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SUMMARY New Delhi metallo-�-lactamase (NDM) is a metallo-�-lactamase able to
hydrolyze almost all �-lactams. Twenty-four NDM variants have been identified in
�60 species of 11 bacterial families, and several variants have enhanced carbapen-
emase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carri-
ers of blaNDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14,
ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-
positive strains have been identified worldwide, with the highest prevalence in the
Indian subcontinent, the Middle East, and the Balkans. Most blaNDM-carrying plas-
mids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phe-
notypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically
detect NDM, and molecular approaches remain the reference methods for detecting
blaNDM. Polymyxins combined with other agents remain the mainstream options of
antimicrobial treatment. Compounds able to inhibit NDM have been found, but
none have been approved for clinical use. Outbreaks caused by NDM-positive strains
have been reported worldwide, attributable to sources such as contaminated de-
vices. Evidence-based guidelines on prevention and control of carbapenem-resistant
Gram-negative bacteria are available, although none are specific for NDM-positive
strains. NDM will remain a severe challenge in health care settings, and more studies
on appropriate countermeasures are required.

KEYWORDS Acinetobacter, Enterobacteriaceae, NDM, carbapenem resistance,
carbapenemase, metalloenzymes

INTRODUCTION

New Delhi metallo-�-lactamase (NDM) is a type of metallo-�-lactamase (MBL) able
to hydrolyze most �-lactams (including carbapenems) but not monobactams (1, 2).

NDM has poor activity against amdinocillin, an extended-spectrum penicillin antibiotic
of the amidinopenicillin family (3). Carbapenems are the mainstay antimicrobial agents
of choice for treating severe infections caused by many Gram-negative bacteria (4, 5).
The hydrolysis of �-lactams by NDM enzymes cannot be prevented by clinically
available �-lactamase inhibitors, including avibactam, clavulanate, sulbactam, and
tazobactam. NDM-1 was first identified in a Klebsiella pneumoniae strain isolated from
a Swedish patient who had been hospitalized in New Delhi, India, in 2008 (2). Since
then, NDM-1 has been found in various species of the Enterobacteriaceae, Acinetobacter,
and Pseudomonas, and 24 variants of NDM have been identified. NDM-positive strains
are usually resistant to most antimicrobial agents in addition to �-lactams due to the
coexistence of other resistance mechanisms (1). NDM-positive strains cause a variety of
infections that have been reported to be associated with high mortality rates (6).
NDM-positive strains have been found worldwide, representing a significant challenge
for clinical management and public health (7, 8).
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NDM, A SUBCLASS B1 MBL

�-Lactamases are divided into the A, B, C, and D classes based on amino acid
sequence identity (9–11). Class A, C, and D enzymes contain a serine residue at the
active site of the �-lactamase, while class B enzymes contain one or two zinc ions and
are therefore termed MBLs. MBLs have been further subdivided into three subclasses
(B1, B2, and B3) based on amino acid sequence identities (12, 13). The subclass B1 and
B3 enzymes have two zinc ions at the active site and exhibit a broad-spectrum
substrate profile, including penicillins, cephalosporins, and carbapenems (9, 12, 14). In
contrast, subclass B2 enzymes have one active zinc ion, while the binding of the second
zinc ion inhibits their catalysis activity (15). The subclass B2 enzymes exhibit a narrow-
spectrum substrate profile, including carbapenems but not penicillins and cephalospo-
rins (15, 16). A few MBLs belong to subclass B2, including CphA from Aeromonas
hydrophila, Sfh-1 from Serratia fonticola, and ImiS from Aeromonas veronii. Similarly, a
few subclass B3 MBLs have been identified, such as L1 from Stenotrophomonas malto-
philia, AIM-1 from Pseudomonas aeruginosa, and GOB-1 from Elizabethkingia meningo-
septica (formerly Chryseobacterium septicum). The majority of MBLs that have been
identified so far belong to subclass B1 (9, 17). The three most common MBLs seen in
clinical isolates, IMP (imipenemase), VIM (Verona integron-encoded metallo-�-
lactamase), and NDM, are subclass B1 enzymes (17). Genes encoding IMP, VIM, and
NDM are largely plasmid borne and can be transferred between bacterial strains,
meaning that they are of particular significance in health care settings. NDM enzymes
have low amino acid sequence identity with the other subclass B1 MBLs; for instance,
the amino acid identity between NDM-1 and IMP-1 or VIM-2 is only 34% or 35%. It has
been proposed that subclass B1 be further divided into two clades (B1a and B1b), with
NDM belonging to clade B1b and the remaining subclass B1 enzymes belonging to
clade B1a (9). Zinc ions play the key role in the function of NDM-1 (18, 19). The
interaction between NDM-1 and the substrate is through zinc ions bound in the active
site (20). The zinc ions also activate a water molecule, which donates a proton to
generate a new active hydroxide for the hydrolysis of the �-lactam ring by attacking the
carbon atom of the �-lactam carbonyl group (20, 21).

Of note, the cellular localization of NDM is different from that of all other MBLs. NDM
is a lipoprotein that anchors to the outer membrane in Gram-negative bacteria, which
has been attributed to the presence of a canonical lipidation amino acid sequence,
LSGC (lipobox), at end of the signal peptide of NDM (22, 23). In contrast, all other MBLs
are soluble periplasmic proteins (24). Membrane anchoring significantly enhances the
stability of NDM under conditions of zinc deprivation, which occurs at the infection site
as large amounts of the metal-chelating protein calprotectin are released as a response
of host immunity. The resulting zinc deprivation can interfere with the function of MBLs
such as NDM. Membrane anchoring also facilitates the secretion of this enzyme in outer
membrane vesicles (OMVs) (23, 25). OMVs containing NDM can protect neighboring
bacterial populations from the action of �-lactams, and OMVs can carry both NDM and
blaNDM (23, 25). As a result, membrane anchoring, an important feature of NDM, may
therefore contribute to the wide distribution of NDM-positive strains in health care
settings.

NDM VARIANTS

NDM enzymes are composed of 270 amino acids, containing two zinc ions at the
active site, where the hydrolysis of �-lactams takes place. The secondary structure of
NDM enzymes contains 9 �-helices, 17 �-strands, and 3 turns (Fig. 1). Substitutions have
been observed at 17 of the 270 amino acids, resulting in 24 distinct NDM variants. The
M154L substitution is the most common and is observed in 10 of the 24 distinct NDM
variants. NDM variants commonly contain between 1 and 5 amino acid substitutions
compared to NDM-1. NDM-18 is an exception in that it is identical to NDM-1, with the
exception of a tandem repeat of 5 amino acids (QRFGD, amino acid positions 44 to 48
of NDM-1). None of the amino acid substitutions observed in NDM variants occur within
the active site (Fig. 1), but some variants have been reported to exhibit altered activities
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against �-lactams (see Table S1 in the supplemental material). Caution is required when
interpreting the impact of amino acid substitutions on the carbapenemase activity of
NDM variants due to the inconsistency of phenotypic susceptibility results, heteroge-
neity in experiment methodologies (e.g., the use of different promoters, cloning
vectors, and strains), and the fact that different parameters (e.g., MICs or kinetics) have
been used for comparing the activities of NDM variants across different studies.
Nonetheless, variants containing the V88L substitution (NDM-5, -17, -20, and -21) (Table
S1) have repeatedly been reported to exhibit enhanced carbapenemase activity (26–
29). MICs of ertapenem against strains producing NDM-5 or NDM-20 are 4- or 8-fold
higher than those against strains producing NDM-1 (26, 28), while NDM-17 and NDM-21
have the same carbapenemase activity as NDM-5 (27, 29). This suggests that such a
substitution may have a significant impact on enzyme activity despite not being
located at the active site, and the mechanism of action of enhanced activity remains

FIG 1 NDM-1 amino acid sequence and NDM variants. The annotation of the NDM amino acid sequence is adopted from data reported
under UniProt accession no. C7C422. Signal peptides of NDM-1 are framed with red lines. �-Helices, �-strands, and turns are indicated
as black spirals and blue and orange lines, respectively. Amino acids at active sites of NDM-1 are highlighted in boldface type, and
the zinc binding residues are highlighted in yellow. The lipidation box is highlighted in green. Two numbering systems for the amino
acids are shown: numbering according to the standard number scheme of MBLs is shown in purple above the amino acid sequence,
while numbering from the translation of NDM enzymes is shown in black below the sequence. Amino acid substitutions compared
with NDM-1 are labeled in red, with the variant names shown in parentheses. NDM-18 has a tandem repeat of 5 amino acids (QRFGD),
which is underlined.
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unclear. Variants containing V88L also have other substitutions, and a recent study,
using the natural promoter of blaNDM-1 for cloning, failed to report any difference in
carbapenem MICs between strains producing NDM-5 or NDM-17 (V88L-containing
variants) and a strain producing NDM-1 (30). A variant exists which contains solely the
V88L substitution, NDM-24, and the true ability of this substitution to enhance activity
will be known when the phenotypic characteristics of this variant are reported. M154L
(NDM-4) and D130G (NDM-14) substitutions have also been reported to result in
enhanced carbapenemase activity (31, 32). However, MICs of carbapenems against
Escherichia coli TOP10 strains harboring the recombinant plasmid pNDM-4 or pNDM-1,
expressing NDM-4 and NDM-1, respectively, have no significant changes in MIC (31).
NDM-8, which contains both M154L and D130G, does not exhibit increased carbapen-
emase activity (31). Of note, the media used in these experiments, such as Mueller-
Hinton (MH) broth and LB, are rich in zinc. However, under conditions of zinc depri-
vation, the M154L (NDM-4), A233V (NDM-6), and E152K (NDM-9) substitutions in NDM
enzymes enhance resistance to cefotaxime by improving metal affinity (M154L) or by
improving the stability of NDM enzymes (A233V and E152K) (25). The D95N (NDM-3)
and D130G (NDM-14) substitutions also enhance resistance to cefotaxime under con-
ditions of zinc starvation, but their mechanisms remain unclear (25). In contrast, R264H
(NDM-16), M154V (NDM-11), and P28A (NDM-2) have no significant impact on NDM
function under zinc-restricting conditions (25). The stress imposed by zinc deprivation
has therefore been proposed to be a major driver of the evolution of NDM enzymes
(25). Unfortunately, MICs of carbapenems against strains producing different NDM
variants have not been determined under conditions of zinc deprivation. The carbap-
enemase activity of new NDM variants is required to be characterized by a standardized
assay under both zinc-rich and zinc-restricting conditions to fully elucidate the pheno-
typic importance of the emergence and evolution of novel substitutions.

EPIDEMIOLOGY OF NDM-POSITIVE STRAINS
Distribution and Prevalence of NDM-Positive Strains in Health Care Settings

After the initial discovery of NDM-1, a follow-up study revealed the widespread
existence of blaNDM-1 in the Indian subcontinent, including India, Pakistan, and Ban-
gladesh (33). Since then, NDM-positive strains have been shown to be globally distrib-
uted, with virtually all countries conducting epidemiological searches detecting NDM-
positive strains (Fig. 2; a complete list of countries with documented NDM-positive
strains is available in Appendix S1 in the supplemental material).

The worldwide distribution of NDM-positive strains appears to be heterogeneous
with regard to prevalence. The SMART global surveillance program collected 103,960
isolates of Enterobacteriaceae in 55 countries from 2008 to 2014 and demonstrated that
290 strains (0.28% of all strains) were NDM positive, suggesting a relatively low
prevalence (34). In the SMART program, the prevalence of NDM-positive strains varied
significantly across countries: up to 5.01% in the United Arab Emirates (UAE), 6.15% in
Egypt, 6.22% in India, and 6.26% in Serbia (34). This supports the observation that
NDM-positive strains are more highly prevalent in South Asia, the Balkans, North Africa,
and the Middle East. The high prevalence of NDM-positive strains in the Middle East has
been proposed to be a result of population exchange with the Indian subcontinent (8).
INFORM is another large-scale multinational study, which collected 38,266 Enterobac-
teriaceae isolates and 8,010 P. aeruginosa strains from 40 countries between 2012 and
2014 (35). The proportions of NDM-positive strains were 0.19% (72/38,266) in Entero-
bacteriaceae and 0.04% (3/8,010) in P. aeruginosa strains (35), consistent with the
relatively low prevalence revealed by the SMART project. Unfortunately, the prevalence
of NDM-positive strains in individual countries was not provided in that study (35).
Other than the SMART and INFORM global surveillance programs, there are very few
appropriately designed large-scale studies to determine the true prevalence of NDM
carriage in given species or genera at a national level. In Pakistan, 18.5% of hospitalized
patients at two military hospitals were found to carry NDM-positive Enterobacteriaceae
(36). In China, a study of 1,162 clinical isolates of Enterobacteriaceae and Acinetobacter
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spp. collected at multiple sites reported that 3.9% were NDM positive, but the propor-
tion of NDM-positive strains among the Enterobacteriaceae remains unclear, as the
exact number of isolates of Enterobacteriaceae was not given (37). More large-scale
surveillance studies, in particular on strains collected after 2014, are required to reveal
changing trends and changes in the prevalence of NDM-positive strains.

In the SMART global surveillance program, blaNDM was the third most common
carbapenemase-encoding gene and accounted for 19.42% of carbapenemase positivity,
after blaKPC (53.18%) and the blaOXA-48-like gene (20.09%) (34). In China, which was not
included in the SMART program, 31% of 1,105 carbapenem-resistant Enterobacteriaceae
(CRE) strains were NDM positive (38). The EuSCAPE survey across Europe revealed that
7.7% of carbapenem-resistant K. pneumoniae (n � 1,203) and 10.3% of carbapenem-
resistant E. coli (n � 194) isolates were NDM positive (39).

