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Background: Ponies are highly susceptible to metabolic derangements including hyperinsuline-

mia, insulin resistance, and adiposity.

Hypothesis/Objectives: Genetic loci affecting height in ponies have pleiotropic effects on meta-

bolic pathways and increase the susceptibility to equine metabolic syndrome (EMS).

Animals: Two hundred ninety-four Welsh ponies and 529 horses.

Methods: Retrospective study of horses phenotyped for metabolic traits. Correlations between

height and metabolic traits were assessed by Pearson's correlation coefficients. Complementary

genome-wide analysis methods were used to identify a region of interest (ROI) for height and

metabolic traits, determine the fraction of heritability contributed by the ROI, and identify can-

didate genes.

Results: There was an inverse relationship between height and baseline insulin (−0.26) in ponies.

Genomic signature of selection and association analyses for both height and insulin identified

the same ~1.3 megabase region on chromosome 6 that contained a shared ancestral haplotype

between these traits. The ROI contributed ~40% of the heritability for height and ~20% of the

heritability for insulin. High-mobility group AT-hook 2 was identified as a candidate gene, and

Sanger sequencing detected a c.83G>A (p.G28E) variant associated with height in Shetland

ponies. In our cohort of ponies, the A allele had a frequency of 0.76, was strongly correlated

with height (−0.75), and was low to moderately correlated with metabolic traits including: insulin

(0.32), insulin after an oral sugar test (0.25), non-esterified fatty acids (0.19), and triglyceride

(0.22) concentrations.

Conclusions and Clinical Importance: These data have important implications for identifying

individuals at risk for EMS.
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1 | INTRODUCTION

Equine metabolic syndrome (EMS) describes a clustering of metabolic

disturbances including insulin dysregulation (hyperinsulinemia and

insulin resistance) and dyslipidemia (elevated triglyceride low-density

lipoprotein concentrations), and generalized obesity and/or regional

adiposity (eg, nuchal ligament, tail head).1,2 Equine metabolic syn-

drome is an important health concern as affected horses and ponies

are predisposed to laminitis.

Abbreviations: AIC, Akaike information criterion; ANOVA, analysis of variance;

BF, Bayes factor; bp, base pairs; EMS, equine metabolic syndrome; ECA6,

equine chromosome 6; GLU-OST, glucose after an oral sugar test; h2SNP, SNP

chip heritability; HMGA2, high-mobility group AT-hook 2; INS-OST, insulin after

an oral sugar test; IRAK3, interleukin 2 receptor associated kinase 3; kb,

kilobase; LD, linkage disequilibrium; Mb, megabase; MetS, metabolic syndrome

in humans; NCBI, National Center for Biotechnology Information; NEFA, non-

esterified fatty acids; OST, oral sugar test; QC, quality control; ROI, region of

interest; SNP, single nucleotide polymorphism.
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Ponies (individuals with a wither height less than 58 in.) are more

insulin insensitive then large breed horses,3 and metabolic compari-

sons across breeds have consistently found ponies to be among the

more insulin-resistant groups.4,5 Unlike many large breed horses, after

domestication ponies have maintained a metabolically thrifty pheno-

type with seasonally adaptive changes including suppressed metabolic

rates and excessive fat storage.6 However, the mechanisms underlying

ponies' unique metabolic profiles and greater EMS susceptibility have

not been identified.

A relationship between individuals of short stature and an

increased risk of chronic disease has been well described in

humans.7–9 In particular, there are significant associations between

height and the risk of developing Type 2 diabetes or metabolic syn-

drome (MetS),10–15 with measured metabolic abnormalities more

severe in shorter individuals.10,11,16,17 Many negative correlations

between height and specific derangements of the endocrine system

include: obesity,16,18,19 regional adiposity,14 elevated triglycerides,11,20

impaired glucose tolerance post oral sugar test (OST),17,21 and insulin

resistance.10–12,16 Several underlying mechanisms for these associations

have been proposed, including a poor uterine environment, impaired

nutrition, adverse social circumstances, and genetic factors.10,22–25 The

role of genetic factors is supported by the identification of pleiotropic

effect between variants within the promoter of the GAD2 gene and low

birth weight, decreased length, impaired insulin secretion, and early

onset obesity,26 as well as associations between single nucleotide poly-

morphisms (SNPs) in the LMNA gene with short stature and elevated tri-

glycerides, and obesity and increased waist circumference.27

We hypothesize that loci affecting height could also have pleio-

tropic effects on metabolic pathways in horses and ponies and

increase the risk for EMS. Here we use genomic tools to identify a

chromosomal locus associated with both height and fasting insulin

concentrations in Welsh ponies and demonstrate that a probable

functional mutation in the high mobility group AT-hook 2 (HMGA2)

gene is contributing to both height and metabolic traits.

