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ABSTRACT Evidence suggests that beta human papillomaviruses (HPVs), together
with ultraviolet radiation, contribute to the development of cutaneous squamous
cell carcinoma. Beta HPVs appear to be not the main drivers of carcinogenesis but
rather facilitators of the accumulation of ultraviolet-induced DNA mutations. Beta
HPVs are promoters of skin carcinogenesis, although they are dispensable for the
maintenance of the malignant phenotype. Therefore, beta HPV represents a target
for skin cancer prevention, especially in high-risk populations.
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The human papillomavirus (HPV) family comprises approximately 200 types that are
able to infect the mucosal and cutaneous epithelia (1). They are subdivided into

genera and species in the HPV phylogenetic tree according to the DNA sequence of the
late gene L1 (2). The genus Alphapapillomavirus includes the mucosal high-risk (HR)
HPV types that have been clearly associated with the development of cervical and anal
cancers and a subset of other genital tract cancers, such as vulvar, vaginal, and penile
carcinomas, as well as a subset of head and neck cancers (3). More than 40 years of
research have elucidated many of the HR HPV mechanisms involved in cancer devel-
opment. The products of two early genes, E6 and E7, are major oncoproteins able to
deregulate many key cellular events and greatly facilitate the malignant transformation
of the infected cells. Classic examples of processes targeted by HR HPV E6 and/or E7
oncoproteins are the cell cycle, DNA repair, apoptosis, senescence, and the immune
response (4). In the context of the viral life cycle, these activities of E6 and E7 are
essential to guarantee viral DNA replication and progeny production. As a side effect,
they facilitate the accumulation of chromosomal abnormalities, leading to cancer
development. Despite the accumulation of this DNA damage, constant expression of
the viral oncogenes is required for the maintenance of the transformed phenotype.
Indeed, experiments in in vitro models have shown that silencing of E6 and E7
expression in cervical cancer-derived cell lines, such as CaSki or HeLa, severely affects
cell viability (5–8). Because of the biological properties of the HR HPV E6 and E7 in
directly targeting several cellular proteins/pathways, HPV-positive cancer cells do not
usually accumulate many mutations compared with cancers associated with other
environmental factors. For instance, HPV-negative oropharyngeal cancers have more
DNA mutations, which are often linked to tobacco use and/or alcohol consumption,
compared with HPV-positive oropharyngeal cancers (9).

Similar to the HR HPV types, cutaneous beta HPV types have also been implicated
in carcinogenesis, although the model of carcinogenesis is quite different. Epidemio-
logical and biological studies support the model of synergistic cooperation between
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cutaneous beta HPV types and UV radiation in the development of cutaneous squa-
mous cell carcinoma (cSCC). Importantly, beta HPV infection appears to play a role in
an initial phase of skin carcinogenesis, but it is not essential for the viability of the
tumor cells once they have become malignant.

Beta HPV types and epidermodysplasia verruciformis. The first cutaneous beta
HPV types, HPV5 and HPV8, were isolated from the skin of patients with epidermodys-
plasia verruciformis (EV), an autosomal recessive inherited skin disorder characterized
by the development of wart-like lesions in several parts of the body that frequently
progress to cSCC in UV-exposed areas (10). More than 50 beta HPV types have been
isolated and fully characterized so far, although additional beta HPV types may exist,
because partial genome sequences of novel putative beta HPV types have been
reported (11, 12). Beta HPV types are subdivided into five different species, beta-1,
beta-2, beta-3, beta-4, and beta-5 (1). Beta-1 and beta-2 HPVs are the most prevalent
types in the skin, whereas the other species are rarely detected in the skin and comprise
very few of the HPV types, i.e., beta-3 (n � 4), beta-4 (n � 1), and beta-5 (n � 2) (13).

Epidemiology of beta HPV infection. Similar to EV patients, organ transplant
recipients (OTRs) are at high risk of beta HPV infection as a result of immunosuppres-
sion (14–16). For example, of more than 600 organ transplant patients enrolled in two
multicentered European cohort studies, approximately 50% had DNA in their eyebrow
hairs (EBH) corresponding to five or more beta HPV types soon after organ transplan-
tation (17). Beta HPV DNA is also frequently present in the skin of immunocompetent
individuals, with prevalence estimates ranging from 39% to 91% (18–20). The variation
in beta HPV prevalence observed across study populations may be due to differences
in the number of beta HPV types tested, the distributions of other skin cancer risk
factors, and, importantly, the types of specimens analyzed. For example, a recent
cross-sectional analysis of baseline results from the VIRUSCAN cohort study demon-
strated that the overall prevalence of at least one beta HPV type (46 types measured)
was higher in skin swabs (92%) than in EBH follicles (73%) from the same individuals.
Interestingly, there was a strong correlation across the two sites with respect to the
prevalence and intensity of type-specific infections, as well as the number of HPV types
for which an individual was positive (21).

