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Abstract

Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic
architecture or its genetic relationship with other disorders. To discover loci associated with AD
and characterize the relationship between AD and other psychiatric and behavioral outcomes, we
carried out the largest GWAS to date of DSM-IV diagnosed AD. Genome-wide data on 14,904
individuals with AD and 37,944 controls from 28 case/control and family-based studies were
meta-analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280).
Independent, genome-wide significant effects of different ADHIB variants were identified in
European (rs1229984; p = 9.8E-13) and African ancestries (rs2066702; p = 2.2E-9). Significant
genetic correlations were observed with 17 phenotypes, including schizophrenia, ADHD,
depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially
overlap with those for alcohol consumption, underscoring the genetic distinction between
pathological and non-pathological drinking behaviors.
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INTRODUCTION

Excessive alcohol use is a leading contributor to morbidity and mortality. One in 20 deaths
worldwide is attributable to alcohol consumption, as is 5.1% of the global burden of
diseasel. Alcohol dependence (AD), as defined by the Fourth Edition of the American
Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (DSM-1V)?,
is a serious psychiatric disorder characterized by tolerance, withdrawal, loss of control over
drinking and excessive alcohol consumption despite negative health and social
consequences. Among alcohol drinkers, 12% meet criteria for DSM-1V AD during their
lifetimes®. In the United States, only 25% of those with AD ever receive treatment?,

AD is moderately heritable (49% by a recent meta-analysis)® and numerous genome-wide
association studies (GWAS) have aimed to identify loci contributing to this genetic variance
(see® for a review). According to one study, common SNPs are responsible for as much as
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30% of the variance in AD, but few have been identified to date. Variants in the genes
responsible for alcohol metabolism, especially ADH1B and ALDH?Z, have been strongly
implicated®-13, The association between AD (and related drinking phenotypes) and
rs1229984, a missense SNP (Arg48His) in ADH1B that affects the conversion of alcohol to
acetaldehyde, represents one of the largest common-variant effect sizes observed in
psychiatry, with the His48 allele accelerating ethanol metabolism and affording
approximately 3-fold reduction in likelihood of AD across numerous studies®10. Another
functional polymorphism, rs671 in ALDHZ (Glu504Lys), strongly affects alcohol
metabolism by blocking conversion of acetaldehyde to acetate and has an even stronger
effect on risk for AD, but is rare except in some Asian populations®12.13 ADH1B and
ALDH?Z2 polymorphisms, however, only explain a small proportion of the heritable variation
in AD in populations of European or African ancestry.

In this study, the Substance Use Disorders working group of the Psychiatric Genomics
Consortium (PGC-SUD4) compiled the largest numbers of carefully diagnosed alcohol
dependent individuals and alcohol-exposed controls to date, from both case-control and
family studies. These included substantial numbers of both European ancestry (EU, N =
46,568, including 38,686 unrelated individuals) and admixed African-American ancestry
(AA, N = 6,280, including 5,799 unrelated individuals) subjects. AD diagnoses were derived
from clinician ratings or semi-structured interviews following DSM-IV? criteria. Each study
was subjected to stringent quality control (QC) before conducting GWAS within each
population of each study, followed by a genome-wide meta-analysis. We estimated the SNP-
heritability (hzg) of AD and examine the extent to which aggregate genetic variation in AD
is related to traits from 45 other GWAS, including continuous measures of alcohol
consumption. We also examined whether polygenic risk scores (PRS) derived from these
analyses predicted alcohol dependence and related measures of problem drinking in three
independent samples.

GWAS meta-analyses:

The trans-ancestral discovery meta-analysis of GWAS of AD in 28 cohorts (Table 1;
Supplementary Table S1) identified a genome-wide significant (GWS; p < 5E-8) association
in the ADH gene cluster on chromosome 4 (Figure 1; Table 2). Examining this locus in each
population (Figure 2), rs1229984 in ADH1B was the strongest associated variant from the
analysis in EU (z = -7.13, p = 9.8E-13), while rs2066702, also in ADH1B, was the most
significant variant in AA (z = -5.98, p = 2.2E-9). Trans-ancestral modelling reinforced the
robust effects of rs1229984 and other ADH1B SNPs on liability to AD across inverse-
variance weighted, random effects, and Bayesian models (Supplementary Figure S1,
Supplementary Table S2).

Clumping the ADH locus for linkage disequilibrium (LD; /2 < 0.1 within 500 kb) suggested
multiple independent signals in both populations, with the differing leading alleles reflecting
different LD structures and allele frequencies in each population (Table 2, Supplementary
Figure S2). Conditional analyses controlling for rs1229984 and rs2066702 had limited
power, but results showed limited attenuation of effect sizes between marginal and
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conditional analyses, consistent with the existence of additional independent effects in the
region (Supplementary Table S3; Supplementary Figure S3). Suggestive independent signals
in the genotyped cohorts included trialleleic variant rs894368 (marginal z = -4.57, p =
4.9E-6; conditional z = -4.53, p = 5.8E-6) and insertion rs112346244 (marginal odds ratio =
0.912, SE =.024, z = -3.81, p = 1.4E-4; conditional odds ratio = 0.883, SE =.025, z =
-5.05, p = 4.5E-7; Supplementary Table S3). Several additional variants that were prioritized
in the conditional analysis, while not significant, were in moderate to strong LD with rs698
(marginal odds ratio = 1.115, SE =.021, z = 5.19, p = 2.1E-7; conditional odds ratio =

1.084, SE = .021, z = 3.78, p = 1.6E-4), a functional ADHIC variant with a role in AD811,