2 | MATERIALS AND METHODS

2.1 | Samples

Two hundred ninety-four Welsh ponies (213 females and 81 males)

from 32 farms within the United States were included in the study,

with ages ranging from 2 to 33 years (mean age of 11.7 years). As a

breed, Welsh ponies are divided into 6 sections based on pedigree

and height (see Supporting Information Table 1), which were repre-

sented in our cohort as follows: section A (n = 74), section B

(n = 146), section C (n = 3), section D (n = 15), section H (n = 26),

and unregistered Welsh ponies (n = 10). A total of 529 individuals

from 4 large-breed horses, Quarter horses (n = 59), Arabians (n = 64),

Tennessee Walking Horses (n = 48), and Morgan horses (n = 293), as

well as 65 horses of other pure or mixed breeds, were also collected.

These samples were obtained from farms throughout North America

and represented 300 females and 229 males with an age range of

2-33 years old (mean age of 13 years).

2.2 | Phenotype data

Signalment, medical history, height at the withers, and biochemical

measurements at baseline and after an OST were collected on all indi-

viduals. Baseline measurements and assays included glucose (YSI

2300 STAT Plus glucose and lactate analyzer), insulin (Siemen's TKIN1

Insulin Coat-A-Count Kit), ACTH (Siemen's LKAC1 ACTH kits), leptin

(Millipore Sigma's XL-85 K Multi-Species Leptin RIA), adiponectin

(Millipore Sigma's EZHMWA-64 K Human High Molecular Weight

Adiponectin ELISA), triglycerides (Millipore Sigma's TR0100 Serum

Triglyceride Determination kit), and non-esterified fatty acids (NEFA;

Wako Diagnostics' HR Series NEFA kit). Oral sugar test measurements

comprised insulin (INS-OST) and glucose (GLU-OST) levels 75 minutes

after oral administration of 0.15 mg/kg Karo light corn syrup.

2.3 | Genotype data

Genomic DNA was isolated from whole blood or hair roots per manufac-

turer recommendations (Puregene Blood Core Kit, Qiagen, Germantown,

MD, USA). Welsh ponies were genotyped with either the Axiom Equine

MCEc670 (n = 220 Welsh ponies) or MCEc2M (n = 44 Welsh ponies)

genotyping arrays, containing 670 805 SNP markers and 2 011 826 SNP

markers,28 respectively. For the Welsh ponies not genotyped on the

MCEc2M array, Beagle software29,30 was used to perform genotype impu-

tation and haplotype phasing, using an across-breed reference population

of 516 horses of 14 different breeds, yielding a total of 1 931 311 SNPs.

Quality control (QC) measures were performed on the genotyping

data using the PLINK software package.31 This included SNP and indi-

vidual missingness and genotyping rates, discordant sex information,

and abnormally high heterozygosity (≥3 SDs from the mean). All indi-

viduals passed QC and were kept in the study cohort. Individual SNPs

with a genotyping success rate <90%, minor allele frequency <1.0%,

or outside Hardy Weinberg equilibrium were pruned, leaving a total of

1 511 302 SNPs for subsequent analysis.

2.4 | FST-based statistic

Genomic regions of breed-specific population differentiation were

identified in the Welsh ponies using SNP data from the 44 individuals

genotyped on the MCEc2M. Calculation of the di statistic was per-

formed using nonoverlapping 10 kilobase (kb) windows across the

31 equine autosomes with a custom Python script (https://github.

com/schae234/PonyTools) based on work previously described.32,33

The di statistic detects locus-specific deviation in allele frequencies for

the test population relative to the genome-wide average of pairwise

FST summed across populations. The background population con-

tained 463 individuals from 16 different breeds (Supporting Informa-

tion Table S2). Significant di windows were those corresponding to the

top 0.1% of the empirical distribution and were considered regions of

interest (ROIs) for putative signatures of selection. Two or more con-

tiguous significant di windows were considered as a single ROI.

2.5 | Association analysis

Association analysis for equine chromosome 6 (ECA6; total of 56 246

SNPs) was performed using imputed SNP genotype data from
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264 Welsh ponies. Height and EMS traits were treated as quantitative

phenotypes. Association analysis was performed using custom code

for a mixed linear regression model that included a random polygenic

term determined from a genomic relationship matrix calculated from

select trait associated SNPs, random herd effect, and fixed covariates

sex and age.34 Analysis utilized a combination of the Bayesian Sparse

Linear Mixed Model,35 available in the software program Genome-

wide Efficient Mixed Model Association,36 and a linear mixed model

implemented in FaST-LMM37 (additional description provided in

Supporting Information Supplemental Methods).