Beta HPV infection is present in the skin of infants and young children (16, 22) and
appears to be acquired early in life, most likely through direct contact with the skin of
the parents (23). Beta HPV infection can persist for 6 months or longer in plucked EBH
from healthy adults (24, 25), and based on a single study that measured persistence at
two anatomical sites, beta HPV has been shown to persist longer in skin swabs
(11.3 months) than in EBH (8.6 months) (18). Antibodies against the major capsid
protein L1 for the most commonly detected beta HPV types in the skin are present in
the blood of a large proportion of adults (26–28). Risk factors for beta HPV infection
and/or persistence include older age, history of a blistering sunburn (18, 29), and
history of organ transplantation (26). Similarly, beta HPV seroreactivity is associated
with skin phenotypic factors, such as poor tanning ability and cutaneous sensitivity to
sunlight exposure (30, 31).

Epidemiological studies of the influence of UV radiation exposure on cutaneous HPV
infection have been limited by measurement errors associated with self-reported past
sun exposures and/or the use of skin phenotypes as proxies for sun-related exposure
or damage. Baseline results from the VIRUSCAN cohort study (D. E. Rollison, unpub-
lished data) demonstrate significant associations between UV radiation exposure, as
measured using spectrophotometer readings of skin pigmentation, and beta HPV
seropositivity, with those in the highest tertile of UV radiation exposure having a
significant 93% increase in the odds of beta HPV seropositivity compared with those in
the lowest tertile (odds ratio, 1.93; 95% confidence interval, 1.19 to 3.16; P for trend �

0.02). One possible explanation for these findings is the influence of UV radiation on the
immune system. UV radiation exposure has been shown to correlate with subpopula-
tions of circulating regulatory T cells (32), which could, in turn, influence beta HPV
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acquisition, replication, and/or persistence. Additional studies of immune function and
beta HPV infection are needed, including studies conducted in immunocompetent
individuals, in order to identify those at highest risk of beta HPV infection.

Independent studies provided evidence for the presence of beta HPV types in
different anatomical sites other than skin. Beta HPV DNAs have been detected in the
oral mucosal epithelium, eyebrow hairs, and penile and external genital lesions (re-
viewed in reference 33). However, there is no evidence for beta HPV involvement in
pathological conditions at the anatomical sites listed above.

Epidemiological studies of beta HPV and cutaneous SCC. As described above,
the first lines of evidence for a link between beta HPV types and cSCC originated from
studies of EV patients. The fact that impairment of the immune system in OTRs
increases the risk of beta HPV infection and cSCC development further corroborates this
association (34). A large proportion of OTRs develop cSCC within 15 years of the
initiation of the immunosuppression treatment (34), correlating with multiple high-
viral-load beta HPV infections in EBH (35). Most recently, extended follow-up of two
multicentered European OTR study populations demonstrated that presence of DNA
corresponding to five or more beta HPV types and higher viral loads in EBH soon after
organ transplantation were associated with significant 70 to 80% increased risks of
subsequent cSCC after more than 10 years of follow-up (17).

Given that the beta HPV types are also abundantly present in the skin of the general
population, epidemiological studies aiming to evaluate the role of cutaneous HPV
infection in skin carcinogenesis in immunocompetent individuals have been difficult to
design and have incorporated a variety of biomarkers for the measurement of past or
present infection with beta HPV (seroreactivity, viral DNA in EBH, viral DNA in skin
swabs, and viral DNA in tumors), further complicating the comparison of results across
studies. Nevertheless, many observational studies of immunocompetent individuals
have consistently demonstrated that markers of beta HPV infections are weakly, but
significantly, associated with a history of cSCC. Indeed, compared with the general
population, cSCC patients are more frequently positive for viral DNA corresponding to
at least one beta HPV type in the skin and/or EBH, as well as for antibodies against the
major capsid protein L1 (30, 36–41). Notably, studies that also incorporated basal
cell carcinoma cases observed no associations between beta HPV seropositivity and
basal cell carcinoma (27, 28, 42), indicating that the observed associations are
specific to cSCC.

