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Computational studies aimed at understanding conformationally dependent electronic structure in soft
materials require a combination of classical and quantum-mechanical simulations, for which the sampling of
conformational space can be particularly demanding. Coarse-grained (CG) models provide a means of accessing
relevant time scales, but CG configurations must be back-mapped into atomistic representations to perform
quantum-chemical calculations, which is computationally intensive and inconsistent with the spatial resolution
of the CG models. A machine learning approach, denoted as artificial neural network electronic coarse graining
(ANN-ECG), is presented here in which the conformationally dependent electronic structure of a molecule is
mapped directly to CG pseudo-atom configurations. By averaging over decimated degrees of freedom, ANN-
ECG accelerates simulations by eliminating backmapping and repeated quantum-chemical calculations. The ap-
proach is accurate, consistent with the CG spatial resolution, and can be used to identify computationally
optimal CG resolutions.
INTRODUCTION
Modeling organic semiconductors offers promise for high-performance
optoelectronic devices (1, 2). The functionality of these devices is inher-
ently dependent on the underlying morphology of these semicon-
ductors, which influences the corresponding electronic structure and
transport. A central challenge for the design of new molecules with
enhanced transport characteristics is to understand how molecular
structure, morphology, and electronic structure are interrelated. Past
computational studies of organic semiconductors have provided mech-
anistic insights into the nature of electron transport in gas-phase,
solution-phase, and crystalline systems (3, 4). However, because of
the high computational cost of analyzing the conformationally dependent
electronic structure of noncrystalline morphologies, the number of
computational studies of electron transport in disordered materials
has been comparatively limited (5, 6), preventing the high-throughput
modeling of a technologically relevant class of organic semiconductors.

To capture the relationship between bulk electronic functionality
and morphology, one must adopt a multiscale approach, in which clas-
sical simulations are used to explore conformational space and quan-
tum mechanical calculations are used to predict electronic structure
(7). More specifically, classical molecular dynamics (MD) or Monte
Carlo (MC) trajectories provide representative molecular configura-
tions of the bulk material, and quantum-chemical calculations provide
the corresponding energies and couplings of valence or conduction
band orbitals. These energies and couplings can then be used to param-
eterize semiclassical rate theories or model Hamiltonians with which to
analyze carrier transport within the material (5, 8, 9). For organic semi-
conductors, the relaxation time scales of the bulkmaterial are frequently
not accessible via atomistic simulations. Coarse-grained models can
access the relevant length and time scales, but these models must then
be mapped onto atomistic coordinates to perform electronic structure
calculations. Software suites that aid in implementing this workflow
(6, 10) have been developed.
Every aspect of a multiscale simulation presents its own challenges.
One of the most computationally demanding aspects of the protocol
outlined above, however, is the quantum-mechanical calculation of
electronic structure in systems of thousands, or tens of thousands, of
molecules. To put these demands into perspective, it is instructive to
consider amodelHamiltonian ormaster equation that is parameterized
using a nearest-neighbor interaction assumption; a simulated system
comprising 10,000 molecules, each with N nearest neighbors, involves
10,000 single-molecule electronic structure calculations to obtain the re-
quired site energies and approximately 5000 × N electronic structure
calculations to obtain the dimer electronic couplings. Note that these
tens of thousands of electronic structure calculations would param-
eterize a model Hamiltonian (or master equation) for only a single
morphology configuration. Thus, the prospect of exploring the mor-
phological dependence (using thousands of configurations) of bulk
electronic properties, notably charge carrier mobilities, is virtually
infeasible with current computers and simulation protocols.

The recent surge of machine learning and data science in the chem-
ical andmaterial sciences has led to the widespread application of pow-
erful regression and classification algorithms conceived to enhance
materials discovery and accelerate simulations. Multiple research
groups have developed high-accuracy force fields via the fitting of ab
initio energies and forces to artificial neural networks (ANNs) and
Gaussian approximate potentials (11–17). The application of machine
learning for the prediction of static geometry electronic properties has
reached a relativelymature point,with impressive predictive performance
obtained across a diverse chemical space (18–21). Other implementations
of machine learning have led to the direct assessment of molecular elec-
tron density (22) and the circumvention of conventional approaches to
density functional theory (DFT) calculations (23). A benefit of machine
learningmethods is that they can be trained on computationally expen-
sive models and then used to predict quantitatively similar results at a
fraction of the computational cost. These techniques could be particularly
advantageous in the context of organic semiconductors, where electronic
structure is strongly coupled to subtle changes inmolecular configuration
and must be calculated repeatedly to estimate macroscopic observables.