The threshold for genome wide significance was based on the

effective number of independent tests for the entire genome

(ie, SNPs, after correction for linkage disequilibrium [LD]), as

calculated using the Genetic Type 1 Error Calculator.38 The effective

number of independent tests was 841 750 resulting in a Bonferroni-

corrected threshold for genome wide significance of 5.9e-08.

2.6 | Estimation of heritability

SNP chip heritability (h2SNP) for height in Welsh ponies was calculated

from the imputed SNP genotype data (n = 264) with the software

program Linkage Disequilibrium Adjusted Kinship (LDAK),39,40 includ-

ing age, sex, and section as covariates. Two separate techniques were

used to estimate the genetic variance explained by our ROI. First, we

used genomic partitioning as previously described.39,41 The second

technique fit the top SNPs from the association analysis as covariates

in the analysis using LDAK's top-predictors function. Random subset-

ting of the data was performed to test the effect of a few cryptically

related individuals on the h2SNP estimates (see Supporting Information

Supplemental Methods).

2.7 | Haplotype analysis

Local haplotype sharing within the Welsh ponies used for association

analysis (n = 264) was calculated from the hapQTL program (http://

www.haplotype.org) with default settings.42 This approach relies on a

statistical model for LD to infer ancestral haplotypes and their

frequencies at each SNP marker for individuals within a population.

For each analysis, 1 expectation maximization run was used with

50 steps (-w 50), 3 upper clusters (-C 3), 10 lower clusters (-c 10), and

with a prior LD length of 0.5 cM (-mg 200). Based on recommenda-

tions from Xu and Guan (2014), contiguous SNPs with −log10 Bayes

factor (BF) >4 were considered significant ROI, and orphan signals

were removed from the analysis. Bayes factor values were calculated

for each of the 56 740 SNPs on ECA6 using height and baseline

insulin as quantitative phenotypes.

2.8 | HMGA2 and IRAK3 reconstruction and
sequencing

PCR primers were designed for all exons within 2 candidate genes,

HMGA2 and interleukin 2 receptor associated kinase 3 (IRAK3), using

the Primer3 software.43 Genomic sequences for primer design were

retrieved using the National Center for Biotechnology Information

(NCBI) Gene tool (https://www.ncbi.nlm.nih.gov/gene); base pair

(bp) position of equine exons were confirmed with NCBI's Nucleotide

BLAST tool (https://blast.ncbi.nlm.nih.gov/) against the human

genome. In some cases, the newly assembled EquCab3 version of the

equine genome was queried using a local BLAST tool to confirm exon

sequence identity. Details of all HMGA2 and IRAK3 exons, as well as

the PCR primer sequences, are presented in Supporting Information

Tables 3 and 4.

Genomic DNA from a panel of 51 individuals from 6 different

breeds (6 Morgan horses, 6 Arabian horses, 6 Tennessee Walking

horses, 12 Quarter horses, 3 Miniature horses, and 18 Welsh ponies)

was amplified by standard PCR. The resulting products were submit-

ted to the University of Minnesota Genomics Center for Sanger

sequencing after enzymatic cleanup using the ExoSAP-IT PCR Product

Cleanup Reagent (Thermo Fisher Scientific, Waltham, Massachusetts).

Sequencing results were then analyzed, processed, and aligned using

the Sequencher software version 5.1 (Gene Codes Corporation, Ann

Arbor, Michigan).

2.9 | HMGA2 exon 1 variant genotyping

Two methods were employed to genotype the HMGA2 exon 1 muta-

tion (c.83G>A) identified by Frischknecht et al.44 In the first method,

standard PCR primers were designed to flank and Sanger sequence this

exon (Supporting Information Table 3) in 438 horses, including

150 ponies and 288 large breed horses. In the second method, a Taq-

Man SNP genotyping assay using the Bio-Rad CFX96 Real-Time Sys-

tem was designed as previously described45 and per manufacturer's

recommendations (www.bio-rad.com/webroot/web/pdf/lsr/literature/

Bulletin_5279.pdf). Results were analyzed with BioRad's CFX Manager

Software version 3.1 (see Supporting Information Supplemental

Methods for a full description of this assay). Genotypes for this variant

using the second genotyping assay were obtained for an additional

144Welsh ponies and 241 large breed horses.

2.10 | Statistical analyses

Statistics were performed using functions within the software

package R.46 Metabolic traits were tested for normality using a normal

probability plot and a Shapiro test; traits were log or square root

transformed when appropriate. Correlations between height and EMS

traits (insulin, INS-OST, glucose, GLU-OST, NEFA, triglycerides, leptin,

adiponectin) and ACTH were calculated using a Pearson's correlation

coefficient. After adjusting for multiple testing using a Bonferroni cor-

rection (0.05/9), a P-value of <.005 was considered significant.

