More 

details with respect to the segmentation of WM, the definition of ROI, and the 

vesselness thresholding can be found in Park et al. (2016) and Zhang et al. 

(2017a). To summarize, FT does not need any label information, and thus is an 

unsupervised method.

2. Structured random forest (SRF) (Zhang et al., 2017a): The structured random 

forest model using vascular features was implemented to smoothly annotate 

PVSs. More specifically, the ROI for PVS segmentation was defined similarly as 

that for the FT method. Then, for each voxel sampled from the ROI via an 

entropy-based sampling strategy (Zhang et al., 2017a), three different types of 

vascular features based on three filters (i.e., steerable filter (Freeman et al., 

1991), Frangi’s vesselness filter (Frangi et al., 1998), and optimally oriented flux 

(Law and Chung, 2008)) and the corresponding cubic label patches were 

extracted to train a SRF model (with 10 independent trees, each having the depth 

of 20). That is, the SRF method is a supervised method, requiring label 

information for training image patches.

3. U-Net (Ronneberger et al., 2015): It should be noted that the original U-Net is a 

simplified version of the proposed M 2 EDN, without using multi-channel inputs 

and multi-scale feature learning. For fair comparison, the two learning strategies 

(i.e., data resampling, and cost-sensitive learning) introduced in Section 3.2.5 to 

deal with class-imbalanced problem were also applied to the U-Net. Besides, U-

Net and our proposed M 2 EDN share the same size of sub-images in both the 

training and testing procedures.

4.3. Result comparison

The quantitative segmentation results obtained by our M 2 EDN method and the three 

competing methods, on both the train- ing and testing images, are reported in Tables 1 and 2. 

From Tables 1 and 2, we have the following observations. First, com- pared with the 

conventional unsupervised method (i.e., FT) and supervised method (i.e., SRF), two deep 

learning-based methods (i.e., U-Net, and our M 2 EDN method) achieve better results in 

PVS segmentation in terms of three evaluation criteria (i.e., DSC, SEN, and PPV). This 

implies that incorporating feature extraction and model learning into a unified framework, as 

we did in M 2 EDN, does improve the segmentation performance. The possible rea- son 

could be that the task-oriented features automatically learned from data are consistent with 

the subsequent classification model, while the hand-crafted features used in SRF are 

extracted independently from the model learning. Second, the proposed M 2 EDN out- 

performs the original U-Net, mainly due to the use of three key modules in the proposed 

method, i.e., the complementary multi-channel inputs, the multi-scale feature learning 

strategy, and the auto-contextual information provided by the initial PVS probability maps. 

In particular, the proposed M 2 EDN method usually achieves superior SEN values in most 

cases, suggesting that our method can effectively identify PVS regions from those large 

amounts of back- ground regions. Moreover, by comparing results on the training images 

(i.e., Table 1) with those on the testing images (i.e., Table 2), we can also find that the 

proposed M 2 EDN generalizes well in this experiment.
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The corresponding qualitative comparison is presented in Fig. 6. As can be seen, the 

automatic segmentations obtained by the pro- posed M 2 EDN are more consistent with the 

manual ground truth in these examples, especially for the relatively low-contrast PVSs 

indicated by the yellow arrows and ellipses.

4.4. Module analyses

In this subsection, we evaluate the effectiveness of each key module of the proposed M 2 

EDN via assessing their influence on the segmentation performance.

4.4.1. Role of multi-channel inputs—To assess the effectiveness of multi-channel 

inputs, we removed one source of input images, and then trained the mono-channel networks 

in the same way as that for the multi-channel network. Specifically, the quantitative results 

produced by our method using only the original images (denoted as M 2 EDN-O), only the 

pre- processed images (denoted as M 2 EDN-P), and the multi-channel inputs (i.e., M 2 EDN 

using both the original and preprocessed images) are compared in Table 3. It can be found 

from Table 3 that both M 2 EDN-O (using solely the original images) and M 2 EDN-P (using 

solely the preprocessed images) obtain similar overall accuracy (i.e., DSC), where the 

former one and the latter one lead to better SEN and PPV, respectively. On the other hand, M 
2 EDN using both the original and the preprocessed images further improves the 

performance, by effectively combining the complementary information provided by the two 

different channels during the learning procedure.