While explicit quantum-chemical calculations provide the “exact”
answer to the conformationally dependent electronic structure problem,
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there is a precedent for using phenomenological, often tight-binding
(TB) Hamiltonians to understand the conformational dependence of
molecular electronic structure at a coarser length scale (24–26). For ex-
ample, the second hyperpolarizabilities (24) and hole mobilities (25)
of linear conjugated polymers can be described by incorporating only
the dihedral degrees of freedom in a TB Hamiltonian. In the context of
deriving the electronic structure from only the CG configurational
degrees of freedom (CDOF), these phenomenological Hamiltonians
provide an intriguing route toward the assessment of conformation-
dependent electronic structure at a coarser resolution. In the past, how-
ever, CG electronic Hamiltonians have been largely limited to systems
in which the degrees of freedom that modulate the phenomenological
Hamiltonian are well known. Hence, these CG electronic Hamiltonians
do not represent a general strategy due to the lack of availability of
simple functional forms for describing molecular orbital (MO) cou-
plings and energetics in systems with degrees of freedom beyond
simple intermonomer dihedral angles. More specifically, quantita-
tively encoding the conformationally dependent electronic structure
of complex organic molecules at a CG resolution is an unsolved
problem for which new theoretical and computational methods are
required.

Inwhat follows, supervisedmachine learning is proposed as ameans
to quantitatively compute conformationally dependent electronic
structure at CG spatial resolutions, allowing for the determination
of electronic properties from only the system’s CG representation.
For an explicit mapping from an atomistic system to a CG represen-
tation, regressing the configurationally dependent electronic struc-
ture to the CG degrees of freedom can be accomplished via the
training of machine learning algorithms, in this case, ANN. Here, we
apply this philosophy to a set of conjugated materials, focusing on an
oligomer of poly(3-methylthiophene) to create CG electronic structure
models that act on reducedCDOF. By doing so, we circumvent the need
to back map the atomistic structure and perform quantum-chemical
calculations for every generated CG configuration. We outline the
scope, advantages, and limitations of this method, denoted as ANN
electronic coarse graining (ANN-ECG), and discuss future directions
for the proposed methodology.
MATERIALS AND METHODS
The ANN-ECG method is described schematically in Fig. 1 and
consists of the following elements. First, using a set of atomistic
configurations, one computes the electronic structure of each mo-
lecular conformation and extracts the desired electronic structure
properties. Second, using a defined CG mapping, one maps the at-
omistic coordinates of each molecular conformation onto a reduced
set of CG coordinates. Last, one uses a simple distance matrix between
CG bead positions to construct a feature vector for each configuration.
This feature vector was used as the input to the machine learning
algorithm, with the output vector being the electronic structure prop-
erty of interest that corresponds to the atomistic configuration. The
machine learning algorithm was then trained to predict the atomistic
electronic structure from only the CG degrees of freedom.

To test the ANN-ECG method, we focused on a hexamer of
poly(3-hexyl)thiophene (27), with the alkylic side chains cleaved to
methyls, denoted as sexi(3-methyl)thiophene (S3MT). S3MT was cho-
sen as representative of organic semiconductor chemistries commonly
found in both molecular and polymeric semiconductors. S3MT has
many soft degrees of freedom, leading to a strong conformation de-
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pendence of the electronic structure; in principle, if all intermonomer
dihedrals are 90°, the six highest occupied MO (HOMO) energies will
be nearly degenerate. Otherwise, the intermonomer electronic couplings
will strongly split the six HOMO energies by as much as 3 eV (see fig.
S2). Applications to a chemically complex donor-acceptor conjugated
copolymer, PTB7 (28), and a nonfullerene acceptor, TPB (29), are also
provided in fig. S6.

To evaluate the sensitivity of ANN-ECG to different CG mapping
schemes, a variety of CG resolutions of S3MTwere generated using dif-
ferent CG mapping protocols. First, we used a CG mapping for each
3MT monomer, such that the orientation of each 3MT monomer was
mapped to threeCGbeads, each corresponding to the endof a unit vector
of an orthonormal coordinate system centered at each 3MTmonomer’s
center of mass (COM) (Fig. 1). The orthonormal coordinate system
of each 3MT monomer was constructed using a vector between the
COM and the 2-carbon, the COM and the 4-carbon, and their asso-
ciated cross products. In the case of atomistic simulations in which the
intramolecular degrees of freedom of each 3MT monomer are frozen
with rigid-body constraints, the CG distance matrix between any pair
of three-bead 3MT representations is isomorphic with their relative at-
omistic degrees of freedom because of the fact that the absolute rel-
ative orientation of any two rigid bodies can be defined using five
rays (30). Under these constraints, ANN-ECG should exhibit high
predictive performance as the reduced CG description is equivalent
to the full atomistic representation.

Amore conventionalCGmapping schemewas also used for the case
of fully flexible S3MT, in which specific atomic identities were grouped
into single CG beads, positioned at the grouping’s COM. We obtained
these specific mappings by relying on a systematic graph-based CG
algorithm recently developed in our group (31). These specific map-
pings are provided in the Supplementary Materials.