A single novel SNP on chromosome 3, rs7644567, also reached GWS in the meta-analysis
(z=5.68, p = 1.36E-8; Supplementary Figure S4). Potential biological associations with
rs7644567, including chromatin contacts (Supplementary Figure S5) and cerebellar
expression of RBMS3, are summarized in Supplementary Information A9. However,
rs7644567 did not replicate in two independent AA samples (Yale-Penn2 and COGA
AAFfGWAS) or the independent FINRISK cohort; all three replication cohorts estimating
effects of the minor allele in the opposite direction of the discovery meta-analysis
(Supplementary Table S4). The SNP is also rare in most EU samples (minor allele frequency
[MAF] < 0.01), with the current GWAS results primarily attributable to AA cohorts, along
with FinnTwin and NAG-Fin. The EU cohorts in the discovery meta-analysis show no
evidence of association of AD with the SNPs in strongest LD with rs7644567 in African
(rs13098461; z = 0.27, p = 0.79) or Finnish (rs9854300; z = 0.10, p = 0.92) reference
samples (Supplementary Information A9). Based on the clear lack of replication there is
insufficient evidence to conclude rs7644567 is associated with AD based on the current
results.

There was limited genome-wide evidence for heterogeneity across all cohorts, within
ancestry, between ancestries, or between study designs within ancestry (Supplementary
Information A8; Supplementary Figures S6-S8). Evidence for inflation from population
stratification or other confounding was also limited in the discovery meta-analysis (lambda =
0.962; Supplementary Figure S9) and within EU (lambda = 1.053, LD score regression
[LDSR] intercept = 1.018) and AA (lambda = 1.007, LDSR intercept = 0.991-0.997;
Supplementary Information A11). Gene-level association testing with MAGMAUZ® did not
identify any additional significant genes in EU or AA (Supplementary Table S5,
Supplementary Information A12), likely due to lack of power.

Heritability and genetic correlations:

Liability-scale SNP-heritability of AD was estimated at hzg= 0.090 (SE=0.019,z=4.80,p
= 8.02E-7) in the meta-analysis of unrelated EU samples. Exclusion of the ADH1B locus
did not substantially modify this estimate (/,zg: 0.089, SE = 0.0185). Nominally significant
polygenic signal for the meta-analysis of unrelated AA individuals was observed based on
LDSR with scores computed from 1000 Genomes African populations (z = 2.12, p = 0.017),
but the quantitative estimate of hzgwas unstable depending on the choice of reference panel,
reflecting the challenge of correctly specifying LDSR and robustly modelling LD for the AA
population (Supplementary Information Al11).
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Significant genetic correlation with AD in EU was observed for 17 traits after correction for
multiple testing (p < 1.11E-3 for 45 tested traits; Figure 3; Supplementary Table S6). The
largest positive correlations were with ever smoking tobacco (rg = 0.708, SE = 0.134, p =
1.3E-7) and lifetime cannabis use (rg = 0.793, SE = 0.217, p = 2.5E-4), and with other
psychiatric disorders, especially schizophrenia (rg = 0.357, SE = 0.054, p = 3.2E-11), ADHD
(rg=0.444, SE = 0.097, p = 4.2E-6), and depression (rg = 0.561, SE = 0.085, p = 3.5E-11).
Educational attainment (ry = -0.468, SE = 0.066, p = 9.7E-13) and age at first birth (higher
values indicate that participants were older when they had their first child; rq = -0.626, SE =
0.104, p = 2.0E-9) showed significant inverse genetic correlation with AD suggesting that
liability to AD risk was genetically related to lower educational attainment and lower age at
which the participant had his or her first child.

Unexpected patterns of genetic correlation were observed when comparisons were made to
other alcohol-related measures, indicating that those measures reflect aspects of alcohol use
that are genetically distinguishable. AD was genetically correlated with alcohol consumption
in a meta-analysis of the Alcohol Genome-wide Association (AlcGen) and Cohorts for
Aging and Research in Genomic Epidemiology Plus (CHARGE+) consortial® (rg=0.695,
SE = 0.155, p = 6.9E-6) but only modestly with alcohol consumption from the recent large
UK Biobank analysis!’ (rq = 0.371, SE = 0.092, p = 5.2E-5). No significant genetic
correlation was observed between AD and a recent GWAS of the Alcohol Use Disorders
dentification Test (AUDIT) in a 23andMe cohort!® (ry = 0.076, SE = 0.171, p = 0.65),
perhaps due to the low levels of drinking and drinking-related problems in that populationl8.
AD is, however, nominally genetically correlated with GWAS of delay discounting in the
23andMe sample® (ry = 0.487, SE = 0.178, p = 6.0E-3).

with ADH1B expression:

Based on the strong observed association with rs1229984 and rs2066702 we examined
whether other variants affecting ADH1B expression (eQTLs) were also associated with AD
using GTEX V7 results (https://www.gtexportal.org/)20. Three variants, rs11939328 (EU p =
0.78, AA p =0.98, Trans p = 0.78), rs10516440 (EU p = 3.97E-6, AA p = 1.97E-3, Trans p
= 4.72E-8), and rs7664780 (EU p = 0.87, AA p = 0.083, Trans p = 0.405), were selected
after LD-informed clumping and the exclusion of variants in LD (r2>0.1) with the GWS
coding alleles rs1229984 and rs2066702. Of these, only rs10516440 (AD conditional
analyses: EU p = 1.34E-3, AA p = 0.013, Trans p = 7.44E-5) was a significant multi-tissue
eQTL in random effects analysis for ADHIB (Sgg = 319.4, Spee = 27.6, p = 1.4E-76),
ADHIA (Spg = 139.4, Syet = 6.6, p = 6.72E-33), and ADHIC (Spg = 167.3, St = 8.9, p =
1.9E-39). Rs10516440 is a LD proxy (r2 > 0.9) of rs6827898 (Table 2) in populations of
European and African descent. These variants are both located in an intergenic region in the
ADH gene cluster between ADHICand ADH?. In line with the fact that the protective
coding alleles are associated with increased activity of the enzyme encoded by ADH1B, the
major allele rs10516440*A was associated with increased ADH1B expression and reduced
AD risk.
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Associations with other GWS loci:

We examined results for the eight independent variants associated at GWS levels with
alcohol consumption in the UK Biobank!’ (Supplementary Table S7). Among the UK
Biobank findings, three of the four reported variants in the ADH region of chromosome 4
(rs145452708 — a proxy for rs1229984 with D’=1, rs29001570 and rs35081954) were
associated in the present study with AD (p ranging from 3.5E-5 — 2.3E-10) with sign
concordant effects; the remaining variant was excluded from our analysis due to MAF <
0.01. The UK Biobank lead variant in KLB, rs11940694, was nominally associated with AD
(p = 0.0097), though this does not surpass multiple testing correction for the eight GWS
alcohol consumption loci. We see little evidence (p > 0.2) for association of AD with the
reported loci at GCKR and CADM_Z, which may be due to differences in power for the given
effect size or because these genes exert an influence on liability to consume alcohol but not
later problems. The locus on chromosome 18 showed limited regional association with AD,
but the index variant was not present in our analysis because it no longer appears in the 1000
Genomes Phase 3 reference panel?L.

Polygenic Risk Score (PRS) analyses:

PRS based on our meta-analysis of AD were significantly predictive of AD outcomes in all
three tested external cohorts. PRS derived from the unrelated EU GWAS predicted up to
0.51% of the variance in past month alcohol use disorder in ALSPAC (p = 0.0195;
Supplementary Figure S10A) and up to 0.3% of problem drinking as indexed by the CAGE
screener in GS (p = 7.9E-6; Supplementary Figure S10B). PRS derived from the unrelated
AA GWAS predicted up to 1.7% of the variance in alcohol dependence in the COGA
AATGWAS cohort (p = 1.92E-7; Supplementary Figure 10C).

Importantly, PRS derived from the unrelated EU GWAS showed much weaker prediction
(maximum RZ = 0.37%, p = 0.01; Supplementary Figure S10D) in the COGA AAfGWAS
than the ancestrally-matched AA GWAS-based PRS despite the much smaller discovery
sample for AA. In addition, the AD PRS also still yielded significant variance explained
after controlling for other genetic factors. Prediction of CAGE scores in GS remained
significant and showed minimal attenuation (R? = 0.29%, p = 1.0E-5) after conditioning on
PRS for alcohol consumption derived from UK Biobank results’. In COGA AAfGWAS, the
AA PRS derived from our study continued to predict 1.6% of the variance in alcohol
dependence after inclusion of rs2066702 genotype as a covariate, indicating independent
polygenic effects beyond the lead ADH1B variant (Supplementary Information Al14).

Power analysis:

Power analyses indicated that the current meta-analysis is expected to have at least 41%
power to detect very common variants (MAF = 0.25) with odds ratios = 1.10 at p < 5E-8 and
63% power for p < 1E-6 (Supplementary Figure S11). Power at p < 1E-6 is relevant because
only 5 loci reach that threshold in the current meta-analysis. Power is lower for less common
variants (MAF < 0.05) even with odds ratios = 1.20 at p < 1E-6 (60% power) and p < 5E-8
(38% power).
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For perspective, power computations using the observed distribution of top effects for other
large GWAS of polygenic traits suggest that we observe significantly fewer genome-wide
significant loci for AD than would be expected if the loci had true effect sizes and allele
frequencies similar to schizophrenia (expected: 25.4 loci, 95% CI 21-30) or obesity
(expected: 8.9 loci, 95% CI 6-12), but not fewer than would be expected for effect sizes
similar to major depression (Supplementary Information A10, Supplementary Table S8).

DISCUSSION

To our knowledge, this is the largest GWAS of rigorously-defined AD, comprising 14,904
AD individuals and 37,944 controls. We identified known loci in ADH1B that differed
between EU and AA, as well as novel genetic correlations between AD and psychiatric
disorders (e.g., schizophrenia), tobacco and cannabis use, and social (e.g., socio-economic
deprivation) and behavioral (e.g., educational attainment) outcomes. Analyses also revealed
a genetic distinction between GWAS results for alcohol consumption and AD. Although
larger sample sizes can be amassed by focusing on quantitative measures of consumption,
only the upper tail is relevant to AD (as a medical diagnosis) and even that does not capture
other aspects of disordered drinking (e.g., loss of control, withdrawal) directly. Conversely,
cases derived from electronic medical records (e.g., ICD codes) result in a high rate of false
negatives, while self-screening instruments (e.g. AUDIT scores) are best suited to analyses
of disordered drinking when a sufficiently high threshold or score cut-off is applied to focus
on severity. Our study has the advantage of greater diagnostic precision via use of semi-
structured interviews to diagnose AD systematically in a majority of the constituent studies,
and therefore greater interpretability in the context of clinically-important AD.

The genome-wide significant SNPs reaffirm the importance of functional variants affecting
alcohol metabolism to the risk of AD. The top association in ADH1B, rs1229984, is a
missense variant that is amongst the most widely studied in relation to alcohol use, misuse
and dependence®-10. The resulting amino acid substitution (Arg48His) increases the rate at
which alcohol dehydrogenase 1B oxidizes ethanol to acetaldehyde®. Studies on Asian
populations in which the derived allele is common demonstrated strong protection against
the development of AD89.13, In EU and AA, the protective allele is present at much lower
frequencies (EU MAF = 0-4%, AA MAF < 1%), nevertheless, recent large-scale studies
have shown an association between this locus and alcohol consumption and problems at
GWS levels in EU with similar effect size8-10, The lead variant in AA cohorts, rs2066702
(Arg370Cys), is another functional missense variant in ADH1B, and it also encodes an
enzyme with an increased rate of ethanol oxidation8. The allele encoding Cys370 is common
in AA, but rare in other populations8. Our results clearly show that these two different
functional SNPs in ADH1B both affect risk for alcoholism, with their relative importance
dependent upon allele frequency in the population studied. There is a suggestion of
additional independent effects in the chromosome 4 region, but larger studies will be needed
to evaluate this.

