Skip to main content
. Author manuscript; available in PMC: 2019 Nov 1.
Published in final edited form as: J Multivar Anal. 2018 Aug 23;168:334–351. doi: 10.1016/j.jmva.2018.08.007

Table 4:

Coefficients of selected features and test mean squared prediction error for a prostate data (with p = 36 main effects and two-way interactions)

Variable BAR Lasso SCAD MCP Adaptive Lasso Elastic Net
lcavol 0.573 0.560 0.637 0.627 0.594 0.264
lweight 0.020 0.056
Age −0.028 −0.073 −0.149 −0.077 −0.053
lbph 0.070
svi 0.125 0.422 0.440 0.141 0.090
lcp 0.001
gleason 0.013
(lcavol)×(lweight) 0.068
(lcavol)×(age) 0.036
(lcavol)×(svi) 0.341 0.216 0.233 0.150
(lcavol)×(gleason) 0.196
(lweight)×(gleason) 0.315 0.238 0.243 0.305 0.259 0.171
(age)×(lbph) 0.184 0.277 0.282 0.194 0.098
(age)×(svi) 0.045
(lbph)×(gleason) 0.021
(svi)×(gleason) 0.030 0.090
(lcp)×(pgg45) −0.019 −0.067
Tuning ξn = 44.45 λ = 0.08 γ = 3.7 γ = 3 ξ = 1.16 λ1 = 0.06
Parameters λn = 0.1 λ = 0.08 λ = 0.07 λ = 0.21 λ2 = 0.1
Number of Selected Features 3 7 6 6 7 16
Test Error 0.461 0.484 0.587 0.583 0.513 0.498