Four distinct datasets of conformationally dependent electronic
structure for S3MT were obtained by running MD simulations under
the following four conditions: 300 K/rigid, 500 K/rigid, 300 K/flexible,
and 500 K/flexible. In this notation, “rigid” refers to the use of rigid-
body constraints on all intramonomer CDOF for each 3MTmonomer
of S3MT, “flexible” refers to the MD simulations with no rigid-body
constraints imposed, and the temperature denotes the simulation tem-
perature in the NVT ensemble maintained with a Langevin thermostat
with a damping parameter of 100 fs−1. MD simulations of a single
S3MT molecule were first equilibrated at 600 K for 2 ns, annealed to
the desired temperature over the course of 2 ns, and then run at the
desired temperature for a total of 100 ns, with molecular configurations
extracted every 10 ps, resulting in 10,000 independent configurations
per dataset. Scripts used to generate the configurations are provided
in the Supplementary Materials. Note that in the rigid simulations,
while all internal CDOFs of each 3MT monomer are frozen, two-body
stretches, three-body angle bends, and four-body dihedrals are still
permitted between all bonded 3MT rigid bodies. The atomistic force
field of P3MT uses an optimized potentials for liquid simulations
(OPLS)–style (32) force field with a partial charge distribution and inter-
monomer dihedral potential parameterized following the procedures
defined in previouswork (33). AllMD simulations were performed using
LAMMPS (34). The six HOMO energy levels for each S3MT config-
uration were computed using Zerner method of intermediate neglect
of differential overlap for spectroscopy (ZINDO/S) and BP86/def2-SVP
(see fig. S7) in ORCA (35).

For the regression of electronic structure to a CG representa-
tion, a fully connected, feed-forward ANN with three hidden layers,
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each containing 50 neurons, was applied to each of the four S3MT
MD datasets to simultaneously predict the six HOMO energy levels.
A delta–machine learning approach (36) was also implemented
(see the Supplementary Materials) to predict the difference be-
tween the ZINDO/S and the TB model described below. ANN
weights were initialized according to an He normal distribution (37),
batch normalization (38) was used on all layers except the output
layer, and an exponential linear unit activation function (39) was used
on each neuron. The L2 norm of each layer’s weight matrix was con-
strained to be less than 3.0. Themean of each input and output feature
was shifted to zero, and the rest of the feature data were scaled by the
SD of that feature. Training of the ANN used the Nesterov-accelerated
adaptive moment estimation (ADAM) algorithm (40) with a batch size
of 1000 to minimize the mean squared error of the training set pre-
dictions. Hyperparameter optimizations were performed and are
provided in tables S1 and S2. The root mean squared error (RMSE)
and coefficient of determination (r2) (41) were used as performance
metrics for ANN-ECG and evaluated using a fivefold cross-validation
for each dataset. Models trained on specific datasets were also ap-
plied to datasets generated from other temperatures and rigidity con-
straints as validation sets to assess overfitting. Keras (42) and scikit-
learn (41) were used for the implementation of all machine learning
methods, with scripts provided in the Supplementary Materials.

ANN results for S3MT were also compared to a TB Hamiltonian
using the intermonomer dihedral angles of S3MT. This valence band
Hamiltonian is defined by

H ¼ ∑
i
eic

†
i ci � ti;iþ1ðc†i ciþ1 þ c†iþ1ciÞ ð1Þ
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where i indexes the monomers of S3MT, c†i and ci are the fermionic
creation and annihilation operators for a hole onmonomer i, respec-
tively, ti,i+1 is the electronic coupling between neighboring HOMO
orbitals, and ei is the HOMO energy of the ith 3MTmonomer site. In
our analysis, ti,i+1 is defined as a cosine of the intermonomer dihedral
angles, qi,i+1.

ti;iþ1 ¼ Hi;iþ1cosðqi;iþ1Þ ð2Þ

where Hi,i+1 is the maximum value of the intermonomer coupling ob-
tained when two neighboring 3MT monomers are coplanar. Dihedral
angles, qi,i+1, are defined between neighboring 3MTmonomers i and
i + 1 using the vector perpendicular to each 3MT’s conjugated ring,
which was constructed using the same vectors as described previously
for the three-bead CG mapping scheme. The six HOMO energy levels
were obtained by calculating the eigenvalues of the matrix representa-
tion of Eq. 1. Fitting of the datasets to the TB model parameters was
obtained using the Sbplx nonlinear optimization routine (43), and for
fitting, we assumed that ei andHi,i+1 are independent of site position,
leading to two fitting parameters per dataset. Fitting parameters are
provided in the Supplementary Materials. A two-band (HOMO/
HOMO-1) Hamiltonian with distinct end sites using seven fitting
parameters was also applied in the Supplementary Materials but
yielded quantitatively similar results.