The only other locus to reach significance was rs7644567 on chromosome 3, primarily
driven by AA cohorts. The locus failed to replicate in two small, independent AA samples,
and in the only European cohort with even a modest allele frequency (FINRISK) the effect
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was in the opposite direction. There have also been discussions about whether the standard
GWAS significance threshold should be applied to the more genetically diverse African-
ancestry cohorts22:23 and the possibility of confounding from non-linear relationships
between the phenotype and ancestry-informative markers like rs7644567 in admixed
samples?4, all of which increase our skepticism regarding this finding. There is, therefore,
insufficient evidence at this time to conclude that rs7644567 is associated with alcohol
dependence. Analyses of much larger samples of African ancestry will be needed to resolve
this.

Despite limited SNP-level findings, there is significant evidence for polygenic effects of
common variants in both EU and AA cohorts. The estimated h2g =0.09 for AD in EU is
only modestly lower than those recently reported for alcohol consumption (h2g =0.13)17 and
AUDIT scores (h2g =0.12)18, and comparable to estimates derived for cigarettes-per-day25.
Our h2g estimate is lower than a prior report’, likely reflecting a combination of differences
in estimation method (GREML vs. LDSR) and greater heterogeneity in ascertainment
strategy across samples in the current study (see26-28). The latter is especially relevant in
comparing hzg from that prior single cohort to our meta-analysis that included cohorts with a
wide range of ages at ascertainment, cultural environments, and ascertainment strategies,
including enrichment for other substance use disorders. Similar to other psychiatric
disorders (e.g. schizophrenia), a much larger sample size will potentially aid in overcoming
across-sample heterogeneity and capture a greater proportion of genetic variance.

Comparing our GWAS to recent GWAS of alcohol consumption measures suggests that the
liability underlying normative patterns of alcohol intake and AD are only partially
overlapping. Genome-wide, genetic correlations were significantly < 1 with log-scaled
alcohol consumption by participants in AlcGen and CHARGE+ Consortia cohorts'8 (rg=
0.695) and in the UK Biobank!’ (rg=0.371). We also observe only partial replication of the
8 loci significantly associated with consumption in the UK Biobank, with strongest results
from SNPs in the ADH region, including a proxy for rs1229984. In addition there was no
significant correlation with GWAS of log-scaled AUDIT scores in 23andMe participants’8
(rg =0.076). Subsequent analyses suggest these estimates are sensitive to sample
characteristics, with somewhat higher genetic correlations reported in analysis of alcohol
consumption in the full UK Biobank?® (rg=0.75) and of AUDIT in combined data from
23andMe participants and UK Biobank30 (rg = 0.39). Importantly, initial UK Biobank data
inclusion of a subset of participants recruited for a study of smoking and lung function in the
first analysis!?, which may have resulted in collider bias3! and contributed to the initial
lower genetic correlation.

One key factor in interpreting the differences between these traits and AD is that the
distribution of consumption levels and AUDIT scores can be highly skewed in population
samples, with most individuals at the low (non-pathological) end of the spectrum. This effect
may be especially pronounced among the older, healthy volunteers of the UK Biobank
cohort32 and in the 23andMe cohort, which is more educated and has higher socioeconomic
status than the general US population8. We hypothesize that the variants that affect
consumption at lower levels may differ substantively from those that affect very high levels
of consumption in alcohol dependent individuals, who are also characterized by loss of
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control over intake33. This appears to be the case in studies that used specific cut-offs to
harmonize AUDIT scores with AD data3%:34. The larger of these studies3C reports that the
genetic correlation between AD and AUDIT scores is maximized at an AUDIT cutoff > 20
(with controls defined as those scoring < 4; rq = 0.90). Interestingly, that study also found
that a score reflecting items related to problem drinking (AUDIT-P) resulted in a stronger
genetic correlation (rg = 0.64) than a score related to alcohol consumption alone (ry = 0.33).
The strong genetic correlation of AD with lower educational attainment and lower socio-
economic status (i.e. higher Townsend deprivation), in contrast to positive genetic
correlations of education with consumptionl” and AUDIT scores related to consumption39,
further underscore this distinction between normative/habitual levels of alcohol intake and
diagnosed AD, at least in the respective populations studied.

The current analysis identified robust genetic correlation of AD with a broad variety of
psychiatric outcomes. This correlation is strongest for aspects of negative mood, including
neuroticism and major depression, as also seen in twin studies336 and through recent
specific molecular evidence for pleiotropy37-38. Taken together with evidence from other
recent genomic studies3’, and null correlations for other GWAS of alcohol consumption, but
not for measures of problem drinking (e.g., AUDIT-P), these findings suggest that major
depression may primarily share genetic liability with alcohol use at pathological levels.

AD was also strongly genetically correlated with poor educational and socioeconomic
outcomes, and marginally correlated with measures of risk-taking. Nominally significant
genetic correlations with delay discounting (i.e. favoring immediate rewards), risk-taking,
and the strong genetic correlation of AD with ADHD, cigarette smoking and cannabis use
may similarly reflect a shared genetic factor for risk-taking and reduced impulse control.
Common genetic liability to early, risky behaviors is characteristic of both AD39 and age of
first birth40. The observed negative genetic correlation with age of first birth is consistent
both with risk-taking and with the significant genetic correlations of AD with lower
socioeconomic status, as indexed by higher neighborhood Townsend deprivation score, and
lower educational attainment. Lower socioeconomic status is correlated with both AD*! and
age at first birth#2 and the current study suggests that shared genetic liabilities may be one
potential mechanism for their observed relationship. However, the question of whether these
genetic correlations represent causal processes, horizontal pleiotropy, or the impact of
unmeasured confounders should be explored in the future®3.