Analyses were performed as follows: all horses (n = 824), Welsh

ponies (n = 294), all large breed horses (n = 529), Quarter horses

(n = 59), Arabian horses (n = 64), Morgan horses (n = 293), and Ten-

nessee Walking horses (n = 48). Correlations among genotype for the

HMGA2 c83G>A variant and EMS traits, ACTH, or height were

calculated for the Welsh ponies (n = 294) using Pearson's correlation

coefficient and a Bonferroni-corrected P-value (0.05/10; <.005).

Least-square means were calculated with EMS traits, ACTH, or

height as the outcome variable, genotype as the response variable,

and age and sex as predictors. The R statistical software package Lin-

ear and Nonlinear Mixed Effects Models (nlme)47 fit the linear model
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using generalized least squares. The R statistical software package

Least-Square Means (lsmeans)48 was used to calculate the predicted

marginal means and pair-wise comparisons.

Model comparison for modes of inheritance between the HMGA2

c.83G>A variant and traits were performed using an analysis of

variance (ANOVA) for an additive, dominant, and recessive model.

The P-values of the F-statistic were compared across all 3 models.

The R statistical software package SNPassoc49 was used to calculate

the Akaike information criterion (AIC) and P-value among additive,

recessive, dominant, and codominant models. Model selection was

based on the lowest AIC values; however, models with less than

10 unit difference between them were considered indistinguishable.

3 | RESULTS

3.1 | Correlations among height, EMS traits,
and ACTH

Correlation analyses between height and biochemical traits in the

entire cohort (n = 823) revealed statistically significant inverse corre-

lations for insulin (−0.12), glucose (−0.11), adiponectin (−0.23), and

ACTH (−0.12), whereas positive correlations with height were found

for triglycerides (0.14) and leptin (0.12) (Table 1). No statistically sig-

nificant correlations between any of the traits and height were identi-

fied in the large breed horses as a whole (n = 529) or within any

individual breed (Table 1). However, within the Welsh pony popula-

tion (n = 294), a statistically significant inverse correlation with height

was identified for insulin (−0.26), with the correlation coefficient

between height and insulin higher than in the entire population

(Table 1), indicating that the pony population was predominately driv-

ing the association observed for this trait in the full cohort.

3.2 | FST-based statistic to detect signatures of
selection

A total of 212 208 nonoverlapping, 10 kb windows across all

31 equine autosomes were analyzed in the Welsh pony cohort, with

an average of 8.2 (�3.2) SNPs per window. A total of 212 windows

were within the top 0.1% of the empirical distribution of di values,

which in turn represented 134 ROI. Among the significant di windows,

50 (24%) were located on ECA6 and corresponded to 8 separate ROI

(Figure 1). One of these ECA6 ROI comprised 42 (20%) of the total

significant di windows and spanned an ~782 kb segment. Based on

EquCab2, (the equine reference genome available at the time of this

analysis), this segment ranged from bp positions 81 003 617 to

81 785 414 (Supporting Information Figure 1). The other 7 significant

ROIs on ECA6 were derived from singleton di windows, located at

least 1 megabase (Mb) apart. Of note, 162 other significant di win-

dows were distributed throughout all autosomes, except chromo-

somes 12, 16, 19, 30, and 31.

3.3 | Association analysis

For the Welsh pony cohort, P-values for 142 SNPs on ECA6 associated

with height exceeded the threshold for genome-wide significance

(Figure 2A). Based on EquCab2, all 142 SNPs were within the same

~1.3 Mb region and included SNPs from bp position 80 501 273 to

81 808 008. For insulin, P-values for 58 SNPs on ECA6 exceeded the

threshold for genome-wide significance and included SNPs from bp

position 80 639 787 to 81 651 604 (Figure 2B). Significant SNPs

within this ROI were not identified for any of the other EMS traits

or ACTH.

3.4 | Heritability and genetic variation

The h2SNP for height in the Welsh ponies was 0.87 (SD = 0.084).

Using genomic partitioning for height, the percent of the genetic vari-

ation contributed by the ROI (SNPs from bp position 80 501 273 to

81 808 008) on ECA6 was 0.34 (SD = 0.083), that is, 39% of the total

h2SNP. The top SNPs from association analysis were included in the

h2SNP model as covariates to estimate the contribution of these SNPs

to height in ponies. The 142 SNPs on ECA6 that exceeded the thresh-

old for genome-wide significance on association analysis were pruned

at an LD of >0.8 to avoid over fitting the h2SNP model, leaving 42 SNPs

for analysis. The percent of genetic variation contributed by these

42 SNPs was estimated to be 0.41, that is, 47% of the total h2SNP.

After random subsetting of the data, the resultant mean values for

h2SNP were not significantly different from the original estimates

above as follows: 0.89 (SD = 0.087) for the overall h2SNP estimate of

height, 0.38 (SD = 0.087) for genomic partitioning at the ROI, and

0.45 using the top SNPs from association analysis as covariates.

