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SUMMARY Patients with suppressed immunity are at the highest risk for hospital-
acquired infections. Among these, invasive candidiasis is the most prevalent sys-
temic fungal nosocomial infection. Over recent decades, the combined prevalence of
non-albicans Candida species outranked Candida albicans infections in several geo-
graphical regions worldwide, highlighting the need to understand their pathobiol-
ogy in order to develop effective treatment and to prevent future outbreaks. Can-
dida parapsilosis is the second or third most frequently isolated Candida species
from patients. Besides being highly prevalent, its biology differs markedly from that
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of C. albicans, which may be associated with C. parapsilosis’ increased incidence. Dif-
ferences in virulence, regulatory and antifungal drug resistance mechanisms, and the
patient groups at risk indicate that conclusions drawn from C. albicans pathobiology
cannot be simply extrapolated to C. parapsilosis. Such species-specific characteristics
may also influence their recognition and elimination by the host and the efficacy of
antifungal drugs. Due to the availability of high-throughput, state-of-the-art experi-
mental tools and molecular genetic methods adapted to C. parapsilosis, genome and
transcriptome studies are now available that greatly contribute to our understanding
of what makes this species a threat. In this review, we summarize 10 years of find-
ings on C. parapsilosis pathogenesis, including the species’ genetic properties, tran-
scriptome studies, host responses, and molecular mechanisms of virulence. Antifun-
gal susceptibility studies and clinician perspectives are discussed. We also present
regional incidence reports in order to provide an updated worldwide epidemiology
summary.

KEYWORDS Candida parapsilosis, antifungal, epidemiology, experimental tools,
genome, host response, pathogenicity, treatment, virulence

INTRODUCTION

Candida species account for the majority of fungal systemic bloodstream infections
in intensive care units (ICUs) worldwide (1–3). Although the most prevalent and

invasive species is Candida albicans, during the last two decades, its dominance has
decreased as the numbers of invasive infections by non-albicans Candida (NAC) species
have risen (4, 5). Of these, Candida parapsilosis is of particular importance, as it is able
to form tenacious biofilms on central venous catheters (CVCs) and other medically
implanted devices, thus threatening patients who have undergone invasive medical
interventions. C. parapsilosis likewise grows rapidly in total parenteral nutrition admin-
istered to ICU patients, thereby placing undernourished children and low-birth-weight
neonates (5–8) at increased risk. Although C. parapsilosis infections generally result in
lower morbidity and mortality rates than C. albicans infections, several clinical isolates
of this species have been reported to be less susceptible to echinocandins, and in
some regions, resistance to azole treatment has also been noted, which complicates
the choice of empirical antifungal drug therapy (9–12). Nosocomial outbreaks have
also been reported in various geographical regions (13–15). Horizontal transmission
is another feature of C. parapsilosis, in contrast to the prior-colonization-dependent
vertical transmission of C. albicans (16). Due to these species-specific characteristics, C.
parapsilosis is often the second or third most frequently isolated Candida species in
ICUs.

Since the development of an effective system to specifically disrupt genes was
reported in 2007 (17, 18), our understanding of C. parapsilosis biology has significantly
advanced, and the number of investigations has increased, as this pathogen has
continued to rise in clinical importance. Hence, this review aims to provide an up-to-
date worldwide epidemiology of C. parapsilosis-driven candidemia and to summarize
the latest findings on its pathogenesis, including a discussion of the species’ genetic
properties and molecular mechanisms of virulence. Transcriptome studies, potential
antifungal drug resistance mechanisms, host immune responses, and clinicians’ per-
spectives are also discussed.

INCIDENCE AND DISTRIBUTION TRENDS

Since the early 2000s, NAC species have significantly increased and currently often
surpass C. albicans as the most prevalent causes of invasive Candida infections, de-
pending on the geographical region (6, 19–22). For example, according to a recent
national surveillance study in Japan by Kakeya et al. (21), C. albicans accounted for
58.2% of all candidemia episodes in 2003 yet only 30% of cases by 2014. Another recent
study, by Pfaller et al. (23), highlighted that at 62% of the examined sites in North
America, NAC species were responsible for more than half of all candidemia cases.
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Similarly, Xiao et al. (19) reported that in Chinese hospitals, only 32% of Candida blood
infections could be attributed to C. albicans.