In addition to clinical samples, blaNDM genes have also been detected in hospital
sewage in several countries, including China (40, 41), India (42), and Lebanon (43). Some
NDM-positive strains recovered from hospital sewage belong to the Enterobacteriaceae
(42, 43), which may reflect intestinal carriage of NDM-positive strains among the
population within health care settings. However, NDM-positive strains of various Acin-
etobacter species have also been recovered from hospital sewage (40, 41). This suggests
that sewage may be a reservoir of blaNDM- and NDM-positive strains. The links between
hospital sewage and the spread of blaNDM are yet to be established and require more
studies. Nonetheless, hospital sewage should be properly treated according to existing
guidelines and regulations (44).

Spread of NDM-Positive Strains and International Travel

The rapid spread of NDM from its initial emergence in India to all continents is
significantly associated with global travel (33). The initial discovery of blaNDM-1 in India,
Pakistan, and the United Kingdom showed that almost all United Kingdom cases were
associated with travel to the Indian subcontinent (33). Following the first report, the

FIG 2 Worldwide distribution of NDM-positive strains of the Enterobacteriaceae. Countries (Egypt, India, Pakistan, Serbia, and UAE) with evidence showing a
prevalence of NDM-positive strains among the Enterobacteriaceae of �5% are indicated in red, while countries with reports of NDM-positive strains but without
evidence of a �5% prevalence are shown in light brown. Countries without reports or data on NDM-positive strains are indicated in white.
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incidence of NDM cases rose sharply, with countries in the Mediterranean region of
Europe showing the largest increase (45). A detailed study of the first reported cases of
NDM in Europe showed that 57% of all cases were associated with previous hospital-
ization in the Indian subcontinent or Balkans region (46). The first reported outbreak in
Europe was in Italy in 2011. The blaNDM-1 gene was detected in both Klebsiella and E.
coli strains isolated from clinical infections in a hospital in Bologna, Italy, with the index
case being a patient initially treated for an infection due to NDM-positive bacteria in
New Delhi, India, before traveling to Bologna, where further treatment was required
(47). This initial seeding led to Italy having some of the highest rates of NDM cases in
Europe by 2017 (39). By 2014, Greece was reporting sustained cases of hospital-
associated infections caused by K. pneumoniae sequence type 11 (ST11) strains carrying
blaNDM-1 (48), believed to be first introduced via travel from the eastern Balkans region.
International travel has also been associated with the movement of NDM into North
America, with direct patient transfer from India to Canada resulting in the introduction
of blaNDM-1-carrying P. aeruginosa ST654 (49) as well as cases of blaNDM-1-carrying E. coli
and K. pneumoniae (50). Direct travel from India and then Iran was also implicated in the
first cases of NDM isolation in the United States (51–53).

While the role of travel in observed clinical cases of infection with blaNDM-1-carrying
bacteria is clear, less is known of the role that travel may play in introducing NDM into
the wider community. A number of high-quality studies have been performed, showing
that travel to regions of endemicity, such as India and Southeast Asia, leads to
significant levels of intestinal colonization by bacteria carrying extended-spectrum
�-lactamase (ESBL) genes (54–56). However, to date, there has been only one study
examining the risk of asymptomatic colonization by blaNDM-1-carrying bacteria during
travel (57). This small study of French travelers to India identified intestinal colonization
by a blaNDM-1-carrying E. coli strain and reported that colonization lasted for only
1 month, compared to as long as 8 months for ESBL-carrying E. coli (55). This suggests
that there may be intrinsic differences in the abilities of blaNDM-carrying bacteria to
successfully outcompete intestinal microbiota and colonize the human intestinal tract,
an area that merits full and intensive study.

Host Species of NDM

To obtain a comprehensive picture of the distribution of NDM across bacteria, we
retrieved all bacterial genome sequences containing blaNDM from GenBank (n � 766;
accessed on 8 January 2018) (see Data Set S1 in the supplemental material), in addition
to reviewing the available literature. blaNDM genes have been found in species belong-
ing to 11 bacterial families (Aeromonadaceae, Alcaligenaceae, Cardiobacteriaceae, Enter-
obacteriaceae, Moraxellaceae, Morganellaceae, Neisseriaceae, Pseudomonadaceae, She-
wanellaceae, Vibrionaceae, and Xanthomonadaceae) of the class Gammaproteobacteria
(Table 1). A blaNDM gene has also been identified in the genome sequence (GenBank
accession no. JPNZ00000000) of a strain of Bacillus subtilis, which is a Gram-positive
bacterium of the family Bacillaceae. This is very unusual, and resequencing of this strain
would be advised to exclude any possibility of sequence read contamination. Accord-
ing to the literature, the Enterobacteriaceae are the major hosts of blaNDM, among which
K. pneumoniae is the most common species, accounting for just over half of all isolates,
followed by E. coli and the Enterobacter cloacae complex (Table 2). The Enterobacteri-
aceae are able to cause a variety of community-onset or hospital-acquired infections,
such as abscesses, bloodstream infection, intra-abdominal infection, meningitis, pneu-
monia, and urinary tract infection (58).

Acinetobacter spp. are also frequently identified as hosts of blaNDM (41). Acinetobac-
ter strains carrying blaNDM have been found in at least 25 countries in Africa (Algeria,
Libya, Morocco, Egypt, Ethiopia, Kenya, and Tunisia), the Americas (Argentina, Brazil,
Cuba, Honduras, and Paraguay), Asia (Bangladesh, China, India, Israel, South Korea,
Lebanon, Malaysia, Palestine, and Thailand), and Europe (Croatia, Denmark, Greece, and
Slovenia). Acinetobacter baumannii is a notorious opportunistic pathogen associated
with hospital-acquired infections and pneumonia in particular (59). Surprisingly, blaNDM
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TABLE 1 Bacterial species having NDM variants

Type Family Species Reference(s)

NDM-1 Enterobacteriaceae Cedecea lapagei, Citrobacter braakii,a Citrobacter freundii, Citrobacter koseri,
Citrobacter portucalensis,a Citrobacter sedlakii, Citrobacter werkmanii,a

Enterobacter asburiae,a E. cloacae, E. hormaechei, Enterobacter kobei,a E.
coli, Klebsiella aerogenes, Klebsiella michiganensis, Klebsiella oxytoca, K.
pneumoniae, Klebsiella quasipneumoniae,a Klebsiella variicola,a Leclercia
adecarboxylata, Lelliottia nimipressuralis,a Pantoea agglomerans,
Pseudocitrobacter faecalis,a Raoultella ornithinolytica, Raoultella
planticola, Salmonella enterica, Serratia marcescens, Shigella boydii

2, 86, 102, 279, 320,
347–358

Morganellaceae Morganella morganii, Providencia rettgeri, Providencia stuartii 359–361
Moraxellaceae A. baumannii, Acinetobacter baylyi, Acinetobacter beijerinckii, Acinetobacter

bereziniae, Acinetobacter calcoaceticus, Acinetobacter defluvii,
Acinetobacter dijkshoorniae,a Acinetobacter guillouiae, Acinetobacter
haemolyticus, Acinetobacter johnsonii, Acinetobacter junii, Acinetobacter
lwoffii, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter
radioresistens,a Acinetobacter schindleri, Acinetobacter soli, Acinetobacter
towneri, Acinetobacter variabilisa

104, 107, 362–374

Pseudomonadaceae P. aeruginosa, Pseudomonas oryzihabitans, Pseudomonas putida,
Pseudomonas pseudoalcaligenes

86, 375, 376

Xanthomonadaceae Stenotrophomonas maltophiliab 377
Aeromonadaceae Aeromonas caviae 86
Vibrionaceae Vibrio parahaemolyticus, Vibrio fluvialis, V. cholerae 256, 378, 379
Cardiobacteriaceae Suttonella indologenes 86
Neisseriaceae Kingella denitrificans 86
Alcaligenaceae Achromobacter spp. 86
Shewanellaceae Shewanellaceae spp.a

Bacillaceae Bacillus subtilisa,b

NDM-2 Moraxellaceae A. baumannii 380

NDM-3 Enterobacteriaceae E. coli 37
Moraxellaceae A. baumannii 381

NDM-4 Enterobacteriaceae E. cloacae, E. coli, K. pneumoniae 95, 382, 383

NDM-5 Enterobacteriaceae C. freundii, Citrobacter europaeus,a E. coli, K. michiganensis, K. pneumoniae,
K. quasipneumoniae,a S. enterica

37, 355, 384, 385

Morganellaceae P. mirabilis 386

NDM-6 Enterobacteriaceae E. coli, K. aerogenesa 387

NDM-7 Enterobacteriaceae C. freundii, K. pneumoniae, E. cloacae, E. hormaechei, E. coli, S. entericaa 35, 95, 384

NDM-8 Enterobacteriaceae E. coli 388

NDM-9 Enterobacteriaceae Cronobacter sakazakii, E. coli, K. pneumoniae, K. variicola, S. entericaa 134, 389–391

NDM-10 Enterobacteriaceae K. pneumoniae 392

NDM-11 Enterobacteriaceae E. coli 393

NDM-12 Enterobacteriaceae E. coli 384

NDM-13 Enterobacteriaceae E. coli 135

NDM-14 Moraxellaceae A. lwoffii 32

NDM-15 Enterobacteriaceae E. colia

NDM-16 Enterobacteriaceae K. pneumoniae 35

NDM-17 Enterobacteriaceae E. coli 27

NDM-18 Enterobacteriaceae E. colia

NDM-19 Enterobacteriaceae E. coli,a K. pneumoniaea

(Continued on next page)
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is also found in at least 18 other Acinetobacter species, most of which have been
recovered from sewage and are rarely associated with human diseases (Table 1). This
suggests that Acinetobacter may play a vital role in the dissemination of NDM-encoding
genes and raises the question of whether Acinetobacter species could be the origin
of blaNDM. This wide species distribution may also be due to multiple mechanisms
facilitating the transfer of blaNDM across bacterial populations. In addition to conjuga-
tion, which is the major mode of horizontal transfer of blaNDM in the Enterobacteriaceae,
it has been found that OMVs of A. baumannii are able to mediate the intra- and
interspecies transfer of blaNDM plasmids at high transformation frequencies (10�5 to
10�6 transformants in the total cell count [CFU per milliliter]) (23, 60). General trans-
duction facilitated by prophages present in the chromosome can also mediate the
horizontal transfer of blaNDM between A. baumannii strains (61). More studies are
required on this remarkable diversity of Acinetobacter strains carrying blaNDM and its
relevance to the successful emergence of NDM across Gram-negative bacteria.

Among the 24 NDM variants, NDM-1 has the widest host spectrum identified so far
and has been found in a number of species belonging to 11 bacterial families. Publicly
available genome sequences also reveal that most NDM-positive Acinetobacter species,
Enterobacter species, and K. pneumoniae isolates have NDM-1, while NDM-5 is most
common in E. coli. NDM is rare in P. aeruginosa, with VIM being the most common MBL
in this species (35).

Clonal Background of NDM-Positive Strains

There is a limited number of large-scale studies that have examined the clonal
background of NDM-producing strains. These include one study involving multiple
nations (62), one study across three countries (63), three studies conducted at a
national level (38, 64, 65), and two municipal-level studies (66, 67) (see Table S2 in the
supplemental material). While studying genomes deposited in GenBank can result in
inherent bias, it is also the most comprehensive approach available to provide addi-
tional insights into the clonal background of NDM-positive strains. Among the 766

TABLE 1 (Continued)

Type Family Species Reference(s)

NDM-20 Enterobacteriaceae E. coli 28

NDM-21 Enterobacteriaceae E. coli 29

NDM-22 Enterobacteriaceae E. cloacaea

NDM-23 Enterobacteriaceae K. pneumoniaea

NDM-24 Morganellaceae P. stuartiia

aNDM-positive strains of the species have not been reported in literature but have genomes available in GenBank (see Data Set S1 in the supplemental material).
bThis is unusual and needs to be verified to exclude contamination.

TABLE 2 Species distribution of NDM-positive Enterobacteriaceae strainsb

Location Yr(s) NDM-positive strain

No. of isolates

ReferenceE. coli K. pneumoniae E. cloacae Other

South Africa 2012–2015 469 11 325 31 102 394
China 2014–2015 343 81 121 81 60 38
UK 2008–2013 326 80 180 31 35 64
Global (n � 55)a 2008–2014 290 57 169 40 24 34
South Korea 2010–2015 146 34 69 27 16 89
India (Mumbai) 2012 106 30 43 29 4 395

Total 1,680 293 907 239 241
aThe SMART Global Surveillance Program collected strains of the Enterobacteriaceae only in 55 countries.
bStudies with at least 100 strains are included.
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NDM-positive bacterial genomes available in GenBank, E. coli (n � 305), K. pneumoniae
(n � 214), Acinetobacter spp. (n � 84), and Enterobacter spp. (n � 67) are the most
common (Data Set S1). NDM-positive E. coli and K. pneumoniae strains are distributed
across more than 40 STs for each species. NDM-positive Enterobacter and Acinetobacter
strains are also distributed across various species and multiple STs (Data Set S1). This
suggests heterogeneous clonal backgrounds of NDM-positive strains and multiple
acquisitions of blaNDM genes across bacterial species. Despite this heterogeneity, a
small number of STs of the Enterobacteriaceae and A. baumannii have been identified
to be the most common carriers of blaNDM (see below). These STs warrant further
investigation to identify high-risk clones mediating the international spread of blaNDM

genes as well as determine underpinning factors that may make a clone more likely to
emerge as a successful multidrug-resistant (MDR) pathogen.