Two example images segmented via M 2 EDN-O, M 2 EDN-P, and M 2 EDN are visualized 

in Fig. 7, which are consistent with the quantitative results shown in Table 3. From the 

results presented in Table 3 and Fig. 7, we can observe that combining the original image 

with the preprocessed image can effectively improve the automatic annotation, compared 

with the case of using only one in- put image only, e.g., for the regions marked by the yellow 

circles in Fig. 7.

4.4.2. Role of multi-scale features—As one main contribution of this paper, the 

proposed M 2 EDN method extends the original U-Net by including the complementary 

coarse-scale feature extraction steps (i.e., the 2nd-scale feature extraction as shown in Fig. 2) 

in the encoder sub-network. To demonstrate its effectiveness, we removed the 2nd-scale 

feature extraction from the network to form a mono-scale version of the proposed M 2 EDN 

(denoted as M 2 EDN-S). Then, we further increased the depth of M 2 EDN-S (by adding 

additional pooling, convolutional, and up-sampling layer) to ensure that its network 

complexity is comparable to that of M 2 EDN. The architecture of M 2 EDN-S can be found 

in Fig. S1 of the Supplementary Materials. We should note that M 2 EDN-S is still different 

from the original U-Net, since multi-channel inputs are used in M 2 EDN-S. Using the same 

experimental settings, the testing results obtained by M 2 EDN-S are compared with those 

by M 2 EDN in Table 4. As can be seen, the multi-scale feature learning procedure 

effectively improves the overall segmentation performance, especially in terms of SEN and 

PPV, which means that false positive and false negative detections are partially reduced.

As a qualitative illustration, two automatic segmentations produced, respectively, by M 2 

EDN-S and M 2 EDN are visually compared in Fig. 8. Regarding the manual annotation as 
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the reference,we can observe that M 2 EDN leads to more accurate segmentation than M 2 

EDN-S. For instance, the multi-scale feature learning strategy effectively removed false 

negative detections marked by the yellow circles.

It is also worth noting that multi-scale feature learning is beneficial for the original U-Net as 

well, even when we use only the mono-channel input to train the network. Specifically, M 2 

EDN-O introduced in Section 4.4.1 is actually a variant of U-Net using the proposed multi-

scale feature learning strategy. By comparing the results achieved by M 2 EDN-O shown in 

Table 3 with those achieved by the original U-Net shown in Table 2, we can observe that the 

proposed multi-scale feature learning strategy does improve the segmentation performance 

of the original U-Net (i.e., average DSC is increased from 0.72 to 0.73).

Similarly, we can regard M 2 EDN-S as a variant of U-Net that uses multi-channel inputs. 

By comparing the results obtained by M 2 EDN-S shown in Table 4 with those obtained by 

the original U-Net shown in Table 2, we can observe that the multi-channel inputs are also 

beneficial for the original U-Net (i.e., average DSC is improved from 0.72 to 0.74). This 

observation is consistent with the results shown in Table 3 and thus supports our previous 

discussion in Section 4.4.1.

4.4.3. Role of auto-contextual information—In the proposed method, our empirical 

studies show that learning sequential networks in multiple iterations brings few 

improvements with relatively large price. To this end, the auto-contextual information was 

used only once in our experiment, i.e., the initial network was trained using the multi-

channel inputs of the original and preprocessed T2-weighted MR images, and then the 

output probability maps were combined with the input images to train the subsequent 

network as the final M 2 EDN model.