In a step toward the application of ANN-ECG to multimolecule,
condensed-phase electronic structure prediction, we also tested ANN-
ECG in the prediction of the electronic structure of intermolecular
dimers in two contexts: (i) the prediction of the valence band struc-
ture of a S3MT dimer and (ii) the prediction of hole self-exchange
Fig. 1. Schematic of the ANN-ECG method used in this work. Schematic example shows a three-bead/monomer CG mapping for S3MT.
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couplings between thiophene dimers in a bulk thiophene liquid. To
learn the electronic structure of S3MT dimers, configurations were
generated via MD at 300 K using the rigid constraints on 3MT
monomers and a weak harmonic constraining potential between
the COMof two S3MTmolecules. Configurations were sampled every
10 ps for a total of 30,000 dimer configurations. The six HOMO
energy levels of these dimers were then computed at the ZINDO/S
level of theory. The CG distance matrix between all beads was used
as the input feature. Standard scaling was performed to the input
and output features, and a hyperparameter grid search was performed
leading to a best-performing ANN structure of [100,80,60,40,20,6].

Last, we appliedANN-ECG to learn the complex nodal structure of
the intermolecular coupling between two rigid thiophene dimers at a
coarse-grained resolution. To learn the hole self-exchange couplings,
configurations were generated via a rigid-body NPT MD simulation
with configuration snapshots taken every 10 ps.We limited ourselves to
a total of 100,000 unique dimer configurations. These snapshots were
then decomposed into all unique dimer pairs using a cutoff radius of
1 nm between thiophene COM. These dimer pairs were then used to
compute the absolute value of the electronic coupling associated with
hole self-exchange at the HF/6-31G* level of theory (44). A distance
matrix between CG (five-bead—united atom) representations of thio-
phene dimers was then computed as the input feature. ANN-ECG was
then applied to learn the log of the thiophene dimer couplings at the
five-bead CG resolution. Standard scaling transformation was applied
to the input and output features. A hyperparameter search was per-
formed, and an ANN structure of five hidden layers, each containing
200 neurons and using a batch size of 256, were selected.
RESULTS
We begin by comparing the predictive performance of ANN-ECG
to that of the TB model (Eq. 1) for the 300 and 500 K/rigid datasets.
Figure 2 demonstrates that ANN-ECG substantially outperforms the
TB model (Eq. 1) in both RMSE and r2 using a fivefold cross-valida-
tion for each dataset (Table 1). For both 300 and 500 K/rigid datasets,
RMSE of less than 20 meV can be obtained over the entire 3-eV inter-
val using ANN-ECG, whereas the TB model produces a RMSE greater
than 50 meV for both datasets. Larger prediction errors are observed at
500 K relative to 300 K, which is anticipated because of the greater
amount of configuration space explored by the 500-K MD simulation
and consequently the possibility for more diversity in the configuration-
dependent HOMO energies. The observed difference in performance
between ANN-ECG and the TB model is due to the fact that TB only
uses intermonomer dihedral angles with a predefined functional form
(Eq. 2), whereas ANN-ECG uses a learned function of all degrees of
freedom available at a given CG resolution. It is critical to emphasize
that existing phenomenological CG electronic Hamiltonians require
that specific degrees of freedom be defined a priori, along with the
corresponding functional forms for the dependence of energies and
couplings on those degrees of freedom. In this sense, ANN-ECG is
a method that learns a nonlinear transformation of the distance matrix
at the CG resolution to map an optimal coarse-grained electronic
“Hamiltonian” that can predict valence band electronic structure.
Notably, in principle, the predicted error associated with ANN-ECG
can be trivially decreased by sampling additional configurations and
using more powerful machine learning approaches, whereas the
physics-based approach is strictly limited by the posited functional
form.
Jackson et al., Sci. Adv. 2019;5 : eaav1190 22 March 2019
The results of Fig. 2 used datasets of 10,000 independent configura-
tions to train an ANN-ECG model that significantly outperformed the
TB Hamiltonian predictions. However, for situations with limited data
availability, it is important to gauge how much data are required for
ANN-ECG to learn a model of sufficient predictive accuracy. To quan-
tify the influence of training data size on ANN-ECG performance, we
plot the RMSE and r2 of ANN-ECG across a fivefold split training
dataset of variable size in fig. S2. Performance is measured by apply-
ing the averaged model from the fivefold cross-validation to a held-
out 1000 configuration validation set. The 500 K/rigid dataset is
used for fig. S2, but analogous results can be obtained for the 300 K/
rigid dataset. An RMSE of less than 40 meV across all six HOMO
energy levels can be obtained with less than 2500 independent,
single-molecule configurations, which we believe is eminently ob-
tainable in most organic semiconductor contexts, as this is simply
a single configurational snapshot of many bulk MD simulations.
The high r2 value (~0.93) supports the accuracy of the prediction
using 2500 data points, and the performance on the held-out valida-
tion set ensures that the results are not biased by overfitting. In the
context of the TBmodel results, ANN-ECG begins to outperform the
TB r2 after ~1500 data points, while the low value of both RMSE and
r2 at data sizes less than 1000 suggests overfitting. For dataset sizes
smaller than 1000 data points, as withmany ANN applications, extra
precautions (e.g., dropout regularization) should be taken to fit a re-
liable ANN-ECG model, and more likely, an alternative machine
learning algorithm would be required.

