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Abstract

Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) has risen to the 

cutting edge of medical imaging technology as it allows simultaneous acquisition of structural, 

functional and molecular information of the patient. A PET insert that can be installed into 

existing MR systems can in principle reduce the cost barriers for an existing MR site to achieve 

simultaneous PET/MRI compared to procuring an integrated PET+MRI system. The PET insert 

systems developed so far for PET/MRI require the RF transmitter coil to reside inside the PET 

ring as those PET inserts block the RF fields from the MRI system. Here we report for the first 

time on the performance of a full-ring brain-sized “RF-penetrable” PET insert we have recently 

completed. This insert allows the RF fields generated by the built-in body coil to penetrate the 

PET ring. The PET insert comprises a ring of 16 detector modules employing electro-optical 

coupled signal transmission and a multiplexing framework based on compressed sensing. Energy 

resolution, coincidence timing resolution (CTR), photopeak position, and coincidence count rate 

were acquired outside and inside a 3-Tesla MRI system under simultaneous acquisition to evaluate 

the impact of MRI on the PET performance. Coincidence count rate performance was evaluated by 

acquiring a cylinder source with high initial activity decaying over time. Tomographic imaging of 

two phantoms, a custom 6.5-cm diameter resolution phantom with hot rods of four different sizes 

(2.8 mm, 3.2 mm, 4.2 mm, and 5.2 mm diameter) and a 3D Hoffman brain phantom, were 

performed to evaluate the imaging capability of the PET insert. The energy resolution at 511 keV 

and CTR acquired by the PET insert were 16.2±0.1% and 5.3±0.1 ns FWHM, respectively, and 

remained stable during MRI operation except when the EPI sequence was applied. The PET 

system starts to show saturation in coincidence count rate at 2.76 million photon counts per 

second. Most of the 2.8-mm diameter hot rods and main features of the 3D Hoffman brain 

phantom were resolved by the PET insert, demonstrating its high spatial resolution and capability 

to image a complex tracer distribution mimicking that seen in the human brain.
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I. INTRODUCTION

COMBINING medical imaging modalities that measure complementary, multi-parametric 

information about a patient’s disease, such as anatomical and functional information in one 

study session has been proven to be of tremendous clinical value. For example, literature has 

shown that combining positron emission tomography (PET)/computed tomography (CT) 

improves staging and re-staging accuracies for major cancers by an average about 10% – 

15% compared to using the two modalities separately [1].

Hybrid PET/magnetic resonance imaging (MRI) has recently risen to the cutting edge of 

medical imaging technology as it allows simultaneous acquisition of structural, functional 

and molecular information of the patient. Combining PET and MRI also offers several 

advantages over PET/CT. First, MRI provides better soft-tissue contrast than CT, making it a 

superior modality in imaging regions like brain [2], [3], head and neck [4], breast [5], liver 

[6], and pelvis [7], [8]. Second, unlike CT, MRI does not introduce ionization radiation. A 

recent study has shown that whole-body PET/CT scanning is accompanied by substantial 

radiation dose and cancer risk, with the CT component contributing between 54%–81% of 

the total combined dose [9]; in principle, this can be avoided by using MRI instead of CT to 

acquire anatomy information. This significant reduction of radiation dose can make 

PET/MRI a preferred modality for pediatric patients [10] and those requiring repeat studies. 

Third, unlike PET/CT, in which the two image sets are acquired sequentially, PET/MRI can 

be acquired simultaneously, allowing optimal temporal and spatial co-registration of the two 

data sets and correction of the patient motion observed in PET images based on timeresolved 

MRI images [11], which can improve the image quality, especially for cardiac imaging [12].

The challenges and different approaches to combine PET and MRI have been extensively 

reviewed in previous literature [13]–[22]. One approach to combine PET and MRI for 

simultaneous acquisition is to integrate PET and MRI into a single “PET+MRI” system, 

which is used in both commercial wholebody PET/MRI systems (Siemens Biograph mMR 

[23] and GE SIGNA PET/MR [24]). A single integrated system can in principle provide the 

best software and hardware integration, which has benefits regarding the clinical workflow. 

However, the huge investment to purchase both PET and MRI subsystems as well as make 

necessary room renovation has deterred most care providers from procuring an integrated 

PET+MRI system, limiting growth of the field.