The quantitative testing results obtained by the networks trained with and without the auto-

contextual information are compared in Fig. 9. It can be seen that the use of auto-context 

strategy further refines the average DSC (from 0.76 ± 0.07 to 0.77 ± 0.06). More 

specifically, it makes an adjustment or a compromise between SEN (from 0.70 ± 0.12 to 

0.74 ± 0.12) and PPV (from 0.85 ± 0.06 to 0.83 ± 0.05), to improve the overall segmentation 

performance. Implicitly, the role of the auto-context strategy can be interpreted as to 

improve the output segmentations globally by enhancing the input probability maps (i.e., 

improving true positive detections), though it may bring additional false positives to some 

extent.

As an example, two qualitative illustrations obtained by the proposed method with and 

without the auto-contextual information are shown in Fig. 10, where the yellow arrows and 

the blue circles indicate the refined PVS annotations and additional false positives, 

respectively. We can notice that multiple PVSs with relatively low contrast are detected by 

adding auto-contextual information (indicated by yellow arrows), while few false positive 

detections (indicated by blue circles) are included simultaneously. Overall, the use of auto-

context strategy can improve the segmentation based on the contextual information provided 

by the probability maps.
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4.4.4. Role of balanced data sampling—The proposed method adopts a balanced 

data sampling strategy and an F-measure-based loss function to mitigate the influence of 

class-imbalance challenge on PVS segmentation. As an example to verify its effectiveness, 

we performed another experiment to train our network using sub-images generated on-the-

fly by randomly cropping overlapped chunks from the whole image. Using 6 sub- jects with 

the whole-brain ground truth for training while using the remaining subjects for testing, the 

quantitative testing results obtained by this random sampling strategy was compared with 

those obtained by the balanced sampling strategy. Based on the results presented in Fig. 11, 

we can observe that the balanced data sampling leads to much better quantitative 

performance, especially higher SEN (from 0.67 ± 0.13 to 0.74 ± 0.12 ), i.e., less false 
negatives, than the general random sampling, which reflects the effectiveness of the 

employed data sampling strategy.

5. Discussions

In this section, we present some discussions about the robustness and generalization of the 

proposed method. As a part of our study in the future, we also indicate some limitations and 

open rooms for the current method.

5.1. Network training and generalization

Multiple operations were adopted in this paper to ensure effective training of deep neural 

networks from relatively small-sized data with severe class-imbalance issue. Specifically, an 

F-measure-based cost-sensitive loss was used together with a balanced data sampling 

strategy to deal with the class-imbalance issue. The data sampling strategy could also partly 

mitigate the challenge caused by small-sized data, since a large amount of training sub-

images with considerable diversities can be generated from a single image or the 

corresponding axial-plane-flipped image. The outputs of the initial network were further 

used as an additional input channel for the training of an updated network, considering they 

can provide auto-contextual information to guide the training process to obtain a more 

accurate segmentation model. The quantitative evaluation presented in Fig. 11 has 

demonstrated that the class-imbalance issue was effectively limited by the imbalanced- 

learning strategies. The comparison between the experimental results in the last column of 

Tables 1 and 2 has shown that, overall, the trained networks can be generalized well, as 

comparable segmentation performance can be obtained on both the training and testing 

subjects. Also, the evaluation presented in Fig. 9 has shown that the auto-context strategy 

can help to refine the final segmentation. To further verify the generalization of our trained 

networks, we performed additional evaluations as follows.

First, using 6 subjects with whole-brain ground truth as the training set, we divided the 

remaining 14 subjects as two testing groups by checking if their scanning coils were the 

same as those of the training set. The quantitative segmentation results obtained by U-Net, 

M 2 EDN-O, M 2 EDN-P, M 2 EDN-S, and M 2 EDN on the two testing groups are then 

compared in Fig. 12 (a). We can find that the proposed M 2 EDN has better performance 

than its variants (i.e., M 2 EDN-O, M 2 EDN-P, and M 2 EDN-S) and U-Net on both testing 

groups. In addition, although the proposed method has better segmentation accuracy on the 
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testing images acquired using the same coil as the training images, the difference between 

the two testing groups is not large.