To determine the generalizability of ANN-ECG, we examined its
performance when trained and validated on configurations from MD
simulations performed at different temperatures. In principle, the tem-
perature should only dictate the amount of configuration space that is
explored by the MD trajectories, but the ANN-ECG algorithm could
still lack generalizability because of overfitting of the configurations at
a specific training temperature. In fig. S1, 2D histograms of the predic-
tion error for ANN-ECG trained on the 300 K/rigid dataset, applied to
the 500 K/rigid dataset (fig. S1A), and vice versa (fig. S1B) are shown.
These results support the generalizability of ANN-ECG as the con-
figurations of 300 and 500 K/rigid datasets are generated from MD
trajectories at different temperatures. The RMSE and r2 of ANN-
ECG in these contexts are quantified in Table 1. We observe that
ANN-ECG trained at 500 K/rigid applied to the 300 K/rigid dataset
(RMSE = 12.4 meV/r2 = 0.990) outperforms ANN-ECG trained at
300 K/rigid applied to the 500 K/rigid dataset (RMSE = 29.3 meV/r2 =
0.964). This result is supported by the physical intuition that tempera-
ture is a metric for the amount of configuration space explored—the
underlying quantum-mechanical function can be better learned if more
configurational space is explored in the training data. However, it is im-
portant to emphasize that both ANN-ECG models display high accu-
racy, especiallywhen compared to the performance of the TBmodel, for
the prediction of the HOMO energy levels. Moreover, in Table 1, the
500 K/rigid trained model applied to the 300 K/rigid dataset actually
marginally outperforms the cross-validated predictions of the 300 K/
rigid dataset. We interpret this result not only as an assurance that we
are not overfitting our data but also that ANN-ECG trained on higher-
temperature configurations might exhibit higher accuracy and more
generalizability relative to calculations trained at lower temperatures.

All previous results have relied on the use of S3MT configurations
derived from theMD simulationswhere the internal degrees of freedom
of all 3MTmonomers were frozen. To test the utility of ANN-ECG for
flexible atomistic systems, we release the rigid monomer constraints of
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S3MT and gauge the predictive ability of ANN-ECG when trained on
configurations derived from fully flexibleMD simulations (300 and 500
K/flexible). The same mapping of the three CG beads is used as that
for the rigid simulations. As shown in Fig. 3 and Table 1, the RMSE is
larger than that in the case of the rigid simulations by a factor of ~6 to 7.
This increase inRMSE is due to the additional intramolecular degrees of
Jackson et al., Sci. Adv. 2019;5 : eaav1190 22 March 2019
freedom of each 3MT monomer contributing to a broadening of the
HOMO energies, as multiple atomistic configurations can be equiva-
lently mapped to the same CG configuration. For flexible simulations,
the predictive accuracy of ANN-ECGwill be contingent on the CG res-
olution, and consequently, the three-bead CGmapping is limited in this
regard, although it still exhibits reasonable performance (r2 = ~0.5) at
both temperatures. CG mappings that span the range of CG resolution
using a more conventional COM-based mapping scheme will be ex-
plored later in the article.