The other approach is to develop an insertable PET system that can be installed into an MRI 

system to achieve simultaneous PET/MRI. The insert approach can in principle significantly 

lower the above-mentioned cost barriers for an existing MRI site to achieve simultaneous 

PET/MRI as it avoids the expensive integration and installation of both PET and MRI sub-

systems. Several PET insert systems for PET/MRI have been developed for proof-of-concept 

[25], [26], imaging small animals [27]–[36] and human brains [37]–[40]. A separate bird-
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cage radio-frequency (RF) transceiver coil is often placed inside the PET ring to generate 

and receive RF fields as the Faraday cages used in these PET insert systems block the RF 

fields from the MRI system. This configuration results in less uniform RF transmit fields 

compared to using the built-in body coil as the RF transmitter [41].

A common clinical practice of head MRI is to use MRI built-in body coil as the RF 

transmitter and a local receiveonly multi-channel head coil as the RF receiver to achieve 

better sensitivity, and hence, signal-to-noise ratio (SNR) of the reconstructed MR images 

[42]. A multi-channel head coil also enables parallel imaging techniques to accelerate image 

acquisition [43]. To achieve this coil configuration (body coil transmit and head coil receive) 

with the insert approach for PET/MRI, the installed PET insert system has to be 

“RFpenetrable” to allow the RF fields from the body coil to penetrate through the PET insert 

and reach the subject. Our group has been working on such an “RF-penetrable” brainsized 

PET insert system.

In our previous work, we have reported the performance with just 2 PET detector modules, 

including details of the components used [44], and a compressed sensing multiplexing 

readout scheme for the detectors [45]. With the full-ring (16 detector modules) system 

completed, we have studied the impact of the PET insert on the MR performance [46]. We 

have also successfully acquired simultaneous PET and MRI images by using the body coil 

as both RF transmitter and receiver, demonstrating the “RF-penetrability” of the full-ring 

PET insert system (the RF fields had to enter inside and exit out of the PET ring) [47]. In 

this work, we present, for the first time, an evaluation of important system performance 

parameters for the full 16 detector ring insert system.

II. MATERIALS AND METHODS

A. RF-penetrable PET insert

In brief, the prototype PET insert comprises 16 PET detector modules arranged in a 32 cm 

inner diameter ring with 1 mm inter-modular gaps (Fig. 1A) to allow the RF fields to leak in 

uniformly. Each detector module is encased in a copper Faraday cage with 1/2 oz (≈ 17 μm 

thick) copper plating (Fig. 1B) and comprises a 2×4 tiling configuration of arrays of 4×4 

lutetium-yttrium-orthosilicate (LYSO) scintillation crystal elements (3.2 × 3.2 × 20 mm3) 

one-to-one coupled to earlygeneration silicon photomultiplier (SiPM) photodetector arrays 

(Fig. 1C, ArraySM-4 manufactured in 2008 by SensL, Cork, Ireland). The axial field-of-

view (FoV) of the prototype PET insert is 2.8 cm. The signals of the 128 SiPM pixels in 

each of the 16 PET detector modules are multiplexed down to 16 output channels using a 

framework based on compressed sensing [45], [48], [49]. To electrically decouple the PET 

system from the MR system, the resulting electrical signals from the SiPM are converted 

into near infrared analog optical signals using non-magnetic vertical cavity surface-emitting 

lasers (VCSELs) (Fig. 1D) [50]. The 256 (16 × 16) analog optical signals are transmitted 

from inside the MRI bore through 20 meter length optical fibers to the data acquisition 

system residing in the adjacent control room [51].

In our previous study of just two modules [44], we have seen a loss of counts in the PET 

detectors due to a small SiPM bias voltage droop during MRI operation when the RF pulses 
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were applied. A new 16-channel SiPM bias voltage regulator module has since been 

developed to address this issue (Fig. 2). The design of the regulator module is based on a 

linear regulator (LT3013B, Linear Technology) with multiple stages of low-pass filter to 

reduce potential RF interference. The bias voltage to each of the 16 PET detector modules 

can be adjusted individually to optimize PET performance. The 16 outputs of the voltage 

regulator module are arranged in a circular pattern (see Fig. 2A) next to the PET ring 

matching the arrangement of the PET detector modules so that short (25-cm) cables can be 

used for connection (Fig. 2C) without crossing each other. This circular design further 

reduces potential sources of RF interference as long cables can act as antennas or form loops 

when crossed, which can pick up RF noise. The voltage regulator is also encased in a copper 

Faraday cage fabricated with a similar method as used for the PET detector modules (Fig. 