Lower genetic correlations were observed for most biomedical and anthropometric
outcomes. Liver enzymes GGT and ALT, once proposed as possible biomarkers for alcohol
abuse**, showed only nominal evidence for genetic correlation with AD and neither survived
multiple testing correction. Notably, we did not find any association between AD and body-
mass index (BMI). Negative genetic correlations with BMI were previously reported for
both alcohol consumption!” and AUDIT scores!8, but there is prior evidence that BMI has
differing underlying genetic architecture in the context of AD and outside of that context*®.
The negative genetic correlations observed in those studies are consistent with studies of
light to moderate drinking, which is also associated with healthier lifestyle behaviors, while
heavy and problematic drinking is typically associated with weight gain“6.
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This study benefits from precision in diagnostic assessment of AD, known alcohol exposure
in a majority of the controls, and careful quality control that excluded overlap of individuals
between studies. Despite these strengths, our sample size was insufficient to identify
additional GWS loci robustly. Power analyses indicate that additional SNPs associated with
AD are likely to have small effect sizes, smaller than schizophrenia®’ and more consistent
with more common psychiatric disorders (e.g. major depression#8). This supports the
pressing need for collection of large numbers of well characterized cases and controls. The
differences between our results and the study of AUDIT scores!® highlight that
ascertainment and trait definition are critically important and must be taken into account.
Careful study of how screening tools, such as the AUDIT, correlate to genetic liability to AD
(as defined by DSM-IV or similar) could substantially boost sample sizes for future AD
GWAS. There is also a continued need to characterize the genetic architecture of AD in non-
EU populations.

We show a novel genetic distinction between drinking in the pathological range (AD) and
habitual drinking that does not cross the threshold into pathology or dependence nor
captures behavioral aspects of disordered drinking. Larger future samples will allow us to
uncover additional pleiotropy between pathological and non-pathological alcohol use as well
as between AD and other neuropsychiatric disorders.

METHODS

Samples:

The Substance Use Disorders working group of the Psychiatric Genomics Consortium
(PGC-SUD™) collected individual genotypic data from 14 case/control studies and 9 family-
based studies and summary statistics from GWAS of AD from 5 additional cohorts (Table
1). AD was defined as meeting criteria for a DSM-1V2 (or, for one cohort, DSM-111R%; a
very similar construct; Supplementary Note B1) diagnosis of AD. Diagnoses were derived
either from clinician ratings or semi-structured interviews. Excepting three cohorts with
population-based controls (N=7,015), all controls were screened for AD. Individuals with no
history of drinking alcohol and those meeting criteria for DSM-IV alcohol abuse were
excluded as controls where possible (Supplementary Information Al; Life Sciences
Reporting Summary). This study was approved by the institutional review board (IRB) of
Washington University in St. Louis and was conducted in accordance with all relevant
ethical regulations. Each contributing cohort obtained informed consent from their
participants and received ethics approvals of their study protocols from their respective
review boards in accordance with applicable regulations.

Quality Control and Imputation:

Data for the cohorts that shared raw genotypes were deposited to a secure server for uniform
quality control (QC). QC and imputation of the 14 case/control studies was performed using
the ricopili pipeline (https://github.com/Nealelab/ricopili). For the 9 family-based cohorts,
an equivalent pipeline, picopili (https://github.com/Nealelab/picopili), was developed for
QC, imputation, and analysis appropriate for diverse family structures, including twins,
sibships and extended pedigrees (Supplementary Information A2).
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After initial sample and variant QC, principal components analysis (PCA) was used to
identify population outliers for exclusion and to stratify samples in each study by continental
ancestry. Identified EU and AA ancestry populations were confirmed by PCA using the
1000 Genomes reference panel?! (Supplementary Figure S12). Ancestry within these 2
groups was accounted for with principal components. Final sample and variant QC,
including filters for call rate, heterozygosity, and departure from Hardy-Weinberg
equilibrium (HWE), was then performed within each ancestry group in each cohort. Samples
were also filtered for cryptic relatedness and for departures from reported pedigree structures
(Supplementary Information A3; Life Sciences Reporting Summary).

Each cohort was imputed using SHAPEIT>! and IMPUTE252, using the cosmopolitan (all
ancestries) 1000 Genomes reference panel consistent with prior recommendations®? (see
also?’:°4:95), Concordance of minor allele frequencies (MAF) with the reference panel was
verified prior to imputation, with SNPs in EU cohorts compared to MAF in European
population samples and AA cohorts compared to MAF in African population samples
(Supplementary Information A4). Cryptic relatedness between cohorts was excluded after
imputation (Supplementary Information A5). Imputed SNPs were then filtered for INFO
score > 0.8 and allele frequency > 0.01 prior to analysis.

Analysis:

A GWAS of AD status was performed within each ancestry stratum of each sample using an
association model appropriate for the study design (Table 1, Supplementary Table S1). For
case/control studies, GWAS was performed using logistic regression with imputed dosages.
For family-based studies of small, simple pedigrees (e.g., sibships), association with imputed
genotypes was tested using generalized estimating equations (GEE). For more complex
pedigrees, imputed genotypes were tested using logistic mixed models. Sex was included as
a covariate, along with principal components to control for population structure
(Supplementary Information A6, Supplementary Note B2, Supplementary Figures S13—
S14).

In addition to this primary analysis, subsets of genetically unrelated individuals were
selected from each family-based cohort (i.e. the most severe case in each family, by
symptom count, was selected, followed by selection of unrelated/married-in controls) and
used to perform a conventional case/control GWAS using logistic regression. This was used
in place of the family-based GWAS for estimation of effect sizes and LD score regression
analyses (Supplementary Table S2).