NDM-positive E. coli strains belong to a variety of STs, and there are no predominant
STs. NDM has been found in strains of E. coli ST131 (68–70), the pandemic clone
mediating the global spread of the ESBL gene blaCTX-M-15 (71, 72). However, NDM-
positive ST131 strains remain uncommon (Table S2 and Data Set S1). In contrast, ST167
is relatively common among NDM-positive E. coli strains (Table S2 and Data Set S1) and
accounted for 14.4% (44/305) of the 305 NDM-positive E. coli genomes available (Data
Set S1). ST167 has been detected in multiple countries (India, Niger, South Africa, South
Korea, Switzerland, and the United States) and throughout China and has been
predominantly recovered from humans (Data Set S1). ST617 and ST410 are two other
types of E. coli strains seen in multiple countries, although they are less common than
ST167 (Data Set S1), and both types have sequenced isolates recovered from animals
in addition to humans. In a multiple-site study in China, ST167 was the most common
type of NDM-positive E. coli strain, followed by ST410 (38). Our previous study also
suggested that E. coli ST167 and ST617 appear to be two major types of globally
disseminated, NDM-positive E. coli strains (73). More studies are required to investigate
whether ST167, ST410, and ST617 are international epidemic clones of NDM-positive E.
coli.

NDM-positive K. pneumoniae strains are also distributed across a large number of
STs, with no predominant lineages, suggesting that there are no obvious high-risk
clones of NDM-positive K. pneumoniae. This is in contrast to KPC-positive K. pneu-
moniae, whose global spread is largely due to clonal complex 258 comprising ST258
and ST11 (74, 75). ST11, ST14, ST15, and ST147 strains are relatively common NDM-
positive K. pneumoniae lineages and have been found in multiple countries across
several continents, almost all of which were isolated from humans (Data Set S1). In the
literature, ST14 is repeatedly reported as one of the most common types of NDM-
positive K. pneumoniae strains (63–65). ST11 is another common type in multiple
studies (38, 63–65). Of note, ST11 is the predominant ST of carbapenem-resistant K.
pneumoniae in China but mainly carries KPC-2 rather than NDM (76). Although the
currently available evidence is insufficient to demonstrate that ST11, ST14, ST15, and
ST147 are truly epidemic clones mediating the international spread of blaNDM, their
distribution in multiple countries warrants further study. A multiple-site study reported
that ST23 is the most common type of NDM-positive K. pneumoniae strain in China (38).
However, ST23 is rarely seen in other countries, and there is only one ST23 genome in
GenBank, isolated in China. This suggests that ST23 may be largely restricted to China
(38). The well-known international epidemic carbapenem-resistant K. pneumoniae
ST258, which carries blaKPC-2 or blaKPC-3, has not yet been found to carry blaNDM (77).

Most NDM-positive strains of Enterobacter spp. are either Enterobacter xiangfangen-
sis or Enterobacter hormaechei strains (Data Set S1). ST78 and ST171 have been reported
as two emerging lineages of carbapenem-resistant Enterobacter spp., but strains of
these lineages usually produce KPC rather than NDM (78). There are only three
NDM-positive ST78 (belonging to E. hormaechei) and three NDM-positive ST171 (be-
longing to E. xiangfangensis) genomes in GenBank (Data Set S1). ST114 (belonging to
E. hormaechei) strains have been found in multiple countries (Data Set S1). A study on
an international collection of carbapenem-resistant Enterobacter strains demonstrated
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that ST114 is the most common type of NDM-positive Enterobacter strain, although it
accounts for only a minority of all strains due to the very diverse clonal background of
NDM-positive Enterobacter strains (62). Therefore, no obvious international epidemic
clones of NDM-positive Enterobacter strains have been identified at present.

NDM-positive A. baumannii strains are very genetically diverse with respect to ST
lineage (67), with ST85 being the most commonly isolated (11 genomes in GenBank)
(Data Set S1) across several countries. NDM has also been found in P. aeruginosa in
multiple countries (35, 49, 79, 80). Whole-genome sequences exist for a small number
of P. aeruginosa strains from lineage ST308, all isolated in Singapore (Data Set S1).
NDM-positive ST308 P. aeruginosa has also been detected in neighboring Malaysia (81),
suggesting that this type of NDM-positive P. aeruginosa strain may be circulating in the
region.

Plasmids Carrying blaNDM

Although blaNDM has been found on bacterial chromosomes (82–84), the vast
majority of carriage occurs on plasmids, which play a vital role in dissemination. blaNDM

has been reported to be carried on plasmids with a variety of replicon types (33, 82,
85–104). There are a total of 355 blaNDM-carrying plasmids with complete sequences
available in GenBank (accessed on 8 January 2018) (see Data Set S2 in the supplemental
material). We determined their replicon types using PlasmidFinder (https://cge.cbs.dtu
.dk/services/PlasmidFinder/). There are 20 replicon types of blaNDM-carrying plasmids in
the Enterobacteriaceae, including IncC, IncB/O/K/Z, IncFIA, IncFIB, IncFIC, IncFIII, IncHI1,
IncHI2, IncHI3, IncN, IncN2, IncL/M, IncP, IncR, IncT, IncX1, IncX3, IncX4, IncY, and ColE10
(Table 3) (e.g., see references 33, 82, and 85–104). This suggests multiple acquisitions of
blaNDM by various plasmids and also highlights that the horizontal transfer of blaNDM is
mediated by multiple plasmids. The global distribution of the replicon types of blaNDM-
carrying plasmids is shown in Fig. 3.

IncX3 appears to be the most common type of plasmid carrying blaNDM. Among the
355 blaNDM-carrying plasmids available in GenBank, 117 (about one-third) had the
IncX3 replicon, including 112 plasmids with IncX3 alone and 5 with IncX3 plus other
replicons. IncX3 plasmids are narrow-host-range plasmids and have so far been seen
only in the Enterobacteriaceae. Most of the IncX3 plasmids in GenBank (67/117; 57.3%)
were present in E. coli, followed by K. pneumoniae (20/117; 17.1%). Although blaNDM-
carrying IncX3 plasmids have been found in Europe and North America, most of the
plasmids deposited in GenBank (80/117; 68.4%) have been recovered in China and
neighboring countries, such as South Korea (n � 7), Vietnam (n � 2), and Myanmar

TABLE 3 Replicon types of blaNDM-carrying plasmids in the Enterobacteriaceae

Type Replicon type(s)b Reference(s)

NDM-1 A/C, ColE,a FIA, FIB, FII, HI1, HI3, HIB, L/M,
N2, P, R, T,a X1,a X3, Ya

33, 82, 85–104, 396

NDM-3 A/Ca

NDM-4 FII, HI2, X3 95, 397
NDM-5 B/O/K/Z,a FUA,a FIB,a FIC,a FII, X3, X4,a Ya 82, 89, 385, 398–400
NDM-6 A/C, FIB, FII, R,a X3a 387, 399
NDM-7 A/C, FIC, FII, X3 89, 133, 399, 401, 402
NDM-8 FII 393
NDM-9 B/O/K/Z, FIA,a FII, HI2, N,a Ra 134, 389, 390
NDM-10 FII 392
NDM-11 FII 393
NDM-12 F 403
NDM-13 X3 135
NDM-17 X3 27
NDM-19 X3a

NDM-20 X3 28
NDM-21 X3 29
aReplicon types have not been reported in the literature but have plasmid sequences available in GenBank
(see Data Set S2 in the supplemental material).

bCommon replicon types (�10 plasmid sequences in GenBank) are highlighted in boldface type.
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(n � 3). This suggests that IncX3 plasmids may be a major vehicle in mediating the
dissemination of blaNDM in East Asia, particularly in China. Variants of blaNDM, including
blaNDM-1, blaNDM-4, blaNDM-5, blaNDM-6, blaNDM-7, blaNDM-13, blaNDM-17, blaNDM-19, blaNDM-20,
and blaNDM-21, have also been found on IncX3 plasmids (Table 3). This highlights that
IncX3 plasmids may serve as one of the major platforms on which blaNDM genes are
evolving with the generation of new NDM variants.

There are 99 blaNDM-carrying plasmids containing an IncFII replicon, alone or in
combination with other types of replicons, commonly IncFIB in GenBank. A replicon
sequence typing (RST) scheme is available for IncF plasmids (105). We performed RST
for these plasmids using the pMLST tool (https://cge.cbs.dtu.dk/services/pMLST/). It is
evident that IncFII plasmids of the FIA�:FIB36:FIIY4 allele type (n � 27) or the FIA�:
FIB�:FII2 type (n � 21) are particularly common and have been found in various species
of the Enterobacteriaceae from multiple countries in several continents (Data Set S2).
These two IncFII plasmids have mainly been found in strains from human samples (Data
Set S2).

Another common type of blaNDM-carrying plasmid (53/355; 14.9%) is IncC (also
incorrectly known as IncA/C2) (106). IncC plasmids carrying blaNDM have a worldwide
distribution and are found on all continents except Antarctica (Data Set S2). IncA/C has
a broad host range, and IncC plasmids carrying blaNDM have been found in the
Morganellaceae and the Vibrionaceae in addition to the Enterobacteriaceae. A plasmid
multilocus sequence typing (pMLST) scheme exists for IncA/C plasmids (https://pubmlst
.org/plasmid/). Almost all IncC plasmids carrying blaNDM belong to either ST1 (39/53) or
ST3 (12/53) (Data Set S2). However, there are only 13 STs of IncA/C plasmids in the
database, suggesting low diversity of these plasmids or low resolution of the scheme
for typing such plasmids. A core genome pMLST (cgPMLST) scheme also exists for
IncA/C plasmids (https://pubmlst.org/plasmid/). IncC plasmids of cgST1.2 are particu-
larly common (n � 17) (Data Set S2) and have been found in several species of the
Enterobacteriaceae and Morganellaceae from all continents except Antarctica. Plasmids
of the above-mentioned IncX3 type, FIA�:FIB36:FIIY4 and FIA�:FIB�:FII2 types, and

FIG 3 Worldwide distribution of the replicon types of blaNDM-carrying plasmids in Enterobacteriaceae. Detailed information about the distribution of the replicon
types of blaNDM-carrying plasmids is available in Table 3 and Data Set S2 in the supplemental material.
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cgST1.2 of IncC warrant further investigation to understand their epidemiology, their
true contribution to the NDM problem, and the mechanisms mediating their wide
spread.

Plasmids carrying blaNDM have been well documented in Acinetobacter (e.g., see
references 107–110). A replicon typing scheme for plasmids of A. baumannii has been
developed (111), but the replicon types of blaNDM-carrying plasmids in Acinetobacter
have rarely been reported, and the scheme has not been incorporated into Plasmid-
Finder or any other commonly used plasmid typing tools. Therefore, the replicon types
of blaNDM-carrying plasmids in Acinetobacter remain largely unknown. These plasmids
vary significantly in size from 1,634 bp to 354,308 bp (Data Set S2), suggesting that
multiple plasmids are involved in the spread of blaNDM in Acinetobacter.

Genetic Contexts of blaNDM

Mobile genetic elements, such as insertion sequences, transposons, and inte-
grons, can mobilize antimicrobial resistance genes. This mobilization can be be-
tween different plasmids as well as between plasmids and the chromosome. blaNDM

has been found in a variety of genetic contexts, which suggests that multiple
mechanisms have been involved in the mobilization of blaNDM. The genetic contexts
of blaNDM share two common features. The insertion sequence ISAba125 (intact or
truncated) is always upstream of blaNDM, while a bleomycin resistance gene, bleMBL,
is always downstream. Further downstream of bleMBL, there is usually a complete or
remnant form of a set of several genes, including trpF (encoding a phosphoribo-
sylanthranilate isomerase), dsbC (also called tat, encoding a twin-arginine translo-
cation pathway signal sequence domain protein), cutA1 (also called dct, encoding a
periplasmic divalent cation tolerance protein), and groES-groEL (encoding chaper-
onin), and the insertion sequence ISCR27. ISAba125 provides the �35 region of a
promoter for the expression of blaNDM-1 (112, 113). Another ISAba125 element has
been found downstream of ISCR27 in Acinetobacter, and the two ISAba125 elements
form a composite transposon carrying blaNDM-1, termed Tn125 (Fig. 4A). It appears
that the genetic components within Tn125 have different origins, as the groES-
groEL-ISCR27 section may originate from Xanthomonas spp. (114, 115). The exact
origin of blaNDM-1 remains unknown. Careful examination of the genetic context
and sequence of blaNDM-1 reveals that blaNDM-1 is a chimeric gene. The first 19 bp
of nucleotide sequence (encoding the first 6 amino acids of NDM-1) originate from
an aminoglycoside resistance gene, aphA6. The remaining nucleotide sequence
originates from a yet-to-be-identified preexisting MBL gene (116). As ISAba125 and
aphA6 are widespread in Acinetobacter spp. (117, 118), it is very likely that the fusion
of genes to form blaNDM-1 occurred in Acinetobacter (116). ISCR elements are known
to acquire and accumulate genetic components via a rolling-circle mechanism (119,
120). As an ISCR element, ISCR27 may have initially acquired the progenitor gene of
blaNDM-1 (115, 116, 121) and mobilized the gene together with bleMBL, trpF, dsbC,
cutA1, and groES-groEL into aphA6 (downstream of a copy of ISAba125), allowing
fusion and the formation of blaNDM-1 (115, 116). The second copy of ISAba125 then
inserted downstream of ISCR27 to form the ISAba125-based composite transposon
Tn125 (116).