Previous studies have included different numbers of beta HPV types in the multiplex
assays used to measure HPV DNA in cutaneous tissues or circulating antibodies to HPV
capsids, with more recent studies incorporating more types as novel types continue to
be identified. Epidemiological studies of cutaneous HPV have conventionally defined
exposure as positivity for “at least one” beta HPV type, although this approach limits the
comparison of results across studies. HPV type-specific analyses are important to
determine whether there are individual beta HPV types that confer a majority of the
HPV-associated cSCC risk, because identification of these types would be required for
vaccine development. Although not all studies have measured the same beta HPV
types and/or reported type-specific associations, a recent meta-analysis of 14 case-
control studies in immunocompetent individuals demonstrated that types 5, 8, 15, 17,
20, 24, 36, and 38 were statistically significantly associated with an increased risk of
cSCC, with adjusted pooled odds ratios (95% confidence intervals) of 1.4 (1.18 to 1.66),
1.39 (1.16 to 1.66), 1.25 (1.04 to 1.50), 1.34 (1.19 to 1.52), 1.38 (1.21 to 1.59), 1.26 (1.09
to 1.44), 1.23 (1.01 to 1.50), and 1.37 (1.13 to 1.67), respectively (43). As more beta HPV
types are discovered and incorporated into epidemiological studies of SCC risk, the
probability of false discovery resulting from multiple-comparison testing increases;
therefore, future studies need to incorporate larger sample sizes to detect differences
after correction for false discovery. Individual HPV types consistently demonstrated to
be associated with SCC risk can inform future mechanistic studies of type-specific
transforming properties.
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In contrast with the cancers associated with mucosal HR HPV types, in which each
malignant cell contains at least one copy of viral DNA, much less than one copy of viral
DNA per cancer cell has been detected in cSCC (44). These findings indicate that viral
DNA is not homogeneously present in all cancer cells. In addition, quantitative PCR
revealed that the viral load in cSCC is lower than that detected in the premalignant skin
lesions actinic keratosis (45). In addition, a very few studies have evaluated the presence
of beta HPV transcripts in skin lesions. One study showed that E6 and E7 genes of beta
8, 9, and 15 are weakly expressed in actinic keratosis and SCC (46). In contrast, no beta
HPV transcripts were found in SCC by high-throughput next-generation sequencing
techniques (44, 47).

Taken together, these data indicate that the beta HPV types may play a role at an
early stage of skin carcinogenesis and are no longer required for the viability of the
malignant cell after development of the skin tumor. This scenario is compatible with
the involvement of additional carcinogens in skin cancer development. UV radiation
has been established as a key risk factor for the development of nonmelanoma skin
cancer (48–50). Thus, it is possible that beta HPV types, in order to guarantee the
completion of their life cycle even in the presence of cellular stresses, deregulate
fundamental pathways of host cells, facilitating the accumulation of UV-induced DNA
damage. Some epidemiological evidence supports this model of synergy between
cutaneous beta HPV types and UV radiation exposure. For example, a U.S. population-
based case-control study demonstrated greater risks of SCC associated with a tendency
to burn when exposed to the sun and 10 or more lifetime painful sunburns among
those who were beta HPV seropositive compared with those who were beta HPV
seronegative (27). A significant interaction was also observed between beta HPV
seropositivity and fair skin phenotype in relation to SCC risk among study participants
in the Netherlands and Australia (40, 51). Importantly, no prospective studies have
evaluated the interaction between UV exposure and beta HPV infection in relation to
SCC risk, nor has the interaction been investigated using DNA-based markers of beta
HPV infection. Results from the ongoing VIRUSCAN cohort study should provide
important information on the temporality of sun exposure, HPV infection, and SCC risk
(21, 52).

Experimental evidence is also mounting in support of a synergistic model of skin
carcinogenesis involving UV radiation exposure and beta HPV infection. Although only
a small number of the beta HPV types have been studied for their biological properties
so far, many independent investigations provide clear evidence for the transforming
activities of E6 and E7 from some beta HPV types, as described below.