2B).

A custom 8-channel receive-only phased array coil has been developed to be placed inside 

the PET detector ring for better MRI sensitivity (Fig. 3). More details about the construction 

of the coil and the comparison of its performance to a custom bird-cage transceiver coil, 

which is used in most other PET inserts, can be found in our previous work [52].

B. PET performance evaluation

1) Energy and coincidence timing resolution: Coincidences were acquired with a 

400 μCi 68Ge point source placed at the iso-center of the PET insert system to determine the 

energy and coincidence timing resolution (CTR). To correct for the difference in light output 

of the scintillators and gain of SiPMs, the photopeak in the energy spectrum acquired by 

each scintillator crystal and SiPM pixel was first normalized by multiplying a scale factor to 

each of the energy spectra from 2,048 pixels in the system to align the photopeak position. 

The normalized energy spectra from 2,048 pixels were then summed to plot the global 

energy spectrum for the system. The saturation effect of the SiPM was not corrected in this 

work. Energy resolution of the system was reported as the FWHM of the Gaussian curve 

fitted to the 511 keV photopeak in the global energy spectrum. To obtain the CTR, an energy 

window of 410 keV to 610 keV (approximately 2 × FWHM energy resolution centered at 

511 keV) was applied to the acquired events before plotting the global coincidence timing 

spectrum. The CTR was reported as the FWHM of the Gaussian curve fitted to the energy-

gated global coincidence timing spectrum.

2) Coincidence count rate: Total coincidence count rate performance of the system 

was evaluated by acquiring a cylinder source (1 milliliter 18F-FDG solution in a 5-milliliter 

syringe) placed at the isocenter of the system. Randome and scatter corrections were not 

applied in this experiment. The acquisition started with an initial activity of ≈7 mCi, which 

saturated the system, and continued until the activity decayed to background level. A 

coincidence window of 40 ns was implemented in the data acquisition system firmware. No 

energy-gating was applied beside the triggering threshold.

3) System performance stability: The stability of the PET system was evaluated by 

measuring energy resolution, CTR, 511 keV photopeak position and coincidence counts 

within the photopeak every minute over 2 hours with the experimental setup described in the 
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previous sub-section, and the same analysis method was used to determine the energy 

resolution and CTR. The PET system was powered and warmed up for 1.5 hours to reach 

thermal equilibrium with the ambient environment before the experiment.

4) Tomographic imaging: Two phantoms were used to evaluate the image quality 

acquired by the PET insert system. The images were acquired with the phased array head 

coil inside the PET ring.

a) Spatial resolution phantom:  A custom 3D-printed 6.5cm diameter resolution 

phantom (Fig. 4, left) was fabricated from plastic (3D Systems VisiJet M3 clear) [53]. The 

phantom was printed with hot rods of four different sizes (2.8 mm, 3.2 mm, 4.2 mm, and 5.2 

mm diameter) in a cold background, as well as 4.2-mm cold rods in a hot background. A 

normalization phantom was also fabricated, consisting of a uniform hot cylinder with the 

same outer dimensions as the resolution phantom (Fig. 4, right). The similar linear 

attenuation coefficients of water and plastic at 511 keV enable normalization scans of this 

phantom to also be used for attenuation correction. The resolution phantom was filled with ≈ 
300 μCi (≈ 11.9 μCi/ml activity concentration). The normalization phantom was filled with 

≈ 270 μCi (≈ 2.3 μCi/ml activity concentration). Approximately 33 and 36 million prompt 

coincidences were acquired and used in image reconstruction for resolution phantom and 

normalization phantom, respectively.

PET resolution phantom images were reconstructed using 3D list-mode OSEM (ordered 

subset expectation maximization) implemented on a GPU (graphics processing unit) [54]. 