Acinetobacter spp. serve as the intermediate source for the mobilization of blaNDM

into the Enterobacteriaceae (116, 122). The blaNDM-1-carrying element Tn125 has been
interrupted or truncated in Enterobacteriaceae, to generate a variety of complex genetic
contexts for blaNDM. This interruption is largely due to the insertion of many other
mobile genetic elements (e.g., IS1, IS5, IS26, IS903, ISEc33, and ISKpn14, etc.) and
recombination. The flanking sequences of various remnants of Tn125 have also formed
mechanisms involved in the mobilization of blaNDM-1. These mechanisms included a
number of composite transposons formed by two copies of the same insertion se-
quence, such as IS26 (123) (Fig. 4B), IS903 (124) (Fig. 4C), and IS3000 (termed Tn3000)
(Fig. 4F) (125). The duplication of blaNDM on the same plasmid is due to the action of
an IS26-formed composite transposon (94). The mobilization of blaNDM may be asso-
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ciated with another ISCR element, ISCR1 (Fig. 4E) (95, 126). Two tandem copies of
blaNDM-1 genes have been found on the chromosomes of both an ST167 E. coli strain
in China (127) and a P. aeruginosa strain in Serbia (128). In both cases, the tandem
copies of blaNDM-1 are associated with ISCR1, which uses a rolling-circle mechanism of
transposition and may generate a tandem duplication of its mobilized sequence via
homologous recombination (119). Tn3-derived inverted-repeat transposable elements
(TIMEs), which were previously described as miniature inverted-repeat transposable
elements (MITEs) (94, 129), have also been found to mobilize blaNDM (Fig. 4D) (95).
TIMEs are a type of mobile genetic element bounded by 38-bp inverted repeats
characteristic of the Tn3 family but lacking the transposase gene tnpA and, usually, the
resolvase gene tnpR (130). Two copies of the TIME can form a composite transposon-
like element, which is able to mobilize the intervening genetic components in the
presence of the external Tn3-like transposase (94, 129).

Genetic contexts similar to those of blaNDM-1 are shared in other blaNDM variants,
which are commonly associated with ISAba125 (intact or truncated) upstream and
bleMBL downstream (29, 95, 123, 131–135). This suggests that other blaNDM variants
emerged from blaNDM-1 via nucleotide mutations. Due to the highly mobile nature of
blaNDM, the gene can also be lost by bacterial cells. Loss can be due to the deletion of
DNA fragments as a result of insertion sequence and transposon activity, such as
recombination (136, 137), or the complete loss of the blaNDM-carrying plasmids (138).

FIG 4 Examples of genetic contexts and mobilization mechanisms of blaNDM. (A) Tn125 formed by two copies of ISAba125. (B)
Composite transposon formed by two copies of IS26. (C) Composite transposon formed by two copies of IS903. orf, open reading
frame. (D) Element formed by two copies of the TIME. (E) Composite transposon formed by two copies of IS3000. (F) Genetic contexts
containing ISCR1. This element is also flanked by two copies of IS26. The plasmid names and GenBank accession numbers are shown.
Δ represents truncated genes or elements.
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DETECTION METHODS

Detection of NDM is essential for informing therapeutic decisions. Detection of NDM
also provides critical information in investigating outbreaks, guiding infection control,
and tracking the global and local epidemiology of NDM-positive strains.

Detection of Carbapenemase Activity

New methods and tools are continuously being introduced for the detection of
carbapenemase activity. A number of phenotypic methods to detect carbapenemase
activity have been developed. These include the modified Hodge test (MHT) (139), the
Carba NP (CNP) test (140) and its variants, the �-Carba test (141, 142), the carbapenem
inactivation method (CIM) (143), the modified carbapenem inactivation method (mCIM)
(144), matrix-assisted laser desorption ionization–time of flight mass spectrometry
(MALDI-TOF MS) (145), isothermal titration calorimetry (ITC) (146), and UV spectropho-
tometry (147). The MHT, CNP, and mCIM have been extensively evaluated, and the
latter two are currently recommended by the CLSI for detecting carbapenemases in
carbapenemase-producing Enterobacteriaceae (CPE) and carbapenemase-producing P.
aeruginosa (148). The MHT had been recommended by the CLSI for epidemiological or
infection control purposes since 2009 (149), but the recommendation was removed in
2018 due to the availability of newer tests (CNP and mCIM) with higher accuracy (148).
None of these phenotypic tests are specific for NDM, as they are designed to detect all
carbapenemases, including class A (e.g., KPC) and class D (e.g., OXA-48) carbapen-
emases and other MBLs (e.g., IMP and VIM). We do not review these methods in detail
here but refer the reader to the latest review on phenotypic methods for detecting
carbapenemases (150).

CNP. The CNP test is based on the in vitro hydrolysis of imipenem and has been
extensively evaluated for detecting carbapenemases in Enterobacteriaceae (140) and
Pseudomonas (151). The test has both excellent specificity (84% to 100%) and sensitivity
(93.3% to 100%) for detecting carbapenemases, including NDM in Enterobacteriaceae
(152–154) and P. aeruginosa (155). However, CNP is relatively labor-intensive, as re-
agents need to be prepared in-house, and some have short shelf lives (e.g., 72 h) (156).
It has also been reported that CNP may miss some mucoid NDM-positive Enterobacte-
riaceae strains (157). Many variants of CNP have been developed with minor modifi-
cations or are based on the same principle but with simplified procedures. A modified
CNP test has been developed, with a short turnaround time (�2 h) from the isolation
of single colonies (144). This test has 84.9% to 100% sensitivity and 100% specificity for
detecting carbapenemases in Enterobacteriaceae (152–154, 158). The BYG (Bogaerts-
Yunus-Glupczynski) Carba test uses an electrochemical method to detect enzymatic
hydrolysis of carbapenems (159), while GoldNano Carb employs gold nanoparticles to
visualize carbapenemase activity (160). The detection of carbapenemases in Acineto-
bacter by CNP is more challenging due to its intrinsic low permeability (161). The
CarbAcineto NP test is a modified CNP protocol, using modified lysis conditions and an
increased bacterial inoculum to detect all types of carbapenemases, with 88.9% to
94.7% sensitivity and 100% specificity for Acinetobacter (162, 163). Several variants of
CNP with simplified procedures have become commercially available, including Rapi-
dec Carba NP (bioMérieux) (141, 164, 165), Neo-Rapid Carb (Rosco Diagnostica) (153,
164), Rapid Blue Carb (Rosco Diagnostica) (166), and �-Carba (Bio-Rad) (141, 142).
Rapidec Carba NP and Neo-Rapid Carb have overall comparable sensitivity and speci-
ficity compared with CNP (141, 153, 164, 165), while it has been reported that Rapid
Blue Carb (166) and �-Carba (141, 142) may be slightly less sensitive.

CIM and mCIM. The CIM is based on the enzymatic hydrolysis of meropenem (143).
The pooled sensitivity and specificity of this test are 85.7% to 95.1% and 94.4% to
95.7%, respectively, for detecting carbapenemases in Enterobacteriaceae (157, 167, 168).
CIM is less expensive than CNP (�$1 per test compared to $2 to $16) (143, 150). An
mCIM with a longer incubation period (4 h rather than 2 h) has been developed and
demonstrated increases in both sensitivity and specificity to 100% for detecting car-
bapenemases in Enterobacteriaceae (144, 169–171). The mCIM has been included in
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CLSI guidelines for detecting carbapenemases in Enterobacteriaceae for epidemiological
or infection control purposes since 2017 (172). A rapid carbapenem inactivation
method (rCIM) for detecting carbapenemases within 3 h has recently been developed
and has exhibited excellent sensitivity (99%) and specificity (100%) (173). A multisite
evaluation found that the mCIM is accurate for detection of carbapenemases in P.
aeruginosa, with 86.7% to 100% sensitivity and 93.3% to 100% specificity. Detection of
carbapenemase-producing Acinetobacter with this method is more problematic, with
36.3% to 95.7% sensitivity and 28.6% to 100% specificity (155). Another study has
shown mCIM to have low sensitivity (45.1%) for the detection of carbapenemases in
Acinetobacter and Pseudomonas (174). A new method, termed CIMTris, has been
developed to detect carbapenemases in Acinetobacter and Pseudomonas. The method
is modified by extracting carbapenemases from bacteria with 0.5 M Tris hydrochloride
and has 97.6% sensitivity and 92.6% specificity (174).

MALDI-TOF MS. MALDI-TOF MS platforms are well established for genus or species
identification for bacterial strains. MALDI-TOF MS has the potential to detect carbap-
enemases, as the method can detect carbapenem degradation products when bacterial
protein extracts are incubated with carbapenems. MALDI-TOF MS has 77% to 100%
sensitivity and 94% to 100% specificity when tested for detecting carbapenemases
(145, 150, 175–177). MALDI-TOF MS works well to detect carbapenemases in Acineto-
bacter (178). MALDI-TOF MS has an objective endpoint for result interpretation (179),
but no standardized in-house protocol for carbapenemase detection is available (150,
176, 180). A commercially available MBT Star-Carba IVD kit (Bruker) was introduced very
recently and was evaluated with 96.1% to 100% sensitivity and 89.0% to 99.9%
specificity (181).

ITC. ITC is an approach to measure heat change during binding between ligands
and their targets (182) and has been developed to study kinetics and inhibition
of �-lactamases (146). It can also be used to readily detect (�10 min) the activity of
carbapenemases by monitoring the change in thermal power after the exposure of
bacterial cells to carbapenems (146). Although the sensitivity and specificity of ITC for
detecting carbapenemases have not been established, it has the potential to be used
for screening the production of carbapenemases in bacterial strains.

Detection of MBLs
Disc- or strip-based inhibition methods. A number of tests have been developed

for detecting MBLs in bacterial strains, mainly based on the combination of MBL
inhibitors and carbapenems. The combined disc test (CDT), the double-disc synergy test
(DDST), and the modified Etest have been widely used for detecting MBLs, including
NDM (183, 184). Although the Etest MBL test is simple, it is costly, lacks the sensitivity
to detect weak MBL activities (185), and can generate false-positive results in the
presence of certain OXA-type enzymes (e.g., OXA-23) (186). The CDT compares the
inhibition zones of carbapenem discs with or without MBL inhibitors (commonly EDTA),
while the DDST is based on the difference of the inhibition zones of a �-lactam
(commonly a carbapenem) disc in the presence of a disc containing MBL inhibitors
(EDTA, dipicolinic acid, or 2-mercaptopropionic acid). Both the CDT and DDST are
inexpensive, simple, and convenient and have good sensitivity and specificity for the
detection of MBLs in Enterobacteriaceae. One study found that the imipenem-EDTA CDT
correctly detected all 27 tested NDM-positive Enterobacteriaceae strains (187). Another
study shows that the sensitivity and specificity of DDSTs using EDTA magnesium
disodium salt tetrahydrate for 75 MBL producers (including 2 NDM producers) and 25
non-MBL producers were 96.0% and 100%, respectively (188). CDTs and DDSTs incor-
porating MBL inhibitors are unable to detect carbapenemases other than MBLs. MAST-
Carba plus (MAST group) is a variant of the CDT containing multiple CDT discs and has
been developed to detect major types of carbapenemases, including MBLs. It correctly
detected all NDM-positive Enterobacteriaceae in small bacterial collections (189, 190).
EDTA is a commonly used MBL inhibitor and may generate nonspecific (false-positive)
results for nonfermenting bacteria, in particular Acinetobacter, as it increases the
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permeability of the bacterial outer cell membrane (147, 191). It has also been reported
that some other MBL inhibitors, such as sodium mercaptoacetic acid (SAM), may
provide poor performance in DDSTs (190).

MBL-targeted mCIM. The mCIM alone is unable to differentiate MBLs from other
carbapenemases, but the addition of MBL inhibitors can be used to specifically detect
MBLs following a positive result with the mCIM. The combination of SAM and the mCIM
(SAM-mCIM) has demonstrated 100% sensitivity and specificity for detecting MBLs in a
small collection of CRE strains (n � 55) (169). The EDTA-modified mCIM (eCIM) was
recommended by the CLSI in 2018 for detecting MBLs in CRE for epidemiological or
infection control purposes as a tandem test following a positive mCIM result (148). The
eCIM combined with the mCIM have a �95% sensitivity and a �92% specificity (148).
Strains with a coexistence of MBLs and non-MBL carbapenemases (e.g., KPC and
OXA-48) have been increasingly reported (51, 94, 192). In such cases, the eCIM and
SAM-mCIM may generate false-negative results.

Carb NP test II. Carb NP test II is a derivate of CNP which incorporates tazobactam
for detection of KPC and EDTA for detection of MBLs. It has been reported to exhibit
100% sensitivity and specificity (193). However, in a study on a small collection of
isolates, Carb NP test II failed to detect three (Providencia or Proteus) out of four
NDM-positive strains (194). More studies are clearly required to validate Carb NP test II.

Modified MALDI-TOF MS. Protocols for MALDI-TOF MS have been modified by the
addition of carbapenemase inhibitors for detecting MBLs. The addition of phenylbo-
ronic acid (an inhibitor of class A carbapenemases) or dipicolinic acid (an MBL inhibitor)
with ertapenem allows differentiation between MBLs and class A carbapenemases
(195).

ITC with MBL inhibitors. In addition to detecting carbapenemases, ITC has also
been used to detect the activity of MBLs by comparing the change in thermal power
after the exposure of bacterial cells to carbapenems in the absence and presence of
MBL inhibitors such as EDTA (146, 196). However, the sensitivity and specificity of ITC
need to be established.