Biological properties of beta HPV E6 and E7 oncoproteins. Because of the
findings for mucosal HR HPV that highlighted the transforming activities of E6 and E7,
many biological studies on beta HPV types have focused on E6 and E7 proteins.
Findings using in vitro experimental models, including established cell lines and
primary human keratinocytes, provide clear lines of evidence for the transforming
activities of the two viral proteins from some beta HPV types (10, 33, 53, 54). Similar to
the mucosal HR HPV types, beta HPV types are able to alter the networks regulated by
the tumor suppressor gene products retinoblastoma (pRb) and p53, with consequent
loss of control of the cell cycle, apoptosis, and DNA repair (33). It appears that beta HPV
types use different mechanisms in targeting p53. For instance, HPV38 E7 induces
accumulation of a specific form of p53 that activates the expression of its antagonist
ΔNp73�, which in turn hampers the proapoptotic functions of p53 (55, 56). In contrast,
HPV49, via E6, induces p53 degradation via the proteasome pathway, as shown for the
mucosal HR HPV types (57). In agreement with these findings, two studies have shown
that E6 and E7 from a few beta HPV types (e.g., beta-2 HPV38 and beta-3 HPV49)
efficiently immortalize primary human keratinocytes, which are the natural host of HPVs
(57, 58).

Importantly, beta HPV types target pathways that are known to be altered in skin
carcinogenesis, such as the Notch signaling pathway (59). Members of the Notch (1–4)
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family play a crucial role in tissue development and homeostasis by coordinating
differentiation and cellular proliferation. In particular, Notch1 is a negative regulator of
proliferation by activating the expression of the cell cycle inhibitor p21Cip1/Waf1 (60).
Studies in mouse models have shown that a loss of Notch1 in the skin increases the
susceptibility to SCC induced by the two-stage chemical carcinogenesis protocol (61,
62). Whole-genome sequencing studies revealed that Notch1 is one of the most
prominent mutated genes in human cSCC (63). Beta HPV E6 oncoprotein deregulates
the Notch signaling pathway via direct interaction with Mastermind-like transcriptional
coactivator 1 (MAML1) (64–68). The beta HPV E6-MAML1 interaction results in the
inhibition of Notch1-regulated gene expression, with consequent alteration of cellular
proliferation and differentiation (69).

In agreement with the above-mentioned skin carcinogenesis model of cooperation
between UV radiation and beta HPV types, beta HPV E6 oncoproteins are able to
prevent the activation of UV-induced apoptosis by promoting the degradation of BAK
via the proteasome pathway (70–72). This cellular protein belongs to the BCL2 family
and exerts a proapoptotic function, being released from the mitochondria upon
UV-induced cellular stress. Thus, it is plausible to predict that the E6-mediated BAK
degradation, by allowing the survival of UV-damaged cells, facilitates the accumulation
of DNA mutations. The high susceptibility of beta HPV-infected cells to UV-induced
DNA mutations is also supported by additional viral properties to deregulate the
apoptosis and the DNA repair machinery. Indeed, E6 from beta-1 HPV5 and HPV8 binds
to and promotes degradation of the p53 transcriptional coactivator p300 (73), with
consequent inhibition of calcium-mediated differentiation as well as a decrease in the
efficiency of repair of UV-induced DNA damage (74, 75). In contrast, beta-2 HPV38 E6
weakly interacts with p300 and does not induce its degradation (73–75). However, it
appears that even for HPV38 E6, the interaction with p300 is relevant for cellular
transformation (76). An HPV38 E6 mutant unable to associate with p300 loses the
capacity to prevent p53-dependent apoptosis. In addition, this HPV38 E6 mutant is not
able, together with E7, to immortalize primary human keratinocytes (76). Alterations of
integrin network are linked to skin carcinogenesis. Accordingly, studies in monolayer
and organotypic cultures showed that beta HPV8 is able to alter the integrin network,
promoting invasion of human keratinocytes into the dermis (77–79).