Genome-wide Meta-Analysis:

The primary discovery meta-analysis of all ancestry-stratified GWAS (N¢ase = 14,904;
Ncontrol = 37,944) was conducted in METALSS. As the different study designs (family vs.
case-control) produced effect sizes that were not comparable, results were combined using
weighting by effective sample size (Supplementary Information A7, Supplementary Note
B3). Separate ancestry-specific discovery meta-analyses of EU (N = 46,568) and AA (N =
6,280) cohorts were also performed. Heterogeneity was evaluated across all cohorts and
between study designs (Supplementary Information A8).
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In addition to the discovery meta-analyses, we conducted meta-analyses for two design
subsets. First, we performed sample size weighted meta-analysis of the subset of genetically
unrelated individuals in EU (N = 38,686) and AA (N = 5,799) cohorts for use in LD score
regression (LDSR) analysis. Second, we performed inverse-variance weighted meta-analysis
of genetically unrelated individuals in genotyped cohorts to estimate within-ancestry effect
sizes for EU (N = 28,757) and AA (N = 5,799). These effect sizes were then used to
compare trans-ancestral fine mapping results using inverse-variance weighted fixed effects,
random effects®’, and Bayesian®® models (Supplementary Information A7). Supplementary
Table S2 summarizes all of the meta-analytic models considered in the current analysis.

As described below, a novel locus on chromosome 3 was genome-wide significant (GWS) in
the trans-ancestral discovery meta-analysis. To seek replication, we examined the association
between this locus and DSM-IV AD in two independent AA samples: Yale-Penn 2 (911
cases, 599 controls; tested using GEE) and COGA AAfGWAS (880 cases, 1,814 controls;
tested using GWAF>9). Association with AD status, broadly defined using hospital and death
records, was also examined in the FINRISK cohort (1,232 cases, 22,614 controls) using
Firth logistic regression®® (Supplementary Information A1.4; Life Sciences Reporting
Summary).

Power Analysis:

Post-hoc power analysis was performed for odds ratios ranging from 1.05 to 1.30 and across
allele frequencies using CaTS®1 with the estimated effective sample size. Power analysis
identifies the range of SNP effect sizes the current study was likely to detected at genome-
wide significance if such effects exist. Additionally, we made specific comparisons to the
distribution of effects for schizophrenia®’, obesity52 and major depression*® as meaningful
benchmarks to understand the magnitude of effect sizes plausible for AD (Supplementary
Information A10; Life Sciences Reporting Summary).

Heritability and Genetic Correlation Analysis:

LDSR analysis®3 was performed to estimate the heritability explained by common SNPs in
meta-analyses of unrelated EU and AA samples, respectively. LDSR was performed using
HapMap3 SNPs and LD scores computed from 1000 Genomes reference samples
corresponding to each population (Supplementary Information A11). Conversion of hzg
estimates from observed to liability scale54 was performed assuming population prevalences
of 0.159 and 0.111 for AD in alcohol-exposed EU and AA individuals, respectively3. Gene-
level enrichments were also tested with MAGMAZ® (Supplementary Information A12).

Genetic correlation between AD and 45 traits from LD Hub?5 and other published
studiest6-19.65-71 was examined using LDSR with the same unrelated EU meta-analysis
(10,206 cases and 28,480 controls) and precomputed European LD scores. LDSR compares
GWAS results for pairs of traits to estimate the correlation in the genetic liabilities explained
by all common SNPs in the LD reference panel. To avoid increasing the multiple testing
burden, redundant or highly-correlated phenotypes were reduced by manually selecting the
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version of the phenotype with the greatest predicted relevance to AD, largest sample size, or
highest heritability (Supplementary Information A13).

Polygenic Risk Scores:

To test the generalizability of the current GWAS results, polygenic risk scores (PRS) were
computed in three external cohorts (Supplementary Information AL1.5; Life Sciences
Reporting Summary). PRS computed from EU ancestry results were used to predict alcohol
dependence in ALSPAC’2:73 and COGA AAfGWAS, and CAGE screener scores in
Generation Scotland (GS)”4. PRS based upon the AA results were used to predict alcohol
dependence in COGA AAfGWAS (Supplementary Information A14).

Data availability:

Summary statistics from the genome-wide meta-analyses are available on the Psychiatric
Genomics Consortium’s downloads page (http://www.med.unc.edu/pgc/results-and-
downloads), including the source data for Figures 1 and 2. Individual-level data from the
genotyped cohorts and cohort-level summary statistics will be made available to researchers
following an approved analysis proposal through the PGC Substance Use Disorder group
with agreement of the cohort Pls; contact the corresponding authors for details. Cohort data
are also available from dbGaP except where prohibited by IRB or European Union data
restrictions. Expression data used to evaluate variants in ADHI1B is available from GTEx
(https://gtexportal.org/home/). Hi-C data used to evaluate the chromosome 3 variant can be
queried with HUGIn (https://yunliweb.its.unc.edu/hugin/). Publicly available genome-wide
summary statistics used for testing genetic correlations are accessible through LD Hub
(http://ldsc.broadinstitute.org/), or from the Psychiatric Genomics Consortium (http://
www.med.unc.edu/pgc/results-and-downloads), the Social Science Genetic Association
Consortium (SSGAC; https://www.thessgac.org/data), Enhancing Neuro Imaging Genetics
through Meta Analysis (ENIGMA; http://enigma.ini.usc.edu/research/download-enigma-
gwas-results/), and the Neale Lab (http://www.nealelab.is/uk-biobank); for availability of
summary statistics from other studies contact the respective authors. The source data for
Figure 3 is included in Supplementary Table S6.