Reconstruction was run with 10 subsets for 15 iterations, using 1.0 mm (x) × 1.0 mm (y) × 

1.0 mm (z) voxels. An energy window of ≈ 410–610 keV and a coincidence time window of 

10 ns were used. No scatter and random corrections were applied to this data set.

b) 3D Hoffman brain phantom:  A 3D Hoffman brain phantom was acquired to evaluate 

the capability of the PET insert system to image a complex tracer distribution [55]. The 

Hoffman brain phantom was filled with ≈ 1.57 mCi (≈ 1.3 μCi/ml activity concentration). 

Approximately 62 million prompt coincidences were acquired and used in image 

reconstruction. A normalization scan was acquired by imaging a uniform cylinder phantom 

with an inner diameter of 20.4 cm and a height of ≈ 3 cm, filled with ≈ 3.3 mCi (≈ 3.3 

μCi/ml activity concentration), for 2 hours. Hoffman brain phantom images were 

reconstructed with 5 iterations and 10 subsets, using 1.0 mm × 1.0 mm × 2.0 mm voxels. 

The same energy and time window were used as described in the previous section. Random 

coincidences correction was performed by subtracting the counts acquired in the delayed 

coincidence window [56]. No scatter correction was applied to this data set.

5) PET system performance under simultaneous MR operation: PET 

performance was evaluated inside a 3-Tesla MRI system (GE Healthcare Discovery MR750) 

under simultaneous MR operation (Fig. 5). Three common clinical MR pulse sequences 

were used: GRE (gradient echo), FSE (fast spin echo), and EPI (echo planar imaging). 

Table. I summarizes the parameters of the three MR pulse sequences.
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The analog optical signal output of a VCSEL in the PET detector module (Fig. 1D) was 

captured by a digital storage oscilloscope (Agilent DSO90254A) triggered by the MR RF 

pulses to directly observe the impact of RF pulses on the PET output waveforms.

Using a similar point-source experimental setup and the same analysis method as described 

in section II-B3, energy resolution, CTR, 511 keV photopeak position, and coincidence 

counts within the photopeak were measured every minute for 10 minutes under continuous 

operation of different MR pulse sequences.

III. RESULTS

A. Energy and coincidence timing resolution

Fig. 6 shows the global energy and coincidence timing spectra acquired by the 256-channel 

RF-penetrable PET insert system. The energy resolution at 511 keV and CTR of the system 

are 16.2 ± 0.1% and 5.3 ± 0.1 ns FWHM, respectively. The errors reported in both spectra 

correspond to the standard deviation over 5 separate measurements.

B. Coincidence count rate

Fig. 7 shows the theoretical and measured coincidence count rate performance of the PET 

insert system with increasing activity. The theoretical coincidence count rate is derived by 

fitting the linear region of the coincidence count rate measured at low activity, resulting in an 

estimated coincidence sensitivity of 1.7% for this prototype PET system. The measured 

coincidence count rate started to deviate from the linear theoretical coincidence count rate at 

2.2 mCi or 2.76 Mcps (million counts per second) and approached a peak value of 4 Mcps.

C. System performance stability

Fig. 8 shows the waveforms of the output signal from a VCSEL in the PET detector module 

during the MR RF pulse sequences before (A) and after (B–D) implementing the new SiPM 

bias voltage regulator module (Fig. 2). Without the voltage regulator module, the SiPM bias 

power supply drooped during the period when RF pulses were applied, which lowered the 

gain of the SiPM devices [44]. This issue was resolved after implementing the voltage 

regulator module (B–D of Fig. 8).

The left panel of Fig. 9 shows the CTR, photopeak position, energy resolution, and 

coincidence counts within the photopeak window measured every minute for 2 hours outside 

the MRI system. The right panel of Fig. 9 shows the same performance metrics acquired 

under continuous application of three different MR sequences, each for 10 minutes. Table II 

summarizes the mean and maximum difference of each performance metric over the 

measurement period acquired outside and inside MRI under the different RF pulse 

sequences. The maximum differences of CTR, photopeak position, energy resolution, and 

coincidence photopeak counts acquired outside MRI are 0.08 ns, 0.008, 0.38%, and 0.05M, 

respectively, showing that the performance of the PET insert system was stable during the 2-

hour measurement. The performance of the PET insert was stable during the 10-minute 

periods the FSE and GRE sequences were applied and was comparable to the performance 

measured without applying any RF pulses (B0 only). However, by the end of the 10-minute 
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EPI sequence, the CTR increased from 5.1 ns to 5.8 ns, the normalized photopeak position 

shifted toward a lower value by 15%, the energy resolution at 511 keV increased from 

16.2% to 30.0%, and the photopeak count decreased from 2.38M to 2.07M (-13%).