Within this cohort, we previously showed that baseline insulin

had an h2SNP of 0.81 (SD = 0.11), with a mean h2SNP of 0.82 (mean

SE: 0.12) after random subsetting.50 In this analysis, the h2SNP

explained by genomic partitioning was 0.19 (SD = 0.086) or 24% of

the total h2SNP for baseline insulin. Of the 58 significant SNPs found

on association analysis, 13 remained in our analysis after pruning for

LD. Including these SNPs as top predictors, the percent of genetic

variation contributed by these SNPs was 0.13 or 16% of the total

h2SNP. After random subsetting of the data, the mean h2SNP for geno-

mic partitioning at the ROI was 0.20 (SD = 0.086) and 0.14 using the

top SNPs approach.

3.5 | Haplotype analyses for height and baseline
insulin

Nearly 40% (23058) of all (56740) ECA6 SNPs had a BF value >4

when analyzing height as the trait of interest. A total of 107 SNPs had

the highest BF values (>30) and were within the range of bp positions

81 012 766 to 81 782 298 (Figure 3A). Evaluation of all 652 SNPs

within and flanking 1 kb of the ROIs identified by association analysis

and di statistic (SNPs from 80 499 826 to 81 809 066 bp), showed

that all SNPs exceeded the BF value threshold, with values ranging

from 4.17 to 40.12 (Figure 3A). When analyzing haplotypes using

baseline insulin as the trait of interest, 290 SNPs on ECA6 had a BF

value >4, which included 171 of the 652 SNPs comprising the ROI.

The haplotypes consisted of 2 predominant regions where 46 SNPs

were within bp positions 81 161 980 to 81 288 528 and 71 SNPs

were within bp positions 81 381 221 to 81 583 507 (Figure 3B). The

latter region also contained the SNPs with the highest BF values for
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the entire analysis (maximum BF of 7.5). HapQTL did not identify hap-

lotypes on ECA6 for any of the other traits.

3.6 | Candidate gene identification, sequencing, and
genotyping

The ROI identified in our study from association analysis and di statis-

tics (ECA6: 80 499 826 to 81 809 066) was further analyzed for posi-

tional candidate genes. Using NCBI and the Ensembl genome browser

with EquCab2 as the reference genome, a total of 16 positional candi-

date genes were identified, comprising 3 RNA genes, 2 pseudogenes,

and 11 protein coding genes (Figure 3C). A search of the PubMed lit-

erature database for known biological function and relevance in other

species resulted in the prioritization of HMGA2 and IRAK3 as biologi-

cal positional candidate genes. HMGA2 was the only protein-coding

gene within the smaller 81 161 980 to 81 583 507 region fine

mapped by haplotype analysis.

The HMGA2 c.83G>A variant in exon 1 reported by Frischnecht

et al.44 was identified in our 51 horse multi-breed cohort (6 Morgan

horses, 6 Arabian horses, 6 Tennessee Walking horses, 12 Quarter

horses, 3 Miniature horses, and 18 Welsh ponies); however, no addi-

tional HMGA2 or IRAK3 exonic variants were detected. All individuals

(n = 823) were then genotyped for the HMGA2 c83G>A variant. In

the Welsh pony (n = 294) cohort, the A allele frequency was 0.76 and

the G allele frequency was 0.24 (Table 2). The HMGA2 A allele fre-

quencies across the 5 sections of the Welsh ponies present in our

population were 1.0 for section A, 0.74 for section B, 0.83 for

section C, 0.03 for section D, and 0.64 for section H (Table 2, Sup-

porting Information Table 1). In the large breed horses (n = 529), there

were only 5 horses heterozygous for the HMGA2 A allele (2 Tennessee

Walking horses, 1 Morgan horse, 1 Mustang, and 1 Kentucky Moun-

tain horse), resulting in an overall A allele frequency of 0.005.

3.7 | Correlations among HMGA2 genotype, EMS
traits, and ACTH

Correlation analyses between HMGA2 genotype and the measured

traits were performed in Welsh ponies. A negative (−0.75; 95% CI:

−0.80 to −0.70; P-value <.001) correlation was identified between

the A allele and height. Pairwise comparisons of the least square

means of height and HMGA2 genotype revealed statistically signifi-

cant differences between all 3 genotypes (Figure 4A). Although the

ANOVA F-statistic did not differentiate among the 3 possible modes

of inheritance, an additive model was favored over recessive and

dominant models based on AIC (Supporting Information Table 5).