For flexible configurations, a useful insight is derived when the
ANN-ECG model trained on the flexible configurations (300 and
500 K/flexible) is used to predict the electronic structure of the rigid
configurations (300 and 500 K/rigid). If the ANN trained on the
flexible model learns the underlying quantum-mechanical function
and is not overfitting, then when applied to the rigid datasets, ANN-
ECG should still exhibit high accuracy, as the rigid configurations
occur at 3MT energy minimums, which should be interpolatable
from the ANN-ECG model trained on flexible configurations.
Figure 3 and Table 1 show that 300 and 500 K/flexible predictions
exhibit an r2 of ~0.5. When the ANN-ECG models trained on those
datasets are applied to 300 and 500 K/rigid datasets, the r2 increases
to ~0.7 to 0.75. This result suggests that ANN-ECG correctly learns
the quantum-mechanical function required to predict the HOMO
valence band regardless of molecular constraints. Furthermore, this
supports the idea that ANN-ECG can be used to map configura-
tionally dependent electronic structure from fully flexible simulations
onto CG representations and that it does not require configura-
tions drawn from constrained MD simulations. In this context,
Fig. 2. Predictive accuracy of ANN-ECG versus TB Hamiltonian. Two-dimensional (2D) histogram plots of ANN-ECG performance applied to the (A) 300 and (B) 500 K/rigid
datasets and the TB model (Eq. 1) applied to the (C) 300 and (D) 500 K/rigid datasets. Color bar denotes the probability distribution of predicted HOMO energy levels,
and the inset shows the prediction in the interval of the highest-energy HOMO.
Table 1. RMSE and r2 results for all models and datasets in this study.
Method
 Train/test
 Validation
 RMSE (meV)
 r2
TB
 300 K/rigid
 54.7 ± 1.0
 0.780 ± 0.001
TB
 500 K/rigid
 66.7 ± 1.3
 0.790 ± 0.001
ANN
 300 K/rigid
 13.5 ± 0.5
 0.989 ± 0.001
ANN
 500 K/rigid
 19.7 ± 0.6
 0.984 ± 0.001
ANN
 300 K/flexible
 90.7 ± 0.6
 0.573 ± 0.008
ANN
 500 K/flexible
 121.7 ± 0.9
 0.466 ± 0.009
ANN
 300 K/rigid
 500 K/rigid
 29.3 ± 1.2
 0.964 ± 0.003
ANN
 500 K/rigid
 300 K/rigid
 12.4 ± 0.5
 0.990 ± 0.007
ANN
 300 K/flexible
 300 K/rigid
 61.4 ± 2.0
 0.752 ± 0.016
ANN
 500 K/flexible
 500 K/rigid
 82.7 ± 1.7
 0.704 ± 0.010
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the only constraint on the accuracy of the ANN-ECG prediction
is the number of CDOF maintained by the CG model, which is
consistent with the general philosophy that a CG model can only
predict features consistent with its assumed length and time scale
resolutions.

The choice of CG representation is often dictated by physical intu-
ition or convenience; in that sense, it can be viewed as somewhat arbi-
trary. In the case of ANN-ECG, the selected CG resolution will
necessarily affect its ability to resolve the conformationally dependent
electronic structure, and it is therefore of interest to examinewhether an
optimal level of description exists for which computational efficiency
(and exploration of phase space) are maximized, without loss of the
quantum-mechanical predictive power. There are two extremes of res-
olution for the representation of S3MT: the inclusion of all atomistic
degrees of freedom and the treatment of the entire molecule as a single
CG bead. In the detailed resolution, one expects the highest predictive
accuracy, as these degrees of freedomare the same as those used as input
to the original electronic structure calculation. At the coarsest resolu-
tion, one expects to predict only the mean value of the electronic struc-
ture of the molecule, without the ability to capture any conformational
dependence. To demonstrate the impact of resolution choice on the ac-
curacy of ANN-ECG, in Fig. 4A, we show the fivefold cross-validated
RMSE and r2 in the prediction of the S3MT valence band energies for
the 300 K/flexible dataset as a function of the CG resolution used. The
CGmappings used at each resolution are presented for a representative
configuration in Fig. 4B, with the exact mapping provided in the Sup-
plementary Materials. Note that a hyperparameter optimization is per-
formed for ANN-ECG at each resolution.
Jackson et al., Sci. Adv. 2019;5 : eaav1190 22 March 2019
Figure 4 demonstrates the ability of ANN-ECG to reproduce the
conformation-dependent electronic structure of S3MT for different
levels of CG resolution. It is important to note that the atomistic repre-
sentation (representation 0) performs marginally worse than represen-
tation 1 (equivalent to a united atommodel) because of overfitting from
the large size of the distance matrix input and its associated large num-
ber of ANN weights. As the representation coarseness increases from
1 to 5, ANN-ECG’s RMSE increases from 40 to 75 meV because of
the decimation of relevant conformational information. However, the
slow rate of this decline between resolutions 1 and 5 suggests that CG
models with relatively coarse resolutions (e.g., resolution 5 involves only
two beads/3MTmonomer) can still capturemuch of the conformation-
ally dependent electronic structure. When the coarse-graining pro-
gresses to representation 6, a drastic increase in the RMSE (130 meV)
is observed. Resolution 6 represents the point at which one CGbead per
monomer is obtained—at this resolution, intermonomer dihedrals can-
not be described by the CG representation. As intermonomer dihedrals
are a critical parameter in describing the conformationally dependent
electronic structure of conjugated molecules (24–26), this result
supports physical intuition. It is also useful to point out that the RMSE
of representation 5 for the 300 K/flexible dataset (75 meV) is compara-
ble to even the TBmodel for the rigid configurations. As the resolution
is further coarsened to 7 (three beads per S3MT molecule) and 8 (one
bead per S3MTmolecule), the accuracy corresponding to the prediction
of the mean of the valence band positions is reached.