Code availability:

Code for GWAS of case/control cohorts with ricopili is available at https://github.com/
Nealelab/ricopili. Code for GWAS of family-based cohorts with picopili is available at
https://github.com/Nealelab/picopili. Code and reference data for LD score regression
analyses are available at https://github.com/bulik/ldsc. Effective sample size calculations
were implemented using output from PLINK (https://www.cog-genomics.org/plink2), and
GMMAT (https://content.sph.harvard.edu/xlin/software.html#gmmat) and geepack (https://
cran.r-project.org/web/packages/geepack/index.html) in R (https://cran.r-project.org/); stand-
alone software for this purpose hasn’t been written but example code is available from the
first author by request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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phs000763.v1.p1; phs000976.v1.pl). Support for the Study of Addiction: Genetics and Environment (SAGE)
was provided through the NIH Genes, Environment and Health Initiative [GEI; U01 HG004422; dbGaP study
accession phs000092.v1.p1]. SAGE is one of the genome-wide association studies funded as part of the Gene
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to all the VTSABD-YAFU-TSA study participants who contributed to this work. Minnesota Center for Twin and
Family Research (MCTFR; phs000620.v1.p1) support contributing to this publication was supported by the
National Institutes of Health under award number DA005147, DA013240, DA024417, DA036216, AA009367,
MHO066140. Funding for TwinGene is a sub-study of the Swedish Twin Registry, managed by Karolinska Institutet
and supported by the Swedish Research Council under the grant no 2017-00641. Additional funding was provided
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CT-2002-01254), National Institutes of Health U01-DK 066134, the Swedish Foundation for Strategic Research
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Genes study was supported by R01 DA019157 and P50 DA005605. Yale-Penn (phs000425.v1.p1;
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Control genotyping was supported by National Institute of Mental Health grant R01-MH-083094 and Wellcome
Trust Case Control Consortium 2 grant WTCCC-084710. Netherland Twin Register (NTR) and Netherlands
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Network (GAIN) of the Foundation for the National Institutes of Health, Rutgers University Cell and DNA
Repository (NIMH U24 MH068457-06), the Avera Institute for Human Genetics, Sioux Falls, South Dakota (USA)
and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2
MH089951 and 1RC2 MH089995). The Finnish Twin Cohort/Nicotine Addiction Genetics-Finland study was
supported by Academy of Finland (grants # 213506, 129680 to JK), NIH DA12854 (PAFM), Global Research
Award for Nicotine Dependence / Pfizer Inc. (JK), Wellcome Trust Sanger Institute, UK and the European
Community’s Seventh Framework Programme ENGAGE Consortium (HEALTH-F4-2007- 201413). In
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Alcoholism (grants AA-12502, AA-00145, and AA-09203 to RIR and AA15416 and KO2AA018755 to DMD), the
Academy of Finland (grants 100499, 205585, 118555, 141054 and 264146 to JK) & Wellcome Trust Sanger
Institute, UK. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at
Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child
Health and Human Development, with cooperative funding from 23 other federal agencies and foundations.
Information on how to obtain the Add Health data files is available on the Add Health website (http:/
www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for this analysis. The
Helsinki Birth Cohort Study (HBCS) thanks all study participants as well as everybody involved in the Helsinki
Birth Cohort Study. Helsinki Birth Cohort Study has been supported by grants from the Academy of Finland, the
Finnish Diabetes Research Society, Folkhédlsan Research Foundation, Novo Nordisk Foundation, Finska
Lakareséallskapet, Juho Vainio Foundation, Signe and Ane Gyllenberg Foundation, University of Helsinki, Ministry
of Education, Ahokas Foundation, Emil Aaltonen Foundation. The Avon Longitudinal Study of Parents and
Children (ALSPAC) is extremely grateful to all the families who took part in the ALSPAC study, the midwives for
their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory
technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. Funding/Support
was from The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of
Bristol provide core support for ALSPAC. This publication is the work of the authors and A.C.E. will serve as
guarantor for the contents of this paper. A comprehensive list of grants funding is available on the ALSPAC website
(http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf). This research was specifically
funded by NIH grants AA021399. GWAS data was generated by Sample Logistics and Genotyping Facilities at
Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe.
Generation Scotland is grateful to the families who took part in GS, the GPs and Scottish School of Primary Care
for their help in recruiting them, and the whole GS team that includes academic researchers, clinic staff, laboratory
technicians, clerical workers, IT staff, statisticians and research managers. Generation Scotland received core
support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the
Scottish Funding Council (HR03006). Genotyping of the GS samples was carried out by the Genetics Core
Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland, and was funded by the Medical
Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award “STratifying Resilience and
Depression Longitudinally’ (STRADL) Reference 104036/2/14/Z). LD Hub (http://Idsc.broadinstitute.org/) is
grateful to the following GWAS studies, databases and consortia who have kindly made their summary data
available: ADIPOGen (Adiponectin genetics consortium), C4D (Coronary Artery Disease Genetics Consortium),
CARDIoGRAM (Coronary ARtery Disease Genome wide Replication and Meta-analysis), CKDGen (Chronic
Kidney Disease Genetics consortium), dbGAP (database of Genotypes and Phenotypes), DIAGRAM (DIAbetes
Genetics Replication And Meta-analysis), ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis),
EAGLE (EArly Genetics & Lifecourse Epidemiology Consortium, excluding 23andMe), EGG (Early Growth
Genetics Consortium), GABRIEL (A Multidisciplinary Study to Identify the Genetic and Environmental Causes of
Asthma in the European Community), GCAN (Genetic Consortium for Anorexia Nervosa), GEFOS (GEnetic
Factors for OSteoporosis Consortium), GIANT (Genetic Investigation of ANthropometric Traits), GIS (Genetics of
Iron Status consortium), GLGC (Global Lipids Genetics Consortium), GPC (Genetics of Personality Consortium),
GUGC (Global Urate and Gout consortium), HaemGen (haemotological and platelet traits genetics consortium),
HRgene (Heart Rate consortium), IBDGC (International Inflammatory Bowel Disease Genetics Consortium),
ILCCO (International Lung Cancer Consortium), IMSGC (International Multiple Sclerosis Genetic Consortium),
MAGIC (Meta-Analyses of Glucose and Insulin-related traits Consortium), MESA (Multi-Ethnic Study of
Atherosclerosis), PGC (Psychiatric Genomics Consortium), Project MinE consortium, ReproGen (Reproductive
Genetics Consortium), SSGAC (Social Science Genetics Association Consortium) and TAG (Tobacco and Genetics
Consortium), TRICL (Transdisciplinary Research in Cancer of the Lung consortium), UK Biobank. We additionally
thank the groups who directly shared GWAS results. We would like to acknowledge all participating groups of the
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International Cannabis Consortium, and in particular the members of the working group including Sven Stringer,
Camelia Minica, Karin Verweij, Hamdi Mbarek, Eske Derks, Nathan Gillespie and Jacqueline Vink. Thanks also to
the ENIGMA consortium for providing GWAS results on subcortical brain volumes (available from http://
enigma.ini.usc.edu/research/download-enigma-gwas-results/). Finally, we acknowledge the valuable contribution of
groups who have publicly released summary statistics from their respective GWAS. Specifically, thanks to
researchers from Schumann et al. (2016) including the CHARGE+ and AlcGen consortia (results available at
https://grasp.nhlbi.nih.gov/FullResults.aspx) and to all members of Psychiatric Genomics Consortium (PGC; results
available for download at http://www.med.unc.edu/pgc/results-and-downloads), in particular the working groups on
Attention Deficit/Hyperactivity Disorder (ADHD; chaired by Dr. Stephen Faraone), Autism Spectrum Disorder
(ASD; chaired by Drs. Mark Daly and Bernard Devlin), and Eating Disorders (ED; chaired by Drs. Cynthia Bulik
and Gerome Breen). Similar thanks to all of the participating groups in the Lundbeck Foundation Initiative for
Integrative Psychiatric Research (iPSYCH) consortium for their participation in the ADHD and ASD meta-
analyses.