D. Tomographic imaging

1) Spatial resolution phantom: Fig. 10 shows the dimensions and the reconstructed 

images of the custom 3D-printed resolution phantom. All 3.2-mm diameter hot rods and 

most of the 2.8-mm diameter hot rods can be resolved.

2) 3D Hoffman brain phantom: Fig. 11 shows a preliminary reconstructed image of 

the 3D Hoffman brain phantom, demonstrating the capability of the PET insert to image a 

complex tracer distribution mimicking that seen in the human brain. At the desired 1×1×2 

mm3 image resolution, the image quality is limited by low statistics (62 million prompt 

coincidences), owing to the low photon sensitivity for the 2.8 cm PET axial FOV.

IV. DISCUSSION

Compared to the results acquired with 2 detector modules [45], the energy resolution (16.2 

± 0.1%) and CTR 5.3 ± 0.1 ns) of the full ring 16 detector module system degraded by 0.8% 

(in absolute percentage) and 0.8 ns, respectively. This degradation is expected as the system 

scales up due to larger variation in performance (e.g. SiPM gain) across a larger number of 

electronic components. Additional timing jitter can also be added to the system as additional 

electronic components are required to synchronize multiple detector modules. Factors 

limiting the CTR have been studied in our previous work [45].

The coincidence count rate of the PET system starts to show saturation at 2.76 Mcps 

resulting from a 2.2 mCi cylinder source with negligible tissue absorption placed at the 

isocenter of the system. This result indicates that the coincidence count rate performance of 

the PET system is sufficient for typical PET brain scans, which typically have lower than 2 

mCi activity distributed in the brain in addition to more photon attenuation than the syringe 

phantom used in this study [57], [58]. The coincidence count rate of the PET system 

approached a peak value of 4 Mcps, which is mainly limited by the 1 Gigabit Ethernet 

between the data acquisition system and the workstation (4 Mcps × 240 bits per event = 0.96 

Gigabit per second). If required, the count rate performance of the PET insert system can be 

easily improved by upgrading the Ethernet protocol to, for example, 10 Gigabit Ethernet.

The voltage regulator module was not properly shielded in our previous work [44], causing 

the bias voltage to the SiPMs to drop when MR RF pulses were applied (Fig. 8A). As a 

result, the coincidence count rate dropped by 3.9% and 11.4% during the GRE and FSE 

pulse sequences, respectively, as the drop in SiPM bias voltage causes some of the original 

photopeak events to occur outside the energy window. The new voltage regulator with 

multiple stages of low-pass filter placed inside a Faraday cage (Fig. 2) remedied this issue 

(Fig. 8B–D). The fact that there is no change to the analog PET detector pulses or noise 

floor with RF pulses demonstrated using actual oscilloscope waveforms is perhaps the 

strongest evidence to support any claim that PET detectors are free of interference from the 

MR system in a PET/MR system. No drop of coincidence count rate was observed during 
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the GRE and FSE sequences after implementing the new voltage regulator module (Fig. 9, 

right).

The energy resolution, CTR, and photopeak count rate remain stable under continuous 

application of FSE and GRE sequences for 10 minutes and are comparable to those 

measured without RF pulses (Fig. 9, right). The difference between the maximum and 

minimum values of photopeak position and energy resolution are larger when FSE and GRE 

sequences are running than that measured without RF pulses running, which can be due to 

the slight temperature increase of the detectors due to pulse sequence-induced eddy current. 

The slightly better CTR acquired (4.9 ns vs. 5.3 ns) and higher normalized photopeak in the 

MRI than outside MRI are due to lower ambient temperature of the magnet room. This 

demonstrates that sufficient shielding effectiveness of the Faraday cages and modifications 

to the power cables and the voltage regulators prevent PET detectors from picking up RF 

interference from the MRI. The impact of operating PET electronics on the MRI 

performance has been studied and reported in our previous work [46].