Detection of NDM Enzymes
Lateral flow immunoassays. The lateral flow immunoassay (LFIA) is an antibody-

based method developed to detect different types of carbapenemases, which has been
validated. It allows the specific detection of NDM enzymes in singleplex (for NDM only)
(197) or multiplex (for NDM and other major types of carbapenemases) (198, 199)
assays by using specific antibodies. These assays are easy to perform and have a short
turnaround time, as they yield results from cultured colonies within 15 min. These tests
have also been shown to have 100% sensitivity and specificity (197, 200). A multiplex
LFIA has also been developed for the rapid detection of NDM, KPC, and OXA-48
carbapenemases directly from positive blood cultures (201). The LFIA has been shown
to detect NDM-1, -2, -3, -4, -5, -6, -7, and -9 (199, 202), but any amino acid substitutions
occurring in the epitope that is used to generate antibodies for detecting NDM may
generate false-negative results. However, the limited diversity of amino acid sequences
within the NDM family allows universal antibodies to be designed to detect all known
NDM variants. Several commercially available multiplex LFIAs have been developed and
evaluated. These assays include Resist-3 O.K.N. (OXA-48-like, KPC, and NDM; Coris
BioConcept) (203), the O.K.N. K-SeT assay (OXA-48-like, KPC, and NDM; Coris BioCon-
cept) (200), the O.K.N.V. K-Set assay (OXA-48-like, KPC, NDM, and VIM; Coris BioConcept)
(204), and the NG-Test Carba 5 assay (OXA-48-like, KPC, NDM, VIM, and IMP; NG Biotech)
(199, 202). These assays exhibit nearly 100% sensitivities and specificities for detection
of NDM.

Detection of NDM-Encoding Genes

Molecular techniques are the reference methods for detecting carbapenemase
genes, including blaNDM, due to their excellent sensitivity and specificity and robust
performance (187, 205). Molecular techniques are mostly based on PCR, but whole-
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genome sequencing (WGS) is being increasingly used. The main limitations of molec-
ular technologies are the high costs and the requirement for trained technicians (184,
206).

PCR. PCR can be singleplex, multiplex, or real time, and validated protocols are
available to allow convenient and robust detection of blaNDM (184). Many in-house
singleplex and multiplex conventional and real-time PCR assays for detecting blaNDM

have been developed (e.g., see references 2 and 207–213). Commercially available
real-time PCR approaches for detecting multiple carbapenemase genes, including
blaNDM, also exist. These include Xpert Carba-R (Cepheid), Check-Direct CPE (Check-
Points Health), and an antibiotic resistance TaqMan assay (ThermoFisher Scientific).
Xpert Carba-R is a fully automated and integrated system for sample preparation, DNA
extraction, amplification, and qualitative detection of target genes using multiplex
real-time PCR assays with a �1-h turnaround time (214). The method can be used
directly on swab specimens and has 96.6% sensitivity and 98.6% specificity (215). In the
Check-Direct CPE kit, blaNDM and blaVIM are detected using the same fluorochrome, and
it is not possible to differentiate these two genes on certain real-time PCR platforms,
such as ABI 7500, but they can be differentiated using other platforms, such as the BD
Max platform (216). The Check-Direct CPE kit has been evaluated for detection of
carbapenemase genes, including blaNDM, in Enterobacteriaceae and P. aeruginosa (212,
216), with 100% sensitivity and specificity. The ePlex blood culture identification kit
(GenMark) is a highly multiplexed, fully automated, one-step, single-use cartridge assay
system that was announced recently. The kit incorporates blaNDM detection, but
validation has not been reported in the literature (217).

The hyplex SuperBug ID test system (AmplexDiagnostics) and the AID carbapen-
emase line probe assay (Autoimmun Diagnostika) are two commercially available PCR
assays for detecting multiple carbapenemase genes, including blaNDM. These assays use
reverse hybridizations following multiplex PCR. Both assays have 100% sensitivity and
specificity for detecting blaNDM (218–220). A locked nucleic acid (LNA)-based quanti-
tative real-time PCR assay has been developed to simultaneously detect multiple
antimicrobial resistance genes, including blaNDM, directly from positive blood cultures
but has been tested only on several NDM-positive strains (221). A long-fragment
real-time quantitative PCR– combined in vitro protein expression (PCR-P) method has
been developed for detection of blaNDM-1. PCR-P is able to detect blaNDM-1 variants that
have led to changes of function by measuring rates of degradation of imipenem (222).

Loop-mediated isothermal amplification. Loop-mediated isothermal amplification
(LAMP) has been used for the rapid and sensitive detection of blaNDM (223, 224). LAMP
does not require expensive thermocyclers, is quicker to perform than conventional PCR,
and has been shown to exhibit higher sensitivity for detecting blaNDM (223–225). In
addition, LAMP does not require gel electrophoresis, making it convenient in clinical
laboratories. A commercially available LAMP system called Eazyplex (AmplexDiagnos-
tics) has been evaluated for detecting carbapenemase genes in Acinetobacter (226,
227), Enterobacteriaceae (216, 227, 228), and P. aeruginosa (216, 227, 228), with 100%
sensitivity and specificity for blaNDM. LAMP has been evaluated only for detecting
blaNDM-1, and since only 4 or 6 primers can be used in LAMP, it may not be able to
detect all blaNDM variants due to the possibility of nucleotide mutations occurring in
primer binding regions. Due to the extremely high amplification efficiency of LAMP,
extra care should also be taken to avoid contamination (223).

DNA microarray. DNA microarrays can simultaneously detect a vast number of
genes. DNA microarrays for detecting antimicrobial resistance genes, including blaNDM,
have been developed (229) but may not be appropriate for specifically detecting
blaNDM alone, as PCR and LAMP are less expensive and simpler molecular methods. In
addition, detection of DNA hybridization with electrochemical impedance spectroscopy
(EIS) has also been developed to specially detect blaNDM (196). DNA microarrays
including blaNDM in the target panel have become commercially available, including
the Verigene Gram-negative blood culture nucleic acid test (BC-GN; Nanosphere),
Check-MDR CT102 and Check-MDR CT103 assays (Check-Points Health), and the Carb-
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Detect AS-1 kit and CarbDetect AS-2 kit (Alere Technologies). BC-GN and Check-MDR
CT102 detect genes encoding ESBLs and major types of carbapenemases (IMP, KPC,
VIM, NDM, and OXA-48), while Check-MDR CT103 also targets genes encoding plasmid-
mediated AmpC cephalosporinases on the basis of CT102. CarbDetect kits also target
genes mediating resistance to aminoglycosides, quinolones, macrolides, sulfonamides,
and trimethoprim. Both CT102 and CT103 have been evaluated using collections
including NDM-positive strains and exhibit 100% sensitivity and specificity (230, 231).
BC-GN has 96.2% sensitivity for detecting blaNDM and gives false-negative results for
several NDM-positive strains (232). DNA microarrays have limitations, including high
costs, long turnaround times, and inflexibility with respect to adding new targets once
an array is established (233).

Whole-genome sequencing. WGS is being increasingly used in health care settings.
It can be used for many purposes, including detecting genes encoding antimicrobial
resistance. The cost of next-generation WGS, commonly the MiSeq and HiSeq platforms
(Illumina), has significantly dropped to typically $74 per bacterial genome in 2018.
Several databases of antimicrobial resistance are available for detecting known anti-
microbial resistance genes. The most-used examples are ResFinder (https://cge.cbs.dtu
.dk/services/ResFinder/) (234), ARDB (Antibiotic Resistance Genes Database) (https://
ardb.cbcb.umd.edu/) (which is not maintained at present) (235), and CARD
(Comprehensive Antibiotic Resistance Database) (https://card.mcmaster.ca/) (236). By
querying the databases, next-generation WGS can be used to detect all known anti-
microbial resistance genes and any new variants of a certain gene, such as blaNDM,
which could be missed by many other commonly used molecular methods such as
real-time PCR and DNA microarrays. Genome sequences generated by WGS also allow
precise species identification and strain typing for surveillance and tracking of the
transmission of certain strains, critical for epidemiology and infection control (108,
237–239). The complete sequence of plasmids carrying certain antimicrobial resistance
genes, such as blaNDM, can be further obtained using long-read sequencing platforms
such as PacBio (Pacific Biosciences) and MinION (Nanopore). These platforms can
provide complementary information on the transmission of antimicrobial resistance in
addition to strain typing. MinION is portable and is particularly useful in health care
settings, but the cost is still relatively high at present. Metagenomic sequencing has
also been developed for sequencing total DNA directly from clinical samples. This can
also detect antimicrobial resistance genes such as blaNDM. However, metagenomic
sequencing needs much higher sequencing depth (costlier), and the analysis of met-
agenomic data is much more complex than WGS for single isolates (237). WGS is
promising, but several major aspects, such as the cost, bioinformatics pipelines, and
turnaround time, need to be improved before it can be used routinely for diagnosis and
detection in health care settings (237).

TREATMENT OPTIONS AGAINST NDM-POSITIVE STRAINS

Treatment for CRE infections has been reviewed extensively (240–244). However,
CRE strains included in previous studies are commonly KPC producers, or their type of
carbapenemase has not been specified. In this review, we focus on treatment for
NDM-positive strains rather than CRE as a whole.

Aztreonam-Avibactam or Aztreonam Combined with Ceftazidime-Avibactam

Although aztreonam is stable against MBLs, NDM-producing strains usually have
ESBLs and/or AmpC enzymes that are able to hydrolyze aztreonam. Aztreonam alone
therefore has limited clinical utility against NDM-producing strains. Avibactam is a
non-�-lactam �-lactamase inhibitor with the ability to inhibit most serine �-lactamases,
such as class A (e.g., KPC, CTX-M, TEM, and SHV), class C (AmpC), and some class D (e.g.,
OXA-48) enzymes. However, avibactam has no ability to inhibit MBLs, including NDM,
and cannot effectively protect �-lactams from the hydrolysis of MBLs (245). The
combination of avibactam with aztreonam can protect the latter from the hydrolysis of
ESBLs and AmpC and therefore can expand the spectrum of aztreonam. The combi-
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nation of aztreonam and avibactam has demonstrated potent in vitro activity against
NDM-positive ESBL-producing Enterobacteriaceae (246). Aztreonam-avibactam is cur-
rently in clinical development and is not available for clinical use. Ceftazidime-
avibactam has been approved for clinical use and is highly effective against KPC-
positive CRE but has no activity against NDM-positive strains. In vitro studies have
demonstrated synergistic activity and a bactericidal effect of the combination of
ceftazidime-avibactam and aztreonam against CRE (247, 248). A small case series of 10
patients revealed that 7 of the patients survived after receiving the combination of
aztreonam and ceftazidime-avibactam. The other three patients died as a result of other
underlying conditions and therefore should not be considered a failure of the combi-
nation treatment (249). Several case reports have also demonstrated that the combi-
nation of aztreonam and ceftazidime-avibactam can successfully treat infections with
NDM-positive CRE strains (247, 250). This combination could be considered if there are
no alternative therapeutic options, and its efficacy warrants further, large-scale studies.

Polymyxins (Colistin and Polymyxin B) Alone and in Combination

Polymyxins are the current mainstay choice of antimicrobial agents against CRE and
carbapenem-resistant A. baumannii, including NDM-positive strains. The treatment of
infections due to multidrug-resistant organisms (MDRO) with polymyxins has been
reviewed previously (251–253), and there are many studies on the efficacy of colistin
against CRE, most of which have KPC rather than NDM (254, 255). In this review, we
focus on treatment against NDM-positive strains only.

Polymyxin E (colistin) and polymyxin B have been evaluated for the treatment of
infections caused by NDM-positive strains. NDM-positive strains are usually susceptible
to polymyxins. There is a case report that colistin alone has been used successfully for
treatment of a patient with a polymicrobial infection, including an NDM-positive Vibrio
cholerae strain, with an increased dose (from 1 million units [MU] to 2 MU three times
a day) and monitoring serum concentrations (256). However, an in vitro time-kill assay
revealed that although initial killing of bacterial cells could be achieved by colistin
alone, considerable regrowth occurs at 24 h, and resistant subpopulations are fre-
quently detected after exposure to colistin alone (257). A murine infection model
demonstrated that unlike in combination with amikacin, colistin alone is unable to
achieve 1.5- to 2.8-log10 killing after 24 h of therapy (258). Another study using murine
models revealed that colistin alone was inappropriate for treating pneumonia due to
NDM-positive K. pneumoniae, although the strain was susceptible to colistin in vitro
(259). The use of colistin has also been hampered by the occurrence of renal toxicity
(260, 261) and, to a lesser extent, neurological adverse effects (262). Many NDM-positive
Enterobacteriaceae strains have become resistant to colistin by acquiring plasmid-borne
mcr genes or have mutations/interruptions of chromosomal genes such as phoP-phoQ
(encoding a two-component system) and mgrB (a regulator of phoP-phoQ) (263–265).

Evidence suggests that treatment with colistin-based combinations may offer a
benefit compared to colistin alone. Colistin is usually recommended in combination
with other agents for treatment (266). Although various colistin-based combinations
have been examined in vitro and occasionally in vivo, it remains unclear what the best
combination is, as studies are usually done with small sample sizes or single case
reports, are heterogeneous in methodology, and have generated inconsistent findings.

A patient with complicated health care-associated cystitis due to an NDM-positive E.
coli strain recovered after receiving colistin and rifampin (267). The combination of
colistin, rifampin, and meropenem was successfully used to treat pyoderma caused by
multiple microorganisms, including an NDM-positive E. coli strain, in a 49-year-old male
patient (268). A patient with acute pyelonephritis due to NDM-positive P. aeruginosa
recovered when treated with colistin combined with aztreonam (269). Polymyxin B in
combination with aztreonam and meropenem rescued a 65-year-old patient with acute
myeloid leukemia from bloodstream infection caused by an NDM-positive K. pneu-
moniae strain (270).
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The colistin-tigecycline combination was not bactericidal against two NDM-positive
colistin-susceptible K. pneumoniae strains in a 24-h time-kill assay (271). Another study
revealed that the addition of tigecycline to colistin did not produce increased bacterial
killing. Instead, it may cause antagonism at lower concentrations (263). In a study
including 28 NDM-positive Enterobacteriaceae strains, in vitro synergistic activity was
observed with colistin plus tigecycline in very rare cases (272).