FIGURE 1 Genome-wide di values for Welsh ponies. Each di value is plotted on the y-axis and each autosome is shown on the x-axis in

alternating colors. Each dot represents a 10 kb window. The red horizontal line represents the top 0.1% of the empirical distribution of di values.
One region of interest on equine chromosome 6 (ECA6) spanned ~782 kb segment, ranging from 81 003 617 to 81 785 414 bp

FIGURE 2 Plot of the association analysis for equine chromosome

6 (ECA6) in 264 Welsh Ponies (WP). The base pair positions for
chromosome 6 are plotted along the x-axis and the −log10 of the P-
values are plotted on the y-axis. Individual circles represent single
nucleotide polymorphisms (SNPs). The red line marks the thresholds
for genome-wide significance. (A) Results obtained in WP for height.
Significant associations were noted on ECA6 with SNPs between
80 501 273 and 81 808 008 bp. (B) Results obtained in WP for
baseline insulin. Significant associations were noted on ECA6 with
SNPs between 80 639 787 and 81 651 604 bp
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Positive correlations with P-values <.005 were also identified

between the HMGA2 A allele and 4 of the 9 measured EMS traits in

the ponies, including insulin (0.32; 95% CI: 0.21-0.42), INS-OST (0.25;

95% CI: 0.14-0.35), NEFA (0.19; 95% CI: 0.075-0.30), and triglycerides

(0.22; 95% CI: 0.10-0.32). Correlations for traits that were not statisti-

cally significant included: glucose, GLU-OST, leptin, adiponectin, and

ACTH. Pairwise comparisons for insulin, INS-OST, and triglycerides

revealed that the predicted marginal means for the A/A genotype

were statistically different (P-value <.001) from both the G/G and

G/A genotypes, but that the predicted marginal means for the G/G

and G/A genotypes were not statistically different from each other,

suggesting recessives model of inheritance for these measurements

(Figure 4B-D). Although the P-values for the F-statistic linear regres-

sion modeling slightly favored recessive models for insulin, INS-OST,

and NEFA, the AIC values showed minimal separation between addi-

tive and recessive models for all 4 biochemical measurements

(Supporting Information Table 5). Pairwise comparisons between the

marginal means and genotype for NEFA also revealed statistically sig-

nificant differences between the A/A and G/A genotypes (Figure 4E).

4 | DISCUSSION

It is well recognized that ponies are at high risk for developing EMS;

however, the mechanisms underlying this increased susceptibility, and

the roles that genetic factors might play, are not understood. In our

study, we demonstrated that baseline insulin values, a major compo-

nent of the EMS phenotype, were correlated to height in Welsh

ponies. With complementary genome-wide analysis methods with

high-density SNP genotype data, we identified and fine-mapped a

locus on ECA6 associated with both of these traits in Welsh ponies,

which we estimated to be contributing ~40% and ~20% of the total

h2SNP for height and insulin, respectively. The positional candidate

genes HMGA2 and IRAK3 were prioritized based on known biological

function and evidence in other species. Sequencing of the promoters,

coding exons, and flanking intronic regions revealed only a c.83G>A

variant (p.G28E) in HMGA2, previously described in other small stature

horse breeds.44 Correlations between HMGA2 genotype and critical

metabolic measures of EMS in the Welsh ponies suggested a previ-

ously unrecognized pleiotropic effect of this locus and its candidate

HMGA2 functional variant.

Similar to what has been found in humans, an inverse correlation

between height and 5 EMS measurements (insulin, glucose, triglycer-

ides, leptin, and adiponectin) as well as ACTH were found in the large

cohort of horses and Welsh ponies. However, we determined that the

ponies were predominately driving the correlations in this cohort for

baseline insulin, as statistically significant correlations were not identi-

fied for any of the 4 other individual breeds. This led us to investigate

whether genetic loci for height, EMS measures, and ACTH in Welsh

ponies could be one and the same.

High-density SNP genotype data enabled us to use an FST-based

approach (di) to detect regions of low heterogeneity that exist because

of selection for a phenotype, as well as identify genomic regions con-

taining variants associated with both height and insulin on ECA6. We

identified several breed-specific loci undergoing selection in the

Welsh pony; however, the region with the highest number of signifi-

cant di windows, as well as those at the top of the empirical distribu-

tion, was a ~782 kb segment on ECA6 that was within the boundaries

of the 1.3 Mb ROI identified by association analysis. Although the di

statistic is blinded to phenotype, given the extensive breeding selec-

tion for short stature in ponies and the overlapping results with the

association analysis, we surmised that selection for height was respon-

sible for this genomic signature. Based on our cohort and the high her-

itability of height and baseline insulin, our association analysis had

adequate power to identify alleles with moderate to high effect size51

and readily detected the ECA6 locus in Welsh ponies for both traits.