Second, we reversed the data partition to train the networks using 14 subjects that have only 

right-hemisphere ground truth, and then evaluated the trained networks on 6 testing subjects 

with whole-brain ground truth. It is worth noting that this task is relatively challenging, since 

the training set does not contain sub- images from the left hemisphere. In Fig. 12 (b), the 

segmentation performance of the proposed M 2 EDN is compared with that of U- Net, M 2 

EDN-O, M 2 EDN-P, and M 2 EDN-S. It can be found that the proposed method still 

outperforms the original U-Net architecture. In addition, the multi-channel inputs and the 

multi-scale feature learning are still beneficial for the proposed method, as M 2 EDN has 

better performance than its variants (i.e., M 2 EDN-O, M 2 EDN-P, and M 2 EDN-S). On the 

other hand, we should also note that M 2 EDN trained on the whole brain images has better 

performance than that trained on the right hemisphere images. This is intuitive and 

reasonable, given the fact that more comprehensive data has been used for training the 

network in the former case.

The above discussions and evaluations demonstrate that the proposed M 2 EDN generalized 

relatively well in our experiments. In addition, it also indicates that, including more training 

images with wide range of diversity is expected for further improving the performance of the 

proposed M 2 EDN.

5.2. Network architecture

Fully convolutional networks, e.g., U-Net, greatly improve the accuracy of automatic image 

segmentation, mainly due to task-oriented feature learning, encoder-decoder architectures, 

and seamless fusion of semantic and local information. For example, the quantitative 

experimental results presented in Table 2 have shown that U-Net and the proposed M 2 EDN 

can produce more accurate segmentation of PVSs than the traditional learning-based 

methods. Our M 2 EDN extended U-Net by including multi-channel inputs and multi-scale 

feature learning. The analyses presented in Sections 4.4.1 and 4.4.2 have demonstrated that 

these modifications to the original U-Net architecture are beneficial, as more comprehensive 

information regarding PVS and surrounding brain tissues can be extracted to guide the 

training of an effective segmentation network.

Multiple operations have also been used in the literature to re- fine the final segmentations 

produced by deep neural networks. For example, in Kamnitsas et al. (2017), a fully 

connected conditional random field (CRF) was concatenated with multi-scale CNN for 

segmentation of brain lesions. In Chen et al. (2017), the auto-context strategy was used to 

develop sequential residual networks for segmentation of brain tissues. Inspired by the auto-

context model (Tu and Bai, 2010) and similar to Chen et al. (2017), our M 2 EDN 

implemented two cascaded networks, where the outputs of the initial network were used as 

high-level contextual knowledge to train an updated network for more accurate PVS 

segmentation. It is worth noting that, using auto-context and using CRF to refine deep neural 

networks are distinct in principle. The former strategy updates directly the parameters of 

trained networks, which means the image features learned by the intermediate layers are 

further refined with respect to the high-level contextual guidance. However, the latter 
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strategy refines solely the output segmentation, which is independent of the updating of 

trained networks.

5.3. Limitations of current method

While the proposed M 2 EDN obtained competitive segmentation accuracy compared with 

the state-of-the-art methods, there are still some rooms for further improvement.

Fig. 13 presents some typical failed segmentations. (1) The pro- posed method may fail to 

detect PVSs with very low contrast (compared with the adjacent brain tissues), especially 

when the weak PVSs were not effectively enhanced or even removed in the preprocessed 

image (e.g., the first row in Fig. 13). One direct way to overcome such difficulty is to 

adaptively determine the parameters for the tubular structure enhancement method (Hou et 

al., 2017) to pay more attention to these weak PVSs. (2) The proposed method may fail to 

completely detect thick PVSs with inhomogeneous intensities along the penetrating 

direction (e.g., the second row in Fig. 13). Potentially, we may need to find an appropriate 

way to include some connectivity constraints to guide the training of our network. (3) 

Sometimes the proposed method may produce some false positive detections, e.g., the false 

recognition of a separate ventricle part as PVS in the last row of Fig. 13. To reduce such 

kind of false positives, including accurate white matter mask to refine the segmentation is 

needed, considering that PVSs largely exist in the white matter.