The combination of colistin and fosfomycin achieved increased bacterial killing and
decreased the chance of emergence of resistance compared to either agent alone in 6
NDM-positive Enterobacteriaceae strains (273). Synergistic or bactericidal activity is
present for fosfomycin and colistin in a 24-h time-kill assay (271). However, in another
study including 28 NDM-positive Enterobacteriaceae strains, in vitro synergistic activity
was observed for colistin plus fosfomycin only in very rare cases (272).

A time-kill assay revealed that the addition of amikacin is able to restore the
susceptibility of four NDM-positive and mcr-positive E. coli strains to colistin (258).
However, another time-kill assay demonstrated that the combination of amikacin and
polymyxin B failed to eradicate NDM-positive and mcr-positive E. coli strains but that
the addition of aztreonam with amikacin and polymyxin achieved eradication (274).

Tigecycline

The susceptibility of NDM-positive Enterobacteriaceae strains to tigecycline varies
significantly. Some studies report that these strains are mostly susceptible to tigecycline
in vitro (275, 276), while a multicenter study in China found that most NDM-positive
strains were nonsusceptible to tigecycline (38). Nonetheless, tigecycline does not have
desirable pharmacokinetic properties and is a bacteriostatic agent. There are concerns
that in vitro susceptibility to tigecycline may not be translated to in vivo efficacy (277).
A previous study demonstrated that treatment with tigecycline was associated with
high mortality rates (40.1%) when used for treatment of infections due to CRE (most of
which are likely to have KPC rather than NDM), whereas the mortality rate for inactive
therapy was 46.1% (278). Both in vivo and clinical studies on tigecycline against
NDM-positive strains are scarce. In an in vivo study using a murine infection model, a
high-dose tigecycline scheme was effective for treating pneumonia due to NDM-
positive E. coli and K. pneumoniae and was more active than colistin (259). The
combination of tigecycline and levofloxacin was used to successfully treat a patient
with hospital-acquired pneumonia caused by NDM-positive Raoultella planticola (279).
However, during treatment against NDM-positive strains, high-level tigecycline resis-
tance can emerge rapidly (280). Nonetheless, these limited data fail to provide a
convincing argument for or against the use of tigecycline for treating infections due to
NDM-positive strains, and further studies are therefore required.

Eravacycline

Eravacycline is a novel synthetic fluorotetracycline with potency that is 2- to 4-fold
higher than that of tigecycline in NDM-positive strains. In an in vitro analysis of 2,644
Gram-negative pathogens, eravacycline demonstrated excellent activity against 18 E.
coli strains that had carbapenem resistance associated with OXA and NDM (281).
Eravacycline was approved for treating adults with complicated intra-abdominal infec-
tions by the FDA in August 2018. Eravacycline is also currently being tested against
complicated urinary tract infections in a clinical trial (ClinicalTrials.gov registration no.
NCT01978938).

Dual Carbapenems

The rationale for using two carbapenems together is to provide a competitive
substrate for the �-lactamase. These studies are mainly aimed at CRE as a whole, most
of which have serine-based �-lactamases, such as KPC and OXA-48, rather than NDM.

Carbapenem MICs for carbapenemase-producing K. pneumoniae isolates may vary
within a broad range of values, from 0.12 to �256 mg/liter. This variation depends on
the clonal background of the bacterial isolates and the type of carbapenemase pro-
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duced. Isolates producing NDM usually have high carbapenem MICs (�32 mg/liter) (33,
282). This has made dual-carbapenem-based treatment more challenging for NDM-
positive strains.

Twenty carbapenem-resistant K. pneumoniae (CRKP) clinical strains, 6 of which were
NDM positive, were tested with dual-carbapenem (any two of doripenem, ertapenem,
imipenem, and meropenem) combinations. The data strongly support the hypothesis
that dual-carbapenem combinations might be effective against KPC and OXA-48, but
no synergy was observed for any of the NDM-positive strains (283), which might be due
to the different action mechanism of MBLs compared to those of serine-based carbap-
enemases (15). NDM-positive Enterobacteriaceae were tested in immunocompetent and
neutropenic murine thigh infection models using humanized regimens of standard
(500 mg given every 8 h) and high-dose, prolonged infusion (2 g given every 8 h; 4-h
infusion) of doripenem and 1 g of ertapenem given intravenously every 24 h. Dorip-
enem and ertapenem demonstrated efficacy against several NDM-positive strains,
especially using high-dose and prolonged infusion (284). The findings in this in vivo
study are inconsistent with those of the in vitro study (283). Dual carbapenems
(meropenem and ertapenem) plus fosfomycin were used to successfully treat urinary
tract infections caused by NDM-positive Enterobacteriaceae in two patients (285). In
general, there are very few studies of dual carbapenems against NDM-positive strains,
and the current evidence is contradictory. More studies are therefore required.

Aminoglycosides

Susceptibility to aminoglycosides may be unpredictable and can vary according to
the strain type. Aminoglycosides may be considered a viable option for combination
therapy against NDM-positive strains. Plazomicin is a synthetic derivative of sisomicin
that evades many aminoglycoside-modifying enzymes but is not active against bacte-
rial strains having 16S rRNA methyltransferases (286). However, NDM-positive strains
are usually resistant to plazomicin (MIC � 64 mg/liter) (287). Apramycin is of the
4-monosubstituted deoxystreptamine (DOS) subclass and is active against ribosomes
modified by all 16S rRNA methyltransferases except NpmA (288), which is not common
in the Enterobacteriaceae. An in vitro study demonstrated that almost 90% of NDM-
positive strains are susceptible to apramycin (289). However, apramycin is a veterinary
agent and has not been approved for clinical use, likely due to its narrow therapeutic
index (287). Apramycin therefore warrants further investigations as a repurposed agent
against CRE, including NDM-positive strains.

Fosfomycin

Fosfomycin is available as an oral agent in the United States and is also available for
intravenous use in Europe and China. Few large-scale studies have addressed the
susceptibility of NDM-positive Enterobacteriaceae to fosfomycin (267). Sufficient data
are lacking to support the use of fosfomycin alone, but fosfomycin-containing combi-
nation therapy has demonstrated promising results, as mentioned above (273).

New Antimicrobial Agents in Development
Cefiderocol. Cefiderocol (S-649266) (the chemical structure is shown in Fig. S1 in the

supplemental material) is a novel catechol siderophore cephalosporin and is usually
stable against the hydrolysis of carbapenemases, including MBLs (290). When tested on
49 NDM-producing strains, MICs for most strains (44/49; 89.8%) were 2 to 4 mg/liter, but
those for 5 strains were �16 mg/liter. Although breakpoints to define susceptibility
have not been established, the high MICs suggest that the 5 strains were likely resistant
to cefiderocol. Cefiderocol demonstrated bactericidal activity against an NDM-1-
producing K. pneumoniae strain in a rat lung infection model (the cefiderocol MIC was
8 mg/liter) (291). A phase 2 randomized study demonstrated that cefiderocol was
noninferior to imipenem for treating patients with complicated urinary tract infections
caused by carbapenem-susceptible Gram-negative bacteria (292). Cefiderocol is cur-
rently being tested for the treatment of severe infections caused by carbapenem-
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resistant Gram-negative bacteria and nosocomial pneumonia caused by Gram-negative
bacteria in two clinical trials (ClinicalTrials.gov registration no. NCT02714595 and
NCT03032380).

LYS228. LYS228 (Fig. S1) is a novel monobactam stable against the hydrolysis of
MBLs and serine carbapenemases. In vitro studies revealed that it has potent activity
against the majority of ESBL-producing Enterobacteriaceae and CRE strains tested,
including NDM-positive ones (293). LYS228 is currently being tested for treating
patients with complicated intra-abdominal infections in a clinical trial (ClinicalTrials.gov
registration no. NCT03354754).

Odilorhabdins. Odilorhabdins are a new antibiotic class against both Gram-positive
and Gram-negative pathogens, which act on ribosomes to inhibit bacterial translation
(294). A compound of this class, named NOSO-502 (Fig. S1), has activity against CRE
strains producing NDM, KPC, AmpC, or OXA enzymes (295), demonstrated using a
murine systemic infection model (296).

Piscidins. Tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4) are two antimicrobial
peptides (Fig. S1) from fish that exhibit strong activity against NDM-positive K. pneu-
moniae in vitro. Administration of TP3 (150 �g/mouse) or TP4 (50 �g/mouse) is able to
significantly increase survival in a murine sepsis model, and TP4 was more effective
than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to
be nontoxic and have the potential for use in combating NDM-positive strains (297).

Photoactivated 2,3-distyrylindoles. A compound based on the 2,3-distyrylindole
scaffold has been found to exhibit activity against various MDR Gram-negative bacteria,
including NDM-positive Enterobacteriaceae (298). The compound exhibited bactericidal
properties at a concentration of 5 �M and in the presence of colistin at nonbactericidal
concentration of 1.25 �g/ml. This resulted in a 7- to 9-log reduction in bacterial counts
of NDM-positive Enterobacteriaceae via disruption of the bacterial cell membrane (298).
The photoactivated 2,3-distyrylindole-based compounds may have the potential to be
applied topically.

Broad-Spectrum �-Lactamase Inhibitors
VNRX-5133. VNRX-5133 (see Fig. S1 in the supplemental material) is a second-

generation boronate in development with cefepime. It is a new broad-spectrum
�-lactamase inhibitor with direct inhibitory activity against Ambler class A, B (including
NDM and VIM but not IMP), C, and D �-lactamases. However, MICs of cefepime–VNRX-
5133 (1:1 ratio) for some NDM-producing strains are around 8 mg/liter (299). VNRX-5133
is currently being tested for safety, pharmacokinetics, and drug-drug interactions in
several clinical trials (ClinicalTrials.gov registration no. NCT03690362, NCT02955459,
and NCT03332732).

Other Non-�-Lactam Serine �-Lactamase Inhibitors in Development

Relebactam (MK7655) (300) and nacubactam (RG6080 or OP0595) (301) are two
non-�-lactam �-lactamase inhibitors (see Fig. S1 in the supplemental material), like
avibactam, and can inhibit serine �-lactamases but cannot inhibit MBLs. Relebactam
and nacubactam are being developed in combination with imipenem and meropenem,
respectively, and imipenem-relebactam has successfully completed a phase 3 trial.
Although relebactam and nacubactam have no activity against NDM-positive strains,
their combination with aztreonam may have potential, like aztreonam-avibactam (see
above), against NDM-positive strains.

MBL Inhibitors

An attractive strategy to combat NDM-positive bacteria is to develop MBL (including
NDM) inhibitors. A number of NDM inhibitors of various classes have been identified
and characterized, but none of the compounds have been approved for clinical use
thus far. The inhibitors have been summarized in several excellent reviews (19, 302,
303). In this review, we summarize these inhibitors, including those that have been
developed in the past 3 years, in Table 4.
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Many of the NDM inhibitors have been tested only in vitro. However, several,
including ANT431 (304), aspergillomarasmine A (305), calcium disodium EDTA (306),
and colloidal bismuth subcitrate (CBS) (an anti-Helicobacter pylori drug) (307), have also
been studied using in vivo models and have been shown to be efficacious. None of the
NDM inhibitors have been approved for clinical use yet.

Antimicrobial Adjuvants in Development

With limited treatment options available, we are in urgent need of new therapeutic
options. One approach to combat this growing problem is the use of combinations
containing adjuvants. Antimicrobial adjuvants include not only antimicrobial agents
but also compounds from plants.

TABLE 4 NDM inhibitors reported

Inhibitor(s) Description Reference(s)

Sulfur-containing inhibitors
Bisthiazolidines Penicillin analogs containing thiol 404
Captopril and various analogs Angiotensin-converting enzyme inhibitor 405, 406
Thiorphan Active metabolite of racecadotril, a peripherally

acting enkephalinase inhibitor
407

Thiophenecarboxylic acid derivatives Sulfur atom of the thiophene ring 408
Thioazoles and thiophene-containing amino acid thioesters 409, 410
Tryptophan-containing compound Thiol-containing amides 411
Sulfonamides 412
Thiol-containing compounds 413
ANT431 Pyridine-2-carboxylic acid derivative 304

Metal-complexing agents
1,4,7-Triazacyclononane-1,4,7-triacetic acid Metal chelators 414
1,4,7,10-Tetraazacyclononane-1,4,7,10-tetraacetic acid Metal chelators 414
Calcium disodium EDTA Metal chelators 306, 415, 416
ME1071 (disodium 2,3-diethylmaleate) Maleic acid derivative 287
Colloidal bismuth subcitrate and related Bi(III) compounds Anti-Helicobacter pylori drug 417
Inhibitor 36 2,6-Dipicolinic acid derivative 418

Aspergillomarasmine A Extract of a strain of the fungus Aspergillus
versicolor

305

Chromenes
Chromenone compound 419
Chromenone and chromeno[3,2-c]pyridine compound 2 polyketides isolated from Penicillium sp. from

the rhizosphere soil of the plant Picea
asperata

420

3-Formylchromone 421
3-Cyanochromone 421

Thiol-modifying agents
p-Chloromer-curibenzoic acid and sodium nitroprusside

[Na2Fe(CN)5NO·2H2O]
Thiol-modifying agents 422

Ebselen Selenium-containing molecule 423

Covalent irreversible inhibition by �-lactams
Supratherapeutic doses of �-lactams such as cephalothin

and moxalactam
Key residue for interaction with the substrate 424

�-Phospholactam Tetrahedral transition state analog 425

4-Chloroisoquinolinols 426

Aminoimidazoles 427

Synthetic nucleotide analogs
Peptide-conjugated phosphorodiamidate morpholino

oligomer
428
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Organic acid. The antibacterial activity of organic acids and their combinations
against NDM-positive E. coli was tested by a disc diffusion method. The MIC of colistin
is reduced from 8 to 0.5 �g/ml in the presence of 320 �g/ml oxalic and succinic acids.
The addition of oxalic and succinic acids may have the potential for reducing the dose
of colistin (308).