With genomic partitioning, we estimated that the ROI (ECA6:

80 499 826 to 81 809 066) contributed to 39% of the genetic varia-

tion for height and 24% for baseline insulin. However, this approach

leads to inclusion of SNPs that were top predictors from association

analysis, violating the effect size assumption when using a restricted

estimated maximum likelihood analysis. Thus, we also performed a

FIGURE 3 Fine-scale structure of the region of interest (ROI) on

equine chromosome 6 (ECA6). Regions of interest identified from the
results of the association analysis and di statistic were used for
haplotype analysis for both height (A) and baseline insulin values (B) in
Welsh ponies. Bayes Factor values above the red horizontal line are
considered significant and represent an ancestral haplotype. Shared
ancestral haplotypes between both traits are most predominant from
base pair positions 81 161 980 to 81 288 528 and 81 381 221 to
81 583 507. (C) Aligning the NCBI genome browser for the ROI
identified HMGA2 (red circle) as a coding gene within the shared
haplotype. IRAK3 was also identified as a candidate gene based on
proximity and biological data.
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top predictors approach after pruning for highly correlated SNPs that

resulted in an estimate of genomic contribution of 47% for height and

16% for baseline insulin. Although these estimates were not per-

formed in an independent population, which can lead to over fitting of

the data, it does suggest that the ECA6 locus is contributing ~40% of

the genetic variation of height and ~20% for baseline insulin in our

population. Unaccounted for population stratification or cryptic relat-

edness can lead to overestimation of h2SNP. However, the mean h2SNP

estimates and SDs after randomly subsetting the data did not signifi-

cantly differ from the original estimates, indicating that population

substructure or cryptic relatedness was not significantly biasing our

estimates (Supporting Information Supplemental Methods).

We identified a haplotype block that spanned the entire height

ROI on ECA6 found by association analysis, while haplotype blocks in

the same region for baseline insulin contained distinct major and

minor peaks. This likely reflects differences in variant effect size, non-

shared factors affecting the traits, and selection for height. We

showed that 39%-47% of the genetic variance in height could be

explained by our ROI on ECA6; thus, the locus has a large effect on

height in ponies. In contrast, the effect on insulin is smaller at 21%-

25% of the genetic variation. This is consistent with the results from

the Pearson's correlation between height and insulin, which was

−0.26, indicating that not all the variation in insulin could be explained

by its relationship to height with nonshared factors present between

TABLE 2 Genotyping results for the HMGA2 c.83G > A variant in Welsh ponies and large breed horses

Breed n G/G (WT) G/A (HET) A/A (MUT) A allele frequency G allele frequency

Welsh ponies 294 30 80 184 0.76 0.24

Section A 78 78 1.0 0.00

Section B 150 8 62 80 0.74 0.26

Section C 3 1 2 0.83 0.17

Section D 15 14 1 0.03 0.97

Section H 37 8 11 18 0.64 0.37

Unregistered 11 5 6 0.77 0.23

All large breed horses 530 525 5 0.005 0.995

Morgan horses 293 292 1 0.002 0.998

Quarter horses 59 59 1.0

Tennessee Walking horses 48 46 2 0.021 0.98

Arabians 64 64 1.0

Other large breed horses 66 64 2 0.015 0.985

Results are also shown for specific breeds including: Sections of Welsh ponies, Morgan horses, Quarter horses, Tennessee Walking horse, and Arabians.
Allele frequencies are provided for the G (wild-type) and A (mutant) allele.
Abbreviations: HET, heterozygote; MUT, homozygous for the mutant allele; WT, Homozygous for the wild-type allele.

FIGURE 4 Least-square mean estimates and 95% confidence intervals for the HMGA2 c.83G>A variant and various phenotypes in a population

of 294 Welsh ponies. Height (A), insulin (B), insulin after an oral sugar test (INS-OST) (C), triglycerides (D), and non-esterified fatty acids (NEFA) (E)
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the traits. Finally, short stature has been strongly selected in ponies

through extensive breeding; however, hyperinsulinemia is not a desir-

able trait. The long haplotype on height likely reflects extensive hitch-

hiking secondary to selective breeding for that trait. Thus, haplotype

analysis allowed us to fine map our ROI for height and insulin to bp

positions: 81161980 to 81 583 507, where HMGA2 was the only

annotated coding gene.