However, the energy resolution and CTR degraded gradually during the 10-minute EPI 

sequence. A downward shift of photopeak was also observed as the scan progressed. As a 

result, it causes the loss of photopeak counts as some events shifted out of the energy 

window. This degradation is mainly due to the eddy currents induced in the Faraday cages 

when the gradient-intensive EPI sequence was applied, which heats up the detector module 

and the SiPMs, causing the gain of the SiPMs to drop and the dark counts to increase. A new 

Faraday cage design made with phosphor bronze mesh is expected to reduce eddy current 

generation while maintaining high shielding effectiveness [59]. We are also implementing 

active liquid cooling of the detectors to further mitigate effects of any remaining gradient 

heating.

Most of the hot rods with 2.8 mm diameter can be resolved in the reconstructed resolution 

phantom image (Fig. 10). This result is also in par or better than that reported by Hong, et. 

al. [38], who have demonstrated the capability to resolve 3.5-mm diameter hot rods with 

their brain-sized PET insert for PET/MRI, which uses slightly smaller crystal elements (3.0 

mm instead of 3.2 mm used in this work). These results demonstrate the superior spatial 

resolution that can be achieved with a brain-dedicated system using smaller crystal elements 

compared to commercial integrated whole-body PET/MRI systems that achieve 4–5 mm 

spatial resolution [23], [60].

Main features of the 3D Hoffman brain phantom can be seen in Fig. 11, demonstrating the 

capability of the PET insert to image a complex tracer distribution. However, there is some 

room for improvement. First, the top and bottom edges of the reconstructed Hoffman brain 

phantom image show unusual activity that is higher than other regions (Fig. 11). This artifact 

may be due to problems with using a uniform cylinder phantom for normalization and 

attenuation correction [61], which will likely be mitigated by using an annulus source 

configuration instead of a cylinder [62]. Second, applying scatter correction to the data set 

can further improve image quality (e.g. contrast) and accuracy. A Monte Carlo-based scatter 

correction [63] is under development for the PET insert. Finally, the short axial field-of-view 

(2.8 cm) and low sensitivity of the system limit the photon statistics, and hence the SNR of 
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the reconstructed image. This can be improved by extending the axial field-of-view and 

improving the timing resolution to enable time-of-flight measurement to increase effective 

sensitivity [64]. Based on our previous work [45], the timing resolution of the system can be 

improved by using state-of-the-art SiPM technology with higher photo detection efficiency, 

reading out the SiPM without multiplexing to preserve the SNR, and increasing the 

bandwidth of the readout circuits. The impact of MRI measurement on PET images has been 

studied in our previous work [47].

V. CONCLUSIONS

We have developed and evaluated the performance of a radio-frequency field-penetrable 

PET insert for simultaneous PET/MRI. The PET insert studied in this work comprises a full 

ring of 16 detector modules employing electro-optical coupled signal transmission and a 

multiplexing framework based on compressed sensing. A receive-only phased array head 

coil has been developed and integrated with the PET insert. The system energy resolution at 

511 keV and coincidence timing resolution acquired by the PET insert are 16.2 ± 0.1% and 

5.3 ± 0.1 ns, respectively. The coincidence count rate capability of the PET insert, which 

starts to show saturation at 2.76 Mcps, is sufficient for typical brain PET scans. A voltage 

regulator module mitigated the RF interference and photopeak count loss during MR RF 

pulses. The performance of the PET insert is stable both outside and inside the MR system 

during simultaneous PET and MR operation except when the EPI sequence was applied, 

where eddy currents induced in the Faraday cages heated up the detector modules, degrading 

the PET performance. The PET insert can resolve 2.8-mm diameter hot rods. Main features 

of a 3D Hoffman brain phantom can be resolved by the PET insert, demonstrating its 

capability to image a complex tracer distribution mimicking that seen in the human brain. 