Macromolecules. Membrane-active macromolecules (MAMs) have been found to
enhance the uptake of tetracycline by bacterial cells and therefore are able to resen-
sitize NDM-positive strains to tetracycline (309). The MAM-tetracycline combination was
bactericidal, in contrast to the bacteriostatic effect of tetracycline alone (309).

Copper ions and coordination complexes. A study found that copper is able to
directly inhibit the activity of NDM-1. Copper shows synergy with ertapenem and
meropenem against NDM-positive E. coli in standard checkerboard assays. The synergy
between copper and carbapenems has also been confirmed using a low concentration
(10 �M) of copper with the FDA-approved copper-pyrithione coordination complex.
Copper coordination complexes therefore have potential as novel carbapenemase
adjuvants (307).

Zidebactam and WCK 5153. Zidebactam and WCK 5153 are novel �-lactam en-
hancers that are bicyclo-acyl hydrazides (BCHs), derivatives of the diazabicyclooctane
(DBO) scaffold. They are targeted for the treatment of serious infections caused by MDR
Gram-negative pathogens, including NDM-positive strains. Zidebactam and WCK 5153
exhibit specific penicillin binding protein 2 (PBP2) inhibition but do not inhibit MBLs.
Time-kill assays and live-dead staining revealed the bactericidal activity of zidebactam
and WCK 5153. Zidebactam and WCK 5153 restored susceptibility to �-lactams in P.
aeruginosa mutant strains and represent a promising �-lactam “enhancer-based” ap-
proach to treat MDR P. aeruginosa infections, bypassing the need for MBL inhibition
(310). The combination of cefepime and zidebactam showed potent activity against
Enterobacteriaceae and P. aeruginosa strains producing various clinically relevant
�-lactamases, including ESBLs, KPCs, AmpC, and MBLs (including NDM) (311).

Plant derivatives. In one particular study of note, ethanol extracts from the leaves
of 240 medicinal plant species were screened for antibacterial activity (312). The
extracts from Combretum albidum G. Don, Hibiscus acetosella Welw. ex Hiern, Hibiscus
cannabinus L., Hibiscus furcatus Willd., Punica granatum L., and Tamarindus indica L.
inhibited the NDM-1 enzyme in vitro and showed synergistic effects when combined
with colistin (312). In another study, magnolol, from the bark of magnolia trees,
significantly inhibited NDM-1 enzyme activity and was able to restore the activity of
meropenem against NDM-positive E. coli (28). Molecular modeling and a mutational
analysis demonstrated that magnolol binds directly to the catalytic pocket of NDM-1,
thereby blocking the binding of the substrate to NDM-1 and leading to its inactivation
(28).

Immunotherapeutic Agents

Nonantimicrobial immunotherapeutic agents represent a new, alternative way to
treat infections due to NDM-positive strains. Two recombinant human cysteine protei-
nase inhibitors, cystatin 9 (rCST9) and cystatin C (rCSTC), have been tested using murine
pneumonia models of infection with NDM-positive K. pneumoniae (313). That study
demonstrated that the combination of rCST9 and rCSTC led to significantly improved
survival compared to that of infected mice treated with one of the inhibitors or without
treatment (313). This suggests that rCST9-rCSTC is a promising therapeutic candidate
for treating bacterial pneumonia (313).

INFECTION PREVENTION AND CONTROL FOR NDM-POSITIVE STRAINS
Outbreaks

Many outbreaks caused by NDM-producing strains of Enterobacteriaceae and A.
baumannii have been reported in the literature (Table 5). Many reports describe only
the microbiological aspects of the outbreak and fail to provide full information regard-
ing outbreak investigations. The source of outbreaks has often been identified as a
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contaminated near-patient environment or communal medical device (Table 5). Out-
breaks have also been seen in patients sharing rooms with those infected or colonized
by NDM-positive strains (314, 315).

Outbreaks are generally controlled by strengthening commonly used infection
control measures, such as contact precautions, hand hygiene, environmental cleaning,
isolation, and active surveillance, with or without implementing additional measures
(314–325). It has been reported that outbreaks due to CRE have been effectively
controlled by enhanced environmental disinfection using hydrogen peroxide (326).
Particular efforts should be taken to investigate possible environmental reservoirs
during outbreaks (327), and if the source is identified, targeted measures are required
to control the outbreak. For instance, duodenoscopes have been identified as the
contamination source for several outbreaks, which were subsequently controlled by
enhanced cleaning and a change from high-level disinfection to gas sterilization (328,
329). A “search-and-destroy” approach has been successfully used to control outbreaks
but can be costly (330). The sources of outbreaks may not be identified in many cases.
In such cases, the entire environment of affected wards may become heavily contam-
inated, and temporary ward closures have been recommended for enhanced cleaning
and limiting the further spread of the pathogen (327, 331–333). External audits of
infection control measures and extensive health service-wide education have also been
recommended (334). If outbreaks persist despite the implementation of measures,
screening of health care workers for carriage of MDRO is advised (332, 334), but the true
relative value of this exercise is yet to be proven.

Infection Prevention and Control

The reservoirs and the mode of transmission of MDRO, including NDM-positive
strains, are largely underinvestigated (335). Based on outbreak investigations, the
source of NDM-positive strains in health care settings has been suggested to be
patients infected or colonized with the strains or contaminated environment or devices
(Table 5) (336). Unlike blaKPC-2, the spread of blaNDM is largely due to horizontal transfer,
which is mainly mediated by plasmids but can also be mediated by OMVs, at least in
Acinetobacter (60). The transmission of NDM-positive strains in health care settings is
believed to be due to close contact (331). Hospitalized patients are the most vulnerable
populations for infection or colonization by NDM-positive strains. Healthy persons can
also acquire NDM-positive strains, although colonization is usually for a short period of
time (less than 1 month, shorter than the period seen for hospitalized patients [see
below]) (57).

Several guidance documents are available to address the prevention and control
of carbapenem-resistant Gram-negative bacteria in health care settings. The CDC’s
guidance for the control of CRE in health care facilities was published in 2012 and
updated in 2015 (336). The European Centre for Disease Prevention and Control
(ECDC) issued its guidance on prevention of the entry of CRE into health care
settings in 2017 (337). The World Health Organization (WHO) also released global
guidance on the prevention and control of carbapenem-resistant Enterobacteria-
ceae, A. baumannii, and P. aeruginosa in 2017 (331). The WHO guidance also
identified research gaps and the need for further research. Measures (summarized
in Appendix S2 in the supplemental material) recommended by these guidance
documents are evidence based and are overall highly similar (Table 6), although the
emphasized points and the terminology are slightly different. In addition to the
guidance documents, the Society for Healthcare Epidemiology of America (SHEA)
established a step-by-step strategic roadmap for CRE infection control based on
evidence and expert opinion (327). This roadmap has six successional steps, includ-
ing determining whether CRE have been isolated, determining affected wards and
the occurrence of intrafacility transmission, implementing early CRE detection and
CRE containment measures, enhancing existing infection control requirements,
regional strategy, and investigating for community spread of CRE, which should be
applied in different situations, such as sporadic cases, single-hospital outbreaks,
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and settings of endemicity (327). However, as the WHO guidance has identified, the
quality of the evidence for the recommended measures in guidance is usually very
low or low (331). The efficacy of the recommended measures within the guidelines
remains to be verified in health care settings. In resource-limited settings, such as
health care institutions in the developing world, overcrowding, shortage of staffing,
and poor hygiene may be the critical factors contributing to the spread of NDM-
positive strains. Such factors may not be addressed by studies that have been
performed in developed countries and have been included as evidence during
guideline development.

There are several other major challenges to the prevention and control of coloni-
zation and infection due to NDM-positive strains in health care settings. One such
challenge is long-term carriage (colonization) in human hosts. It is well known that CRE
can colonize the human gut for extended periods of time (338, 339), with reports of
colonization for more than 3 years (340). Although studies on the duration of coloni-
zation usually do not specifically target NDM-positive strains, prolonged colonization
by an NDM-positive strain for months was previously reported (341). A study in South
Korea reveals that NDM-positive strains are difficult to clear, as only 11.3% (12/106) of
colonized patients had no such strains upon discharge from the hospital (342). These
colonized patients could serve as cryptic sources of further transmission of NDM-
positive strains. Another particular challenge for infection control is the implementation
of recommended measures. Even within a single geographic area in developed coun-
tries, the infection control strategies and practices against CRE vary remarkably (343). As
stated in the WHO guidance (331), compliance should be monitored and analyzed to
identify barriers to the implementation of countermeasures. A strategic roadmap for
the control of CRE based on the best available evidence and expert opinion has been
developed to facilitate implementation (327), and the WHO guidance has also detailed
ways to help implementation (331).

The WHO guidance states that the same infection control measures should apply to
carbapenem-resistant organisms regardless of the resistance mechanisms (331). NDM-
and KPC-positive strains have some important differences, however. Unlike the well-
known international spread of KPC-positive strains of K. pneumoniae clonal complex

TABLE 6 Infection control measures for carbapenem-resistant Enterobacteriaceae and
other Gram-negative bacteriaa

Measure(s)

Recommendation in guidance by:

CDC 2015b ECDC 2017c WHO 2017d

Hand hygiene � � �
Antimicrobial stewardship � � �
Health care personnel education � � �
Monitoring, auditing, and feedback � � �
Minimization of use of invasive devices � � �
Microbiological capacity � � �
Notification from laboratory � � �
Contact precautions � � �
Patient isolation or cohorting � � �
Nurse cohorting � � �
Active surveillance for patients � � �
Screening contacts � � �
Surveillance cultures of the environment � � �
Environmental cleaning � � �
Communication at discharge and transfer � � �
Chlorhexidine bathing � � �

aCDC and ECDC guidance documents are only for CRE, while WHO guidance also covers carbapenem-
resistant A. baumannii and P. aeruginosa. “�” does not mean its absence in the guidance but indicates that
it has not been highlighted as an independent measure.

bSee reference 336.
cSee reference 337. ECDC guidance is only for the prevention of the entry of CRE and does not address the
control measures for patients with CRE infection or colonization.

dSee reference 331.
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258 (including ST258, ST11, and a few closely related STs), the spread of NDM-positive
strains is less clonal, as there is no sustained global spread of certain high-risk clones.
The spread of blaNDM is primarily mediated by plasmids. blaNDM is mainly seen in the
Enterobacteriaceae, which usually colonize the gut of warm-blooded animals, including
humans. blaNDM has been found in various species of the Enterobacteriaceae. This
suggests that the human gut may serve as a hot spot for the spread of blaNDM in health
care settings. However, the predisposing factors of colonization by NDM-positive strains
remain largely underinvestigated. The avoidance of disturbance of the gut microflora
and selective decontamination may be effective measures against NDM-positive strains
and warrant further investigation.

CONCLUDING REMARKS

NDM-positive strains are continuing to spread worldwide despite continuous efforts
and remain a critical challenge for clinical treatment and a significant threat to public
health. The wide dissemination of blaNDM genes is largely mediated by certain plasmids,
particularly those of the IncX3 type. NDM enzymes are continually evolving to generate
new variants, some of which have obtained enhanced carbapenemase activity. No
treatment targeting NDM has been approved for clinical use at present, although many
new agents with various mechanisms of action are under investigation or in develop-
ment. Polymyxins remain the mainstream choice to treat infections caused by NDM-
positive strains at present, while aztreonam-avibactam is a promising alternative op-
tion. The ultimate success of the fight against NDM also relies on effective infection
control practice in addition to the development of antimicrobial agents. Awareness
toward infection control and compliance with control measures still need to be
significantly enhanced in health care settings.

There are a few notable research gaps regarding NDM enzymes and NDM-
positive strains. First, very few studies have addressed the epidemiology of NDM-
positive strains worldwide. Ten years after their initial discovery, we are still not sure
whether NDM-positive strains are continuing to increase in prevalence, have
reached a plateau, or are decreasing. Second, beyond health care settings, the
spread of NDM-positive strains in the community remains unclear, although there
are several reports that NDM-positive strains have been detected in healthy indi-
viduals (344). Third, the exact origin of blaNDM remains unknown. Is it from the
chromosome of a bacterial species, like many other �-lactamase genes such as
blaCTX-M? If so, what is the species? Fourth, although it is well known that infections
caused by CRE are associated with high mortality rates (345, 346), CRE mortality
studies usually refer to KPC-positive strains, or the carbapenemase type has not
been specified. It is surprising that studies on the impact of the presence of NDM
on mortality are scarce, and such studies are much needed. Fifth, the optimal
treatment of infections caused by NDM-positive strains remains to be determined.
Although polymyxins remain the mainstream choice, there are intrinsic limitations,
such as toxicities, the absence of optimal dosage schemes, and the presence of
heterogeneous resistance. There are still no treatments specifically targeted toward
NDM. Sixth, almost all recommended infection control measures against
carbapenem-resistant Gram-negative bacteria are based on low- or very-low-quality
studies. Therefore, more well-designed prospective studies are needed to establish
more-targeted and effective measures. Finally, although several guidance docu-
ments have stated that CRE should be regarded as a whole in terms of infection
control, NDM- and KPC-positive strains have significant differences. Whether tar-
geted measures should be established to control NDM-positive strains and what
these measures might be remain to be determined.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/CMR

.00115-18.
SUPPLEMENTAL FILE 1, PDF file, 0.7 MB.

Wu et al. Clinical Microbiology Reviews

April 2019 Volume 32 Issue 2 e00115-18 cmr.asm.org 30

https://doi.org/10.1128/CMR.00115-18
https://doi.org/10.1128/CMR.00115-18
https://cmr.asm.org


SUPPLEMENTAL FILE 2, XLSX file, 0.1 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
This work was supported by a grant from the National Natural Science Founda-

tion of China (project no. 81772233) and a joint grant from the National Natural
Science Foundation of China (project no. 81661130159) and the Newton Advanced
Fellowship, Royal Society, United Kingdom (NA150363). The funders had no role in
study design, data collection and interpretation, or the decision to submit the work
for publication.