While the auto-context strategy could provide high-level contextual guidance to refine the 

final segmentation, it inevitably in- creased the training and testing complexity, as the input 

images should go through at least two cascaded networks. An alternative way to more 

efficiently improve the final segmentation is to localize and focus more on “hard to 

segment” voxels during the iterative training of a single network. In other words, the data 

sampling strategy may be adjusted along the training process to extract more training sub-

images from “hard to segment” regions.

6. Conclusion

In this study, we have proposed a multi-channel multi-scale encoder-decoder network (M 2 

EDN) to automatically delineate PVSs in 7T MR images. The proposed method can perform 

an efficient end-to-end segmentation of PVSs. It adopts the complementary multi-channel 

inputs as well as multi-scale feature learning strategy to comprehensively characterize the 

structural information of PVSs. The auto-context strategy is also used to provide additional 

contextual guidance for further refining the segmentation results. The experimental results 

have shown that the proposed method is superior to several state-of-the-arts. Moreover, the 

proposed M 2 EDN method can be further improved in the future from multiple aspects, e.g., 

(1) it will be valuable to include vesselness maps and connectivity constraints into the 

network to provide additional guidance for further reducing the false negative predictions; 

(2) it will be meaningful to further extend the current multi-scale feature learning strategy to 

enrich the scales of learned features for more comprehensive characterization of the 

structural information of PVSs; (3) it is desirable to collect more subjects with 7T MR 

images to further verify the performance of the proposed method, as well as to develop 

deeper and more discriminative networks for PVS segmentation.
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Fig. 1. 
Illustration of thin and low-contrast PVSs that are manually annotated (i.e., red tubular 

structures) in the T2-weighted MR images. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
The network architecture of the proposed M 2 EDN, which consists of an encoder sub-

network and a decoder sub-network. The symbol denotes the fusion of feature tensors with 

identical resolution. Conv: convolution; ReLU: rectified linear unit; Pool: max pooling.
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Fig. 3. 
An example of the original T2-weighted MR image (at the left-panel) and the processed 

image (at the right-panel) shown in the axial view. The blue circles present the effectively 

enhanced tubular structures via the method proposed in Hou et al. (2017), while the yellow 

boxes show the lost image information, due to the enhancement and denoising procedures. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
An illustration of multi-scale feature learning for a 2D input image (with the size of 12 × 12) 

in the proposed encoder sub-network. For the 1st-level feature extraction, the orange pixel in 

the 1st-scale feature map (top) and the blue pixel in the 2nd-scale feature map (bottom) 

correspond to the 4 × 4 orange region and the 6 × 6 blue region in the input image, 

respectively. Similarly, for the 2nd-level feature extraction, the yellow and purple pixels in 

the 1st- and 2nd-scale feature maps correspond to the 10 × 10 yellow region and the 12 × 12 

purple region in the input image, respectively. That is, at each feature extraction stage, two 

complementarily feature maps are extracted from the identical center regions to characterize 

the input in both a fine scale (i.e., 4 × 4) and a coarse scale (i.e., 6 × 6). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 5. 
A 2D illustration from three different views to describe the procedure of generating the 

testing sub-images. The input image is divided into multiple blue blocks that are overlapped 

with each other. After prediction, only their central chunks with yellow dotted boundaries 

are padded together as the final segmentation of the input image. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 6. 
Illustration of PVS segmentation achieved by four different methods, with each row 

denoting a specific subject. The first column and the last column denote, respectively, the 

original images and the ground truth annotated by experts. The yellow ellipses and arrows 

indicate low-contrast PVSs that can be still effectively detected by the proposed method. 

(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 7. 
Illustration of segmentations obtained by the mono-channel network using the original 

image (i.e., M 2 EDN-O), the mono-channel network using the preprocessed image (i.e., M 2 

EDN-P), and the multi-channel network (i.e., M 2 EDN). The yellow circles indicate 

improved segmentations due to the use of complementary multi-channel inputs. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 8. 
Illustration of segmentations obtained by the proposed method with mono-scale feature 

learning (i.e., M 2 EDN-S) and multi-scale feature learning (i.e., M 2 EDN), respectively. 