Simultaneous PET/MR imaging studies with the MR images acquired by using the body coil 

as the RF transmitter and the head coil as the receiver are the subject of current and future 

work.
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Fig. 1. 
(A) RF-penetrable PET insert. (B) PET detector Faraday cage with optical fibers exiting the 

end. Inside the cage is the (C) electro-optical PET detector module comprising 128 LYSO 

scintillation crystal elements covering 2.8-cm axial FoV each coupled one-to-one to SiPM 

pixels multiplexed to 16 optical signal transmission channels. (D) Optical fiber launchers 

each containing two non-magnetic vertical cavity surface emitting lasers (VCSELs).
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Fig. 2. 
16-channel voltage regulator module for SiPM bias arranged in a circular pattern (A) and 

encased in a Faraday cage (B), which allows using short (25-cm) SMA cables for power 

connection.
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Fig. 3. 
A custom 8-channel receive-only phased array coil (right) was integrated into the PET ring 

(left).
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Fig. 4. 
(Left) A custom 3D-printed 6.5-cm diameter resolution phantom comprising hot rods of 

different diameter (2.8 mm, 3.2 mm, 4.2 mm, and 5.2 mm) and 4.2-mm cold rods. (Right) 

The uniform cylinder phantom used for the normalization scan.
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Fig. 5. 
PET insert on the patient bed of a 3T MRI system. The insert is powered with batteries and 

connected to the data acquisition system with 20 m length optical fibers. The data 

acquisition system resided in the adjacent control room.
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Fig. 6. 
Global energy (left) and coincidence timing spectra (right) acquired by the RF-penetrable 

PET insert system.
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Fig. 7. 
Theoretical (black) and measured (red) coincidence count rate acquired with a cylinder 

source decaying over time. The measured coincidence count rate deviates from the 

theoretical coincidence count rate when the activity (coincidence count rate) is larger than 

2.2 mCi (2.76 Mcps).
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Fig. 8. 
Waveforms of the output of a VCSEL in the PET detector module captured by a high 

performance digital storage oscilloscope synchronized to the RF trigger of the MRI system. 

(A) Waveform captured without the SiPM bias voltage regulator module during FSE 

sequence (adapted with permission from [44]). (B–D) Waveforms captured after 

implementing the voltage regulator module during FSE (B), GRE (C), and EPI (D) 

sequences. X-axis unit: 1 ms/interval. Y-axis unit: 50 mV/interval in (A) and 100 mV/

interval in (B–D) (VCSEL output) and 1 V/interval (MRI RF pulse). The fact that there is no 

change to the analog PET detector pulses or noise floor with RF on or off as seen on 

oscilloscope waveforms is perhaps the strongest evidence to support the claim that the PET 

detectors are free of interference from the MR system.

Chang et al. Page 22

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Coincidence timing resolution (CTR), normalized 511 keV photopeak position, energy 

resolution, and photopeak counts of the RF-penetrable PET insert system measured over a 

period of two hours outside the MRI system (left) and inside the MRI system (right). For the 

measurement performed inside the MRI system, typical MRI pulse sequences were applied, 

each continuously for 10 minutes. (FSE: Fast spin echo; GRE: Gradient echo; EPI: Echo 

planar imaging)
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Fig. 10. 
Dimensions and reconstructed images of the custom 3D-printed resolution phantom (unit: 

mm).
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Fig. 11. 
Reconstructed image of 3D Hoffman brain phantom.
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Table I

PARAMETERS OF THE MRI PULSE SEQUENCES USED IN THIS STUDY.

Sequence TR
(ms)

TE
(ms)

Voxel size
(mm3)

Matrix size Readout bandwidth
(Hz/Px)

Flip angle
(degree)

GRE 3000 71 0.86 × 0.86 × 4.00 256 × 256 × 5 244.141 90

FSE 500 5 0.86 × 0.86 × 4.00 256 × 256 × 5 122.109 90

EPI 2000 30 3.44 × 3.44 × 4.00 64 × 64 × 5 7812.5 90
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Table II

SUMMARY OF THE STABILITY MEASUREMENTS ACQUIRED OUTSIDE AND INSIDE MRI.

MR condition
CTR Photopeak position Energy resolution Photopeak count

Mean (ns) Max.−Min. (ns) Mean Max.−Min. Mean (%) Max.−Min. (%) Mean Max.−Min.

Outside MRI 5.25 0.08 0.96 0.008 16.0 0.38 2.36M 0.05M

B0 only 4.93 0.03 1.00 0.005 14.7 0.25 2.35M 0.02M

GRE 5.07 0.02 0.99 0.012 15.2 0.44 2.38M 0.05M

FSE 4.91 0.05 0.99 0.018 15.0 0.59 2.36M 0.04M

EPI 5.29 0.69 0.92 0.144 21.7 13.75 2.23M 0.31M
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