Several mouse models have further confirmed the transforming properties of beta
HPV proteins and their cooperation with UV radiation in promoting cSCC. Transgenic
(Tg) mice expressing E6 and E7 from different beta HPV types in the skin under the
control of a keratinocyte-specific promoter have increased susceptibility to UV-induced
carcinogenesis (80–82). Long-term UV exposure of Tg mice expressing beta-2 HPV38
E6/E7 genes in the basal layer of the epidermis under the control of the cytokeratin K14
promoter (K14) resulted in a high incidence of cSCC, whereas the same UV radiation
doses did not cause the development of any type of skin lesions in wild-type animals
(82). The fact that K14 HPV38 E6/E7 Tg mice did not develop any skin disease during
their life span in the absence of UV radiation provides additional evidence for the
synergism between beta HPV oncoproteins and UV radiation in promoting cSCC. A
more recent study showed that the high susceptibility of K14 HPV38 E6/E7 Tg mice to
UV-mediated skin carcinogenesis tightly correlates with the accumulation of DNA
mutations. Whole-exome sequencing of DNA extracted from cSCC of long-term UV-
irradiated K14 HPV38 E6/E7 Tg mice revealed that the vast majority of the somatic
mutations detected in SCCs were mutations that are also prevalent in the UV-induced
mutational signature. Importantly, the pattern of mutated genes in the skin lesions of
UV-irradiated K14 HPV38 E6/E7 closely resembled that detected in human cSCC, with
the highest mutation rates in p53 and Notch genes. Because both of the mutated genes
encode proteins targeted by the beta HPV types, it is plausible to hypothesize that after
accumulation of DNA mutations, the expression of the viral genes becomes dispens-
able. Using a conditional expression system based on Cre-Lox recombination, the same
study showed that beta HPV E6 and E7 act only at an initial stage of carcinogenesis by
potentiating the deleterious effects of UV radiation, but they do not contribute to the
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maintenance of cSCC (83). This scenario fully supports the concept that beta HPV types
act with a hit-and-run mechanism, being facilitators of the accumulation of UV-induced
DNA mutations and, consequently, of SCC development. Most importantly, this pro-
vides an explanation for the low HPV DNA prevalence in human skin lesions.

The beta HPV Tg animal models are complemented by mouse models that can be
naturally infected by the corresponding PV. Mus musculus papillomavirus 1 (MmuPV1)
is able to infect immunodeficient animals as well as immunocompetent standard
laboratory mouse strains (84). Experiments with this animal model clearly showed a link
between UV radiation, MmuPV1, immunosuppression, and the development of skin
lesions (84, 85). Notably, studies using in vitro experimental models showed that E6
oncoprotein from beta-1 HPV8 and MmuPV1 display several functional similarities in
targeting cellular pathways (54, 69). In particular, both proteins are able to inhibit
transforming growth factor beta (TGF-�) and Notch signaling by binding to the
SMAD2/SMAD3 and MAML1 transcription factors, respectively (69).

Other important findings on the role of an infectious agent in UV-mediated skin
carcinogenesis were provided by experiments in the African multimammate mouse
Mastomys coucha, formerly taxonomically classified as Mastomys natalensis. This mouse
model is naturally infected by Mastomys natalensis papillomavirus (MnPV) in the skin
and promotes the formation of skin lesions without integrating the host genome. A
recent study has shown that long-term UV radiation induces a higher number of cSCCs
in infected animals than in virus-free controls. In addition, some of the cSCCs in infected
animals were poorly differentiated and nonkeratinizing, containing small amounts of or
even lacking viral DNA (86). These findings provide additional support for the hit-and-
run mechanism of HPV in UV-mediated skin carcinogenesis.

CONCLUSIONS

Emerging lines of evidence support models of beta HPV-associated carcinogenesis
that differ from classic mucosal HR HPV driving carcinogenesis. In order to complete the
life cycle, beta HPV types have developed mechanisms to promote cellular proliferation,
even in the presence of constant stress, such as UV radiation. Consequently, these
viruses facilitate the accumulation of DNA damage induced by UV radiation (Fig. 1).
Once UV promotes mutations of genes that encode proteins involved in beta HPV-
targeted cellular pathways (e.g., p53 and Notch), the expression of the viral oncogene

FIG 1 Working model for cooperation between beta HPV types and UV radiation in promoting cSCC.
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becomes irrelevant for the growth of the cancer cells. In agreement with this model,
biological and epidemiological findings support the concept that the beta HPV types
are required at an early stage of skin carcinogenesis. These new models of HPV-driven
carcinogenesis present opportunities for the development of novel strategies to de-
crease the incidence of cSCC, in particular in high-risk populations, such as OTRs. Taking
into consideration all the findings available for the prophylactic vaccine against mu-
cosal HR HPV types, the development of a beta HPV vaccine is highly feasible. These
novel strategies could include vaccines based on the major capsid protein L1 as well as
on the minor capsid protein L2 (for a review, see reference 53). An enhanced under-
standing of the synergy between beta HPV infection and UV radiation in cSCC devel-
opment can also provide the foundation for future studies aiming to identify novel
interactions between HPV infections and other carcinogenic risk factors.
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