The results of Fig. 4 suggest a means of obtaining computationally
optimal CG resolutions for studies of molecules having conforma-
tionally dependent electronic structure. The sudden drop in predictive
Fig. 3. ANN-ECG performance on rigid and flexible configurations. 2D histograms of ANN-ECG performance with a (A) 300 K/flexible trained model applied to
300 K/flexible test set, (B) 500 K/flexible trained model applied to 500 K/flexible test set, (C) 300 K/flexible model applied to 300 K/rigid test set, and (D) 500 K/flexible
model applied to 500 K/rigid test set. Color bar denotes the probability distribution of predicted values, and the inset shows the prediction in the interval of the
highest-energy HOMO.
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performance observed in going fromCG resolution 5 to 6 confirms our
physical intuition regarding the critical influence of intermonomer
dihedrals—if these CDOFs are not captured, the ANN-ECG per-
formance deteriorates strongly. In systems where the important
CDOF are not well known, it might be useful to feed various CG map-
ping schemes into the ANN-ECG algorithm to derive an optimal CG
resolution—one where a relatively high accuracy of conformationally
dependent electronic structure prediction can be maintained with a
minimal number of beads while accelerating the conformational
sampling procedure via MD or MC.

With the goal of predicting condensed-phase electronic struc-
ture, we next apply ANN-ECG to the problem of predicting the
conformationally dependent electronic structure of intermolecular
dimers at a coarse-grained resolution. We focus on ANN-ECG in
two specific contexts: (i) the prediction of the conformationally
dependent HOMO band structure of the S3MT dimer (Fig. 5A)
and (ii) the prediction of the conformationally dependent hole
self-exchange coupling between thiophene dimers extracted from
the liquid state (Fig. 5C).

Figure 5B shows the predictive accuracy ofANN-ECGapplied to the
HOMO energies of the CG S3MT dimer computed at the ZINDO/S
level of theory. A hyperparameter search of the ANN structure yielded
a fivefold cross-validated RMSE of 25.6 ± 0.9 and an r2 of 0.921 ± 0.002.
As the configuration space of the dimer is exponentially larger than that
of a single S3MTmolecule, themarginal decrease in predictive accuracy
relative to the monomer is anticipated for our dataset size (30,000 con-
figurations). This result is of particular interest because of the fact that,
to our knowledge, there are no existing methods (e.g., phenomeno-
logical Hamiltonians) capable of predicting the conformationally
dependent electronic structure of intermolecular dimers at a coarse-
grained resolution, making ANN-ECG a unique tool for the coarse-
graining of electronic structure at increased spatial resolutions.

Next, we apply ANN-ECG to learn the logarithm of the electronic
coupling associated with hole self-exchange between thiophene dimers
using a five-bead coarse-grained representation. This particular
application presents specific challenges due to the complex and rapidly
varying nodal structure of the intermolecular coupling (45). A hyper-
parameter search achieves a fivefold cross-validated RMSE of the base
Jackson et al., Sci. Adv. 2019;5 : eaav1190 22 March 2019
10 logarithm of the electronic coupling of 0.506 ± 0.002 and an r2 of
0.753 ± 0.003, which corresponds to a predictive accuracy of a factor
of ~3.0 for the magnitude of the electronic couplings. Provided the rel-
atively large size of the dataset of thiophene dimer conformations
(100,000), an analysis of this limited accuracy is warranted. The
ANN, on average, overpredicts themagnitude of the coupling, although
a long and diffuse tail of underpredictions exists below the diagonal.
Upon examination of the error distribution in Fig. 5D, it is evident that
predicting the complex nodal structure of the overlap of thiophene or-
bitals is a challenge for the ANN. Specifically, the distribution of pre-
dicted errors broadens significantly at smaller values of the couplings,
which we attribute to poor fits of the nodal planes at larger inter-
molecular distances; the visual examination of validation sets using pla-
nar coupling surfaces often shows that these fine nodal planes where the
couplings rapidly go to zero are missed by the ANN.