Accession Codes

Comorbidity and Trauma Study (CATS): dbGAP accession phs000277.v1.p1

Center for Education and Drug Abuse Research (CEDAR): dbGAP accession
phs001649.v1.pl

Christchurch Health and Development Study (CHDS): dbGAP submission in process

The Collaborative Study on the Genetics of Alcoholism (COGA): dbGaP accession numbers
phs000125.v1.p1, phs000763.v1.p1, and phs000976.v1.pl

Study of Addiction: Genetics and Environment (SAGE): dbGAP accession phs000092.v1.pl

Collaborative Genetic Study of Nicotine Dependence (COGEND): dbGAP accession
phs000404.v1.p1

Gene-Environment-Development Initiative (GEDI) — Duke University (GSMS): dbGAP
accession phs000852.v1.p1

Center on Antisocial Drug Dependence (CADD): dbGAP submission in process
Spit for Science: dbGAP submission in process
NIAAA: available via https://btris.nih.gov/

Gene-Environment-Development Initiative (GEDI) —Virginia Commonwealth University
(VTSABD): dbGAP submission in process

Minnesota Center for Twin and Family Research (MCTFR): dbGAP accession
phs000620.v1.p1

Yale-Penn: dbGAP accession phs000425.v1.p1 and phs000952.v1.p1l

See Data Availability for information on accessing other cohorts.
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Figure 1: Manhattan plot of discovery trans-ancestral meta-analysis showing strong evidence for
rs1229984 in ADH1B.

Results from the discovery meta-analysis of all cohorts (N¢ase=14,904, Ncontroi=37,944) for
association of genome-wide SNPs with AD under a fixed effects meta-analysis weighted by
effective sample size. Dashed red reference line indicates genome-wide significance after
correction for multiple testing (p < 5E-8).
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A. Discovery Meta—analysis (14,094 cases, 37,944 controls)
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Figure 2: Regional plots for the ADH1B locus (rs1229984) in the trans-ancestral discovery,
African-American (AA), and European (EU), meta-analyses.
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Results of fixed effects meta-analysis with effective sample size weights for the ADH1B
locus in (A) all cohorts (N¢ase=14,904, Neontroi=37,944); (B) AA cohorts (Nggse=3,335,
Neontrol=2,945); and (C) EU cohorts (N¢ase=11,569, Neontroi=34,999). Red reference line
indicates the genome-wide significance threshold after correction for multiple testing within
each analysis (p < 5E-8). Within ancestry, colored points reflect the degree of LD (pairwise
r?) to the index variant (indicated by a purple diamond) in 1000 Genomes Project reference
data?! for individuals of (B) African or (C) European ancestry, respectively. LD structures in
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the two ancestries differ, so for the trans-ancestral sample (A) LD is not given, indicted by
gray points. Two-tailed tests used for all analyses.
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Figure 3: Genetic correlations between 45 traits and alcohol dependence in Europeans.
Genetic correlation results from LD score regression (LDSR) with the meta-analysis of AD

in unrelated EU individuals (N¢ase=10,206, Ngoniroi=28,480). After Bonferroni correction,
significant correlations are observed with 17 traits and disorders (p < 1.1E-3; bold), with
nominally significant results for 8 additional traits and disorders (p < .05; italics) based on
two-tailed tests of the estimated genetic correlation with block jackknife standard errors.
Error bars indicate 95% confidence intervals, with arrows indicating intervals extending

Nat Neurosci. Author manuscript; available in PMC 2019 May 26.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Walters et al.

Page 31

above 1 or below —1. Vertical gray reference line corresponds to the null hypothesis of no
genetic correlation with AD. Phenotypes are organized by research domain.
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