We declare no conflict of interest.

REFERENCES
1. Nordmann P, Poirel L, Walsh TR, Livermore DM. 2011. The emerging

NDM carbapenemases. Trends Microbiol 19:588 –595. https://doi.org/
10.1016/j.tim.2011.09.005.

2. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR.
2009. Characterization of a new metallo-�-lactamase gene, blaNDM-1,
and a novel erythromycin esterase gene carried on a unique genetic
structure in Klebsiella pneumoniae sequence type 14 from India. Anti-
microb Agents Chemother 53:5046 –5054. https://doi.org/10.1128/AAC
.00774-09.

3. Marrs ECL, Day KM, Perry JD. 2014. In vitro activity of mecillinam against
Enterobacteriaceae with NDM-1 carbapenemase. J Antimicrob Che-
mother 69:2873–2875. https://doi.org/10.1093/jac/dku204.

4. Nicolau DP. 2008. Carbapenems: a potent class of antibiotics. Expert
Opin Pharmacother 9:23–37. https://doi.org/10.1517/14656566.9.1.23.

5. Breilh D, Texier-Maugein J, Allaouchiche B, Saux MC, Boselli E. 2013.
Carbapenems. J Chemother 25:1–17. https://doi.org/10.1179/
1973947812Y.0000000032.

6. Guducuoglu H, Gursoy NC, Yakupogullari Y, Parlak M, Karasin G, Sun-
netcioglu M, Otlu B. 2018. Hospital outbreak of a colistin-resistant,
NDM-1- and OXA-48-producing Klebsiella pneumoniae: high mortality
from pandrug resistance. Microb Drug Resist 24:966 –972. https://doi
.org/10.1089/mdr.2017.0173.

7. Moellering RC, Jr. 2010. NDM-1—a cause for worldwide concern. N Engl
J Med 363:2377–2379. https://doi.org/10.1056/NEJMp1011715.

8. Dortet L, Poirel L, Nordmann P. 2014. Worldwide dissemination of the
NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int
2014:249856. https://doi.org/10.1155/2014/249856.

9. Bush K. 2013. The ABCD’s of �-lactamase nomenclature. J Infect Che-
mother 19:549 –559. https://doi.org/10.1007/s10156-013-0640-7.

10. Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M,
Levesque RC, Tiraby G, Waley SG. 1991. A standard numbering scheme
for the class A �-lactamases. Biochem J 276:269 –270. https://doi.org/
10.1042/bj2760269.

11. Matagne A, Dubus A, Galleni M, Frere JM. 1999. The �-lactamase cycle:
a tale of selective pressure and bacterial ingenuity. Nat Prod Rep
16:1–19.

12. Garau G, Garcia-Saez I, Bebrone C, Anne C, Mercuri P, Galleni M, Frere
JM, Dideberg O. 2004. Update of the standard numbering scheme for
class B �-lactamases. Antimicrob Agents Chemother 48:2347–2349.
https://doi.org/10.1128/AAC.48.7.2347-2349.2004.

13. Galleni M, Lamotte-Brasseur J, Rossolini GM, Spencer J, Dideberg O,
Frere JM, Metallo-�-Lactamases Working Group. 2001. Standard num-
bering scheme for class B �-lactamases. Antimicrob Agents Chemother
45:660 – 663. https://doi.org/10.1128/AAC.45.3.660-663.2001.

14. Frere JM, Galleni M, Bush K, Dideberg O. 2005. Is it necessary to
change the classification of �-lactamases? J Antimicrob Chemother
55:1051–1053.

15. Palzkill T. 2013. Metallo-�-lactamase structure and function. Ann N Y Acad
Sci 1277:91–104. https://doi.org/10.1111/j.1749-6632.2012.06796.x.

16. Bush K, Jacoby GA. 2010. Updated functional classification of
�-lactamases. Antimicrob Agents Chemother 54:969 –976. https://doi
.org/10.1128/AAC.01009-09.

17. Mojica MF, Bonomo RA, Fast W. 2016. B1-metallo-�-lactamases: where
do we stand? Curr Drug Targets 17:1029 –1050.

18. Meini MR, Llarrull LI, Vila AJ. 2015. Overcoming differences: the catalytic

mechanism of metallo-�-lactamases. FEBS Lett 589:3419 –3432. https://
doi.org/10.1016/j.febslet.2015.08.015.

19. Groundwater PW, Xu S, Lai F, Varadi L, Tan J, Perry JD, Hibbs DE. 2016.
New Delhi metallo-�-lactamase-1: structure, inhibitors and detection of
producers. Future Med Chem 8:993–1012. https://doi.org/10.4155/fmc
-2016-0015.

20. Kim Y, Cunningham MA, Mire J, Tesar C, Sacchettini J, Joachimiak A.
2013. NDM-1, the ultimate promiscuous enzyme: substrate recognition
and catalytic mechanism. FASEB J 27:1917–1927. https://doi.org/10
.1096/fj.12-224014.

21. Zhang H, Hao Q. 2011. Crystal structure of NDM-1 reveals a common
�-lactam hydrolysis mechanism. FASEB J 25:2574 –2582. https://doi
.org/10.1096/fj.11-184036.

22. King D, Strynadka N. 2011. Crystal structure of New Delhi metallo-�-
lactamase reveals molecular basis for antibiotic resistance. Protein Sci
20:1484 –1491. https://doi.org/10.1002/pro.697.

23. Gonzalez LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ.
2016. Membrane anchoring stabilizes and favors secretion of New Delhi
metallo-�-lactamase. Nat Chem Biol 12:516 –522. https://doi.org/10
.1038/nchembio.2083.

24. Crowder MW, Spencer J, Vila AJ. 2006. Metallo-�-lactamases: novel
weaponry for antibiotic resistance in bacteria. Acc Chem Res 39:
721–728. https://doi.org/10.1021/ar0400241.

25. Bahr G, Vitor-Horen L, Bethel CR, Bonomo RA, Gonzalez LJ, Vila AJ. 2018.
Clinical evolution of New Delhi metallo-�-lactamase (NDM) optimizes
resistance under Zn(II) deprivation. Antimicrob Agents Chemother 62:
e01849-17. https://doi.org/10.1128/AAC.01849-17.

26. Hornsey M, Phee L, Wareham DW. 2011. A novel variant, NDM-5, of the
New Delhi metallo-�-lactamase in a multidrug-resistant Escherichia coli
ST648 isolate recovered from a patient in the United Kingdom. Anti-
microb Agents Chemother 55:5952–5954. https://doi.org/10.1128/AAC
.05108-11.

27. Liu Z, Wang Y, Walsh TR, Liu D, Shen Z, Zhang R, Yin W, Yao H, Li J, Shen
J. 2017. Plasmid-mediated novel blaNDM-17 gene encoding a carbapen-
emase with enhanced activity in a sequence type 48 Escherichia coli
strain. Antimicrob Agents Chemother 61:e02233-16. https://doi.org/10
.1128/AAC.02233-16.

28. Liu Z, Li J, Wang X, Liu D, Ke Y, Wang Y, Shen J. 2018. Novel variant of
New Delhi metallo-�-lactamase, NDM-20, in Escherichia coli. Front Mi-
crobiol 9:248. https://doi.org/10.3389/fmicb.2018.00248.

29. Liu L, Feng Y, McNally A, Zong Z. 2018. blaNDM-21, a new variant of
blaNDM in an Escherichia coli clinical isolate carrying blaCTX-M-55 and
rmtB. J Antimicrob Chemother 73:2336 –2339. https://doi.org/10.1093/
jac/dky226.

30. Cheng Z, Thomas PW, Ju L, Bergstrom A, Mason K, Clayton D, Miller C,
Bethel CR, VanPelt J, Tierney DL, Page RC, Bonomo RA, Fast W, Crowder
MW. 2018. Evolution of New Delhi metallo-�-lactamase (NDM) in the
clinic: effects of NDM mutations on stability, zinc affinity, and mono-
zinc activity. J Biol Chem 293:12606 –12618. https://doi.org/10.1074/jbc
.RA118.003835.

31. Nordmann P, Boulanger AE, Poirel L. 2012. NDM-4 metallo-�-lactamase
with increased carbapenemase activity from Escherichia coli. Antimi-
crob Agents Chemother 56:2184 –2186. https://doi.org/10.1128/AAC
.05961-11.

32. Zou D, Huang Y, Zhao X, Liu W, Dong D, Li H, Wang X, Huang S, Wei X,
Yan X, Yang Z, Tong Y, Huang L, Yuan J. 2015. A novel New Delhi

NDM Carbapenemases Clinical Microbiology Reviews

April 2019 Volume 32 Issue 2 e00115-18 cmr.asm.org 31

https://doi.org/10.1016/j.tim.2011.09.005
https://doi.org/10.1016/j.tim.2011.09.005
https://doi.org/10.1128/AAC.00774-09
https://doi.org/10.1128/AAC.00774-09
https://doi.org/10.1093/jac/dku204
https://doi.org/10.1517/14656566.9.1.23
https://doi.org/10.1179/1973947812Y.0000000032
https://doi.org/10.1179/1973947812Y.0000000032
https://doi.org/10.1089/mdr.2017.0173
https://doi.org/10.1089/mdr.2017.0173
https://doi.org/10.1056/NEJMp1011715
https://doi.org/10.1155/2014/249856
https://doi.org/10.1007/s10156-013-0640-7
https://doi.org/10.1042/bj2760269
https://doi.org/10.1042/bj2760269
https://doi.org/10.1128/AAC.48.7.2347-2349.2004
https://doi.org/10.1128/AAC.45.3.660-663.2001
https://doi.org/10.1111/j.1749-6632.2012.06796.x
https://doi.org/10.1128/AAC.01009-09
https://doi.org/10.1128/AAC.01009-09
https://doi.org/10.1016/j.febslet.2015.08.015
https://doi.org/10.1016/j.febslet.2015.08.015
https://doi.org/10.4155/fmc-2016-0015
https://doi.org/10.4155/fmc-2016-0015
https://doi.org/10.1096/fj.12-224014
https://doi.org/10.1096/fj.12-224014
https://doi.org/10.1096/fj.11-184036
https://doi.org/10.1096/fj.11-184036
https://doi.org/10.1002/pro.697
https://doi.org/10.1038/nchembio.2083
https://doi.org/10.1038/nchembio.2083
https://doi.org/10.1021/ar0400241
https://doi.org/10.1128/AAC.01849-17
https://doi.org/10.1128/AAC.05108-11
https://doi.org/10.1128/AAC.05108-11
https://doi.org/10.1128/AAC.02233-16
https://doi.org/10.1128/AAC.02233-16
https://doi.org/10.3389/fmicb.2018.00248
https://doi.org/10.1093/jac/dky226
https://doi.org/10.1093/jac/dky226
https://doi.org/10.1074/jbc.RA118.003835
https://doi.org/10.1074/jbc.RA118.003835
https://doi.org/10.1128/AAC.05961-11
https://doi.org/10.1128/AAC.05961-11
https://cmr.asm.org


metallo-�-lactamase variant, NDM-14, isolated in a Chinese hospital
possesses increased enzymatic activity against carbapenems. Antimi-
crob Agents Chemother 59:2450 –2453. https://doi.org/10.1128/AAC
.05168-14.

33. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan
R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV,
Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike
R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA,
Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford
N. 2010. Emergence of a new antibiotic resistance mechanism in India,
Pakistan, and the UK: a molecular, biological, and epidemiological
study. Lancet Infect Dis 10:597– 602. https://doi.org/10.1016/S1473
-3099(10)70143-2.

34. Karlowsky JA, Lob SH, Kazmierczak KM, Badal RE, Young K, Motyl MR,
Sahm DF. 2017. In vitro activity of imipenem against carbapenemase-
positive Enterobacteriaceae isolates collected by the SMART global
surveillance program from 2008 to 2014. J Clin Microbiol 55:
1638 –1649. https://doi.org/10.1128/JCM.02316-16.

35. Kazmierczak KM, Rabine S, Hackel M, McLaughlin RE, Biedenbach DJ,
Bouchillon SK, Sahm DF, Bradford PA. 2016. Multiyear, multinational
survey of the incidence and global distribution of metallo-�-lactamase-
producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimi-
crob Agents Chemother 60:1067–1078. https://doi.org/10.1128/AAC
.02379-15.

36. Perry JD, Naqvi SH, Mirza IA, Alizai SA, Hussain A, Ghirardi S, Orenga S,
Wilkinson K, Woodford N, Zhang J, Livermore DM, Abbasi SA, Raza MW.
2011. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1
carbapenemase at military hospitals in Pakistan, and evaluation of two
chromogenic media. J Antimicrob Chemother 66:2288 –2294. https://
doi.org/10.1093/jac/dkr299.

37. Hu X, Xu X, Wang X, Xue W, Zhou H, Zhang L, Ma Q, Zhao R, Li G, Li P,
Zhang C, Shi Y, Wang J, Jia L, Hao R, Wang L, Zou D, Liu X, Qiu S, Song
H, Sun Y. 2017. Diversity of New Delhi metallo-�-lactamase-producing
bacteria in China. Int J Infect Dis 55:92–95. https://doi.org/10.1016/j.ijid
.2017.01.011.

38. Zhang R, Liu L, Zhou H, Chan EW, Li J, Fang Y, Li Y, Liao K, Chen S. 2017.
Nationwide surveillance of clinical carbapenem-resistant Enterobacteri-
aceae (CRE) strains in China. EBioMedicine 19:98 –106. https://doi.org/
10.1016/j.ebiom.2017.04.032.

39. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT,
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