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There is a rich history of neural progenitor transplantation for repair of the injured central 

nervous system (Anderson, Howland, & Reier, 1995; Bonner & Steward, 2015; Jakeman & 

Reier, 2015; Lane, Lepore, & Fischer, 2017; Lu, 2017; Nori, Nakamura, & Okano, 2017; 

Tetzlaff et al., 2011). Sugar and Gerard (1940) were among the first to transplant developing 

spinal cord tissue into the injured adult spinal cord to facilitate repair, albeit with limited 

efficacy. In the 1980’s Reier and colleagues at the University of Florida extended this work 

to show that transplantation of embryonic spinal cord tissues promoted repair and functional 

recovery following experimental spinal cord injury (SCI) in mice, rats, and cats (Reier et al., 

2002). This work was eventually then translated for a small clinical study in patients 

undergoing surgery for post-traumatic syringomyelia—the first study of its kind in people 

with SCI (Reier, 2004; Thompson et al., 2001; Wirth et al., 2001). This prompted subsequent 

studies that transplanted stem cell derived neural precursor cells into the injured spinal cord, 

and led to the first FDA approved stem cell trial in the United States.

Initial studies by Reier and colleagues also began to characterize the cytoarchitecture of 

transplanted tissue to determine how transplanted tissues were able to promote repair and 

restore tissue continuity (Eng, Reier, & Houle, 1987; Giovanini, Reier, Eskin, Wirth, & 

Anderson, 1997; Horner, Reier, & Stokes, 1996; Jakeman et al., 1989; Stokes & Reier, 1991; 

White et al., 2010). The transplanted tissue was shown to produce a heterogeneous mix of 

mature neurons and glia, become vascularized (Giovanini et al., 1997; Horner et al., 1996), 

and retained its capacity to produce spinal cord morphology (Jakeman et al., 1989; White et 

al., 2010) as it matured within the injury site. Within donor neurons alone there is a vast 

range of spinal interneuronal precursors that have wide ranging excitatory, modulatory, or 

inhibitory functions. Small, tightly packed populations of donor neurons that are 

morphologically comparable to the substantia gelatinosa of the mature dorsal horn (Jakeman 
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et al., 1989; White et al., 2010), have been found to be derived from the dorsal (alar) region 

of the developing spinal cord (White et al., 2010). Donor cells from this region have since 

also been shown to be innervated by the appropriate host cell axons over time (Dulin et al., 

2018). Donor tissues derived from the developing ventral (basal) spinal cord resulted in quite 

unique donor morphology, with higher levels of myelin (White et al., 2010). However, with 

this heterogeneity comes the caveat that not all donor components are beneficial for 

functional improvement, and some recovery may in fact be limited if the wrong donor 

source is used (White et al., 2010). With this in mind, there has been a growing interest in 

interneuronal phenotypes that exist within donor tissues, and which may be optimal for 

transplantation.

Building on the early studies transplanting developing spinal cord tissues, Fischer and 

colleagues at Drexel University extended this work to culture embryonically derived spinal 

tissues to select for neuronal and glial restricted progenitors (excluding extracellular matrix 

and vascular endothelial cells, among other cellular components). Like the tissue transplants, 

cultured neural progenitors restored tissue continuity and enhanced repair. But an important 

consideration is that preparing tissue in this more clinically relevant way may also alter their 

developing neuronal phenotype (Zholudeva, Iyer, et al., 2018a).

Spinal interneurons (SpINs) and their roles in the development of neural circuits, as well as 

their neuroplastic and therapeutic potential following SCI and disease, are of growing 

interest within the neurosciences (Zholudeva, Qiang, et al., 2018b). Ventrally derived 

developing spinal cord is typically considered to comprise neurons with motor functions, 

while dorsal tissue is more closely associated with sensory functions (Lu, Niu, & Alaynick, 

2015). For this reason, and due to the potentially more limited efficacy seen with 

transplantation of dorsally derived donor tissues, there is growing interest in ventrally-

derived phenotypes for spinal cord repair (Brock, Graham, Staufenberg, Im, & Tuszynski, 

2018; Spruance et al., 2018; Zholudeva, Iyer, et al., 2018a).

The cover image shows developing rat spinal cord tissue (embryonic day 13.5) that has been 

transplanted into the injured adult rat spinal cord. The image was taken from a histological 

section collected through the donor tissue, 3 days after transplantation. This transplanted 

tissue is rich with developing spinal interneurons (SpINs), which are key cellular elements 

for neuroplasticity after injury. One subtype of SpINs—the V2a SpINs—is 

immunohistochemically labeled with a transcriptional factor Chx10 (red), while nestin 

(green) stains immature neural tissue. This image was inspired by the explosion in research 

of V2a SpINs in neural development, plasticity and repair, and our hypothesis that these 

cells could be one of the beneficial elements for repair. The V2a SpINs have gained attention 

as an excitatory, pre-motor interneuron that might contribute to improved motor function in 

pre-clinical models of injury (traumatic SCI) or disease (amyotrophic lateral sclerosis; 

ALS), and can be generated from stem cell populations (Butts et al., 2017; Iyer, Huettner, 

Butts, Brown, & Sakiyama-Elbert, 2016). They have been shown to contribute to anatomical 

(Zholudeva, Karliner, Dougherty, & Lane, 2017) and functional (Romer et al., 2016) 

plasticity in respiratory neural circuits and play a role in locomotor central pattern generator 

circuits (Dougherty & Kiehn, 2010; Hayashi et al., 2018). More recently, we have shown 

that enriching donor cells with stem cell derived V2a interneurons can enhance the extent of 
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motor recovery within an anatomically and functionally defined spinal network—the phrenic 

motor system (Zholudeva, Iyer, et al., 2018a).

Future work will now be able to build upon this work to more extensively characterize the 

phenotype of SpINs, and even other donor cell types. Such research will significantly 

advance on previous transplantation studies, and help to determine optimal donor cells for 

spinal cord repair.

CAPTION

The cover image is of developing rat spinal cord-derived tissue (embryonic day 13.5) 3 days 

after it has been transplanted into an injured adult rat spinal cord. The injury in this case was 

a cervical level spinal contusion. This transplanted tissue is rich with developing spinal 

interneurons (SpINs), which have been shown to be key cellular elements for neuroplasticity 

after injury. One particular subtype—the V2a SpINs—is immunohistochemically labeled 

with a transcriptional factor Chx10 (red), while nestin (green) stains immature neural tissue. 

These cells have been shown to play an important role in neuroplasticity of both respiratory 

and locomotor circuits after injury or disease and may represent an important therapeutic 

target.
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