Despite this limited accuracy, ANN-ECG applied to electronic cou-
plings still has meaningful practical applications. Specifically, for a loss
of a factor of 2 to 3 in predictive accuracy, the computation of electronic
couplings between molecular dimers can be accelerated by a factor of
~105 for thiophene dimers, an acceleration that should scale as a
function of system size with the scaling of the competing electronic
structure method. This accuracy is comparable with variations in com-
puted electronic couplings as a function of quantum chemistry, basis
set, or method for computing couplings (46). Also note that the config-
urations were drawn from a liquid state where the peak of the first shell
of the radial distribution function is located ~5.5 Å—this distance is
substantially larger than the typical p-stacking distance of 3 to 4 Å,
and consequently, many of the rapid changes in coupling values attrib-
utable to the nodal planes may simply be seen as noise by the ANN.
In this regard, alternative configurational sampling schemes, better
descriptors, a larger dataset, and more advanced machine learning
protocols could help improve the predictive accuracy in the future.
DISCUSSION
It is useful to provide context for where ANN-ECG sits in the cur-
rent landscape of simulation protocols for soft materials. First,
ANN-ECG accomplishes a distinct goal that we believe is unachievable
Fig. 4. ANN-ECG performance applied to a systematically reduced set of coarse-grained representations. (A) ANN-ECG fivefold cross-validated RMSE (green) and
r2 (blue) of 300 K/flexible S3MT configurations as a function of CG resolution. (B) Visualizations of the CG mappings for S3MT occurring at all resolutions shown in (A).
Resolution 8 in (A) corresponds to one CG bead per S3MT molecule and is not explicitly shown.
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by any existing methodology: The determination of conformationally
dependent electronic structure at a spatial resolution consistent with
the coarse-grained model used to generate configurations. This makes
ANN-ECG an important advance in the use of machine learning
methods to develop quantitatively accurate coarse-grained electronic
“Hamiltonians” capable of being endowedwith chemical specificity. Sec-
ond, ANN-ECG has the potential to be faster than even cheap semi-
empirical methodologies [e.g., ZINDO/S or semiempirical TB (47)], as
a single forward pass of a trained neural network takes on the order of 10
to 100 ms, whereas a similar electronic structure evaluation typically takes
on the order of 1 to 1000 s depending on the molecule’s size and the
scaling of the quantum chemistry. Even accounting for the ANN hyper-
parameter optimization, the computational savings of ANN-ECG, espe-
cially for large systems and molecules, are substantial. Third, fast
semiempirical and TBmethodologies are dependent on their underlying
parameterization, whereas ANN-ECG can be applied in conjunction
with any quality of quantum chemistry [even CCSD(T)] if the training
data exist. This is a critical difference as many TBmethods are parame-
terized at the hybrid DFT level to reproduce geometries and vibra-
tional frequencies and not ionization potentials, electron affinities,
or band structures. Moreover, we viewANN-ECG as synergistic with
existing semiempirical methods—future work could conceivably use
TB to obtain the conformationally dependent electronic structure of
large molecular aggregates at the limit of the size scaling of TB, and
ANN-ECG could be applied on top to screen the morphological de-
pendences of electronic structure at even larger (hundreds of nano-
meter) length scales. ANN-ECG is not limited to the prediction of
purely energetic quantities, and future applications to the predictions
Jackson et al., Sci. Adv. 2019;5 : eaav1190 22 March 2019
of polarizabilities, excited state electronic structure, wave functions,
and length-transferable polymeric electronic structure at coarse-grained
resolutions are under way.

In summary, we have presented a machine learning–based strategy
—ANN-ECG—for mapping conformationally dependent electronic
structure, averaged over decimated degrees of freedom, onto CG
models at arbitrary levels of resolution. ANN-ECG performs well
when trained on configurations derived from different temperature
and molecular constraint simulations and serves as a general means
of deriving coarse-grained electronic structure. We explicitly note that
ANNs were chosen as the machine learning approach for the simplicity
and rapidity of their training using the backpropagation algorithm;
however, many other machine learning algorithms, such as Gaussian
approximation potentials, could find accurate and effective use in the
mapping of electronic structure to CG representations. We anticipate
the ANN-ECG methodology to have a suite of potential applications
in coarse-grained simulations of materials that have traditionally re-
quired computationally laborious back-mapping (48) and multiscale
simulation schemes to derive fine-grained detail from coarse-grained
simulations.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/3/eaav1190/DC1
Fig. S1. Temperature transferability of the ANN-ECG model.
Fig. S2. ANN-ECG performance versus training data aize for 500 K/rigid dataset.
Fig. S3. Distribution of HOMO energy levels for 300 K/flexible and 300 K/rigid datasets.
Fig. S4. Atomic numbering scheme used for each 3MT monomer.
Fig. 5. ANN-ECG applied to the prediction of configurationally dependent dimer electronic structure. (A) Schematic of atomistic and coarse-grained representa-
tions of a S3MT dimer. (B) 2D histogram of ANN-ECG performance applied to the S3MT dimer six highest HOMO energy levels. (C) Schematic of dimer configurations
taken from a classical MD simulation of the thiophene fluid, with both atomistic and CG representations shown. (D) 2D histogram of ANN-ECG performance applied to
predict the hole self-exchange coupling between thiophene dimers at the CG resolution.
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Fig. S5. Delta–machine learning fitting results for ANN-ECG using 300 K/rigid dataset.
Fig. S6. Application of ANN-ECG to conjugated copolymer PTB7 and non-fullerene acceptor TPB.
Fig. S7. ANN-ECG results for the HOMO-5→HOMO energy levels of S3MT using 300 K/rigid
dataset computed at the BP86/6-31G* level of theory.
Table S1. Hyperparameter optimization for ANN layers and neurons.
Table S2. Hyperparameter optimization for number of training epochs.
Table S3. Results using ANN-ECG and a systematic coarse-graining strategy.
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