The yellow circles indicate that the multi-scale feature learning strategy can effectively 

remove false positive detections produced by M 2 EDN-S. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 9. 
The average (± standard deviation) testing performance, in terms of DSC, SEN, and PPV, 

obtained by the proposed method with or without auto-context information.
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Fig. 10. 
Illustration of segmentations obtained by the proposed M 2 EDN with or without auto-

context information. The yellow arrows and the blue circles indicate, respectively, the 

refined PVS annotations and additional false positives, both due to the use of auto-context 

strategy. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 11. 
The average (± standard deviation) testing performance (in terms of DSC, SEN, and PPV) 

obtained, respectively, by a random sampling strategy and the pro- posed balanced sampling 

strategy.
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Fig. 12. 
(a) The quantitative segmentation performance (in terms of DSC) for the testing images 

acquired using the coils identical to or different from the training images.(b) The 

quantitative testing results (in terms of DSC) obtained by the networks trained using, 

respectively, the images with whole-brain ground truth and the images with right-

hemisphere ground truth.
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Fig. 13. 
Illustration of typical failed segmentations produced by the proposed method. The failed 

segmentations are indicated by yellow arrows. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Table 1

The average (±standard deviation) performance, in terms of DSC, SEN, and PPV, obtained by different 

methods on the training set.

FT SRF U-Net M 2 EDN

DSC 0.51 ±0.05 0.68 ±0.03 0.70 ±0.07 0.77 ±0.04

SEN 0.54 ±0.16 0.66 ±0.05 0.64 ±0.14 0.73 ±0.11

PPV 0.56 ±0.12 0.71 ±0.03 0.81 ±0.07 0.84 ±0.07
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Table 2

The average (±standard deviation) performance, in terms of DSC, SEN, and PPV, obtained by different 

methods on the testing set.

FT SRF U-Net M 2 EDN

DSC 0.53 ±0.08 0.67 ±0.03 0.72 ±0.05 0.77 ±0.06

SEN 0.51 ±0.10 0.65 ±0.04 0.77 ±0.08 0.74 ±0.12

PPV 0.62 ±0.08 0.68 ±0.04 0.70 ±0.10 0.83 ±0.05
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Table 3

The average (±standard deviation) testing performance, in terms of DSC, SEN, and PPV, obtained by the 

mono-channel and multi-channel M 2 EDN. M 2 EDN-O and M 2 EDN-P denote, respectively, the mono-

channel M 2 EDN using solely the original images and solely the prepro- cessed images.

M 2 EDN-O M 2 EDN-P M 2 EDN

DSC 0.73 ±0.04 0.72 ±0.09 0.77 ±0.06

SEN 0.78 ±0.09 0.67 ±0.14 0.74 ±0.12

PPV 0.71 ±0.10 0.81 ±0.06 0.83 ±0.05
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Table 4

The average (±standard deviation) performance, in terms of DSC, SEN, and PPV, obtained by the mono-scale 

feature learning strategy (i.e., M 2 EDN-S) and multi-scale feature learning strategy (i.e., M 2 EDN) for the 

eleven testing images.

M 2 EDN-S M 2 EDN

DSC 0.74 ±0.08 0.77 ±0.06

SEN 0.70 ±0.13 0.74 ±0.12

PPV 0.81 ±0.06 0.83 ±0.05

Med Image Anal. Author manuscript; available in PMC 2019 March 22.


	Abstract
	Introduction
	Related work
	Materials and method
	Materials
	Method
	Network architecture
	Multi-channel inputs
	Multi-scale feature learning
	Auto-contextual information
	Imbalanced learning
	Implementations


	Experiments and analyses
	Experimental settings
	Competing methods
	Result comparison
	Module analyses
	Role of multi-channel inputs
	Role of multi-scale features
	Role of auto-contextual information
	Role of balanced data sampling


	Discussions
	Network training and generalization
	Network architecture
	Limitations of current method

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Table 1
	Table 2
	Table 3
	Table 4