The HMGA2 protein interacts with AT-rich regions of DNA

through 3 DNA binding domains (AT hooks). This interaction alters

the chromatin structure and promotes protein-protein interactions

necessary for assembly and stabilization of the enhanceosome during

initiation of transcription.52 HMGA2's main functional role is thought

to be in cellular proliferation and differentiation, which has been sup-

ported by the numerous studies in humans linking HMGA2 with

height.53–59 The HMGA2 locus was also identified as being 1 of 4 loci

explaining 83% of the genetic variation of height in horses and 1 of

6 loci explaining 46%-52.5% of the genetic variation of height in

dogs.60,61 Furthermore, knockout mouse models for HMGA2 result in

a lean, pygmy phenotype62, whereas, gain-of-function mutations of

this gene led to gigantism, excessive fat formation, and lipomatosis in

both mice and humans.63,64 In addition to the alterations in fat metab-

olism noted above, HMGA2 has been associated with other causes of

metabolic derangements, particularly type II diabetes in humans.65

Voight et al. hypothesized that an HMGA2 variant was likely affecting

insulin levels independent of an obesity-driven mechanism.65 Since

then, both genome-wide association and meta-analyses have repli-

cated this result.66–68 The only HMGA2 variant found in our panel of

48 horses was a missense mutation (c.83G>A) in exon 1, which was

previously described as associated with decreased height in Shetland

and other pony breeds.44 The variant, with its glycine to glutamate

substitution at residue 28, is predicted to affect the first AT hook, and

the authors demonstrated that the mutant nucleotide sequence had

decreased binding affinity for DNA. This is additional evidence sup-

porting the likely functional impact of this mutation.

In our pony cohort, the HMGA2 variant had an allele frequency of

0.76, was distributed across the sections of the Welsh pony breed

consistent with their height distribution, was negatively correlated

(−0.75) with height, and its effect was explained by an additive model

of inheritance in our population of ponies. We also identified a nega-

tive correlation for the A allele with 4 EMS traits, including insulin,

NEFA, INS-OST, and triglycerides. This provides evidence that

HMGA2 is having an effect on EMS traits beyond modulating height.

Notably, pairwise comparisons of NEFA between genotypes

revealed that, although there was a statistical difference between the

A/A and G/A genotypes, there was not a difference between either of

the homozygous genotypes. This is most likely due to the large 95%

confidence intervals identified when assessing the least square means

for genotype and NEFA concentrations in the ponies, particularly

those with the G/G genotype (Figure 4E). Pairwise comparisons

between the least squared means for genotype and insulin, INS-OST,

and triglycerides suggested a recessive model of inheritance; however,

model analyses were unable to differentiate between an additive or

recessive model. The lack of distinction is likely because of the large

variation within EMS traits, as well as bias owing to unequal sampling

among our ponies, as our cohort only included 3 section Cs and

15 section Ds. Therefore, inclusion of more samples from these sec-

tions would likely improve our power to differentiate between an

additive and recessive model.

IRAK3 was included as a biological candidate gene due to evidence in

other species and its close proximity to the fine mapped ROI. IRAK3 is

downregulated in individuals with obesity and metabolic syndrome and is

believed to be a key inhibitor of inflammation during metabolic derange-

ments.69 Furthermore, IRAK3 mutant mouse phenotypes include reduced

body size, decreased femur diameter, and abnormal bone morphology,70

as well as impaired glucose tolerance.71 We sequenced the IRAK3 gene in

our sample panel of horses but did not find any variants. Although a pre-

dicted miRNA (MIR763) was within our refined ROI, its function is

unknown and does not have any associated orthologues.

In conclusion, through genome-wide analyses, we identified an

allele for a known height gene, HMGA2, as contributing to both height

and several EMS traits in a cohort of Welsh ponies. Additional func-

tional analysis would determine if the HMGA2mutation has a pleiotro-

pic effect on these traits or if another unidentified variant within our

ROI independently contributes to the EMS traits and has been inad-

vertently selected for due to genomic hitchhiking. Although our study

focused on Welsh ponies, the HMGA2 variant has been correlated

with height in other pony breeds; thus, it is likely that this variant is

also having an effect on metabolic traits in these individuals, as sup-

ported by the correlation analysis with the addition of 3 Shetland,

2 Hackney, and 3 British Riding ponies to our cohort (Supporting

Information Table 7). Moreover, although height was not correlated

with EMS traits in the large breed horses in our study, this does not

rule out stature as contributing to these traits in that population. In

humans, leg-length-to-torso ratios are consistently correlated with

metabolic traits over total height.11 Therefore, length-to-torso ratios

in large breed horses might reveal a correlation not identified in this

analysis. These data are a major step forward towards understanding

genetic influences on EMS that could also have implications for

improving equine health and understanding contributors to MetS.
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