Several studies also associate the increasing prevalence of NAC species with de-
creased susceptibility to commonly used antifungal drugs (12, 19, 24, 25). Of the
commonly isolated NAC species, C. parapsilosis is often the second or third most
prevalent, depending on the patient group as well as geographical regions. Although
regional epidemiology studies are available, we lack an up-to-date view of the world-
wide distribution of C. parapsilosis prevalence. We therefore collected data from
national studies of Candida epidemiology from the last decade from each continent
(Table 1). Reports were collected from 2009 to early 2018 and were filtered into
multicenter/multihospital studies of invasive candidiasis, possibly representing entire
countries. If nationwide studies were not available, data from reports involving multiple
regions of a country were gathered. The data from regional studies collected cover
epidemiological data from 2000 to 2015. Although C. albicans is the major cause of
invasive candidiasis worldwide, C. parapsilosis is the second most commonly isolated
species in southern Europe, some regions of Asia, and Latin America, in accordance
with data from previous global epidemiology studies (26, 27). Regarding the Mediter-
ranean regions of Europe, C. parapsilosis invasive infections account for 20 to 25% of
episodes due to Candida species in Greece, Portugal, Italy, and Spain (28–33). Further-
more, a recent study by Arsić Arsenijević et al. highlights the increasing prevalence of
C. parapsilosis infections in Serbia, where it is responsible for 46% of cases of invasive
candidiasis in adults, which is similar to the frequency of C. albicans (34). In central
Europe and Scandinavia, Candida glabrata is the most common NAC species, although
C. parapsilosis follows closely behind (35–43). The same can be observed in Aus-
tralia, where C. parapsilosis accounts for 16.5% of Candida bloodstream infections
(44). In Asia and North America, the prevalence of C. parapsilosis is also region
dependent. For instance, it is the second most commonly identified species in the
hospital environment in Japan and China, being responsible for 20 to 23% of all
Candida bloodstream infections, while it is the third most frequently identified Candida
species in India and other tropical regions of Asia (19, 21, 45, 46). In North America, C.
glabrata and C. parapsilosis equally account for cases of NAC-driven invasive candidi-
asis; however, the increasing prevalence of C. parapsilosis in Latin America is undebat-
able (47, 48). Besides being the most frequently isolated NAC species in South America,
C. parapsilosis even outranks C. albicans infections in regions such as Colombia (38.5%
to 36.7%) and Venezuela (39% to 26.8%) (49–53). Interestingly, a recent study by
Govender et al. also highlights the increased incidence of C. parapsilosis in South Africa,
where this species accounts for 35% of invasive Candida infections in the public sector
(second most common) and �50% in private-sector hospitals, thus outranking C.
albicans (12). In addition, only 37% of the isolated C. parapsilosis strains were shown to
be susceptible to azole derivates, and cross-resistance was also reported, raising
concern regarding the treatment of these infections (12). It is unclear whether the
increased incidence of C. parapsilosis in South African regions is a recent trend or an
already existing phenomenon, due to the limited number of available epidemiology
studies from this region. This further underscores the need for up-to-date, regionwide
surveys. Nevertheless, the empirical antifungal practice in these countries might be
contributing to C. parapsilosis’ increased prevalence.

In addition to threatening adult patients in ICUs, C. parapsilosis poses a well-
recognized serious threat to newborns, especially those born prematurely and with low
birth weight. A recent meta-analysis of cases of neonatal candidiasis by Pammi et al.
revealed that C. parapsilosis is responsible for 33% of all invasive Candida diseases in
newborns and accounts for approximately 80% of NAC-driven invasive infections (7).
Furthermore, neonatal Candida disease due to this species is especially common in
North America (33.8%) as well as in Australia (35.8%) (7). A nationwide study provided
by Pfaller et al. further showed that among NAC species, C. parapsilosis accounts for
most of the invasive candidiasis cases in children (�9 years old) and in neonates in
North America (23). Furthermore, a national surveillance study of neonatal intensive
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care units (NICUs) in Canada revealed that although C. albicans remains the major cause
of neonatal invasive Candida disease (59%), C. parapsilosis is also highly prevalent (21%)
(54). Recently, cases from European countries were also reported. For instance, accord-
ing to a recent surveillance over 22 years in Norway, C. parapsilosis was the second most

TABLE 1 Update on candidemia episodes caused by C. parapsilosisa

Region
% C. parapsilosis
incidence (ranking)

% C. albicans
incidence (ranking) Yr(s) No. of hospitals included Reference

Europe
Southern region

Spain 24.9 (2nd) 45.3 (1st) 2010–2011 29 hospitals, nationwide 30
Italy 22 (4th) 73.4 (1st) Undefined 3 hospitals in southern Italy 31

14.8 (3rd, Lombardy) 52.1 (1st, Lombardy) 2009 34 centers, nationwide 32
23.5 (2nd, other areas) 45.2 (1st, other areas)
20 (2nd) 59 (1st) 2012–2013 39 hospitals, northern Italy 33

Portugal 23 (2nd) 40.4 (1st) 2011–2012 10 hospitals, nationwide 29
Greece 22.7 (2nd) 45.4 (1st) 2005–2009 PICU only, nationwide 28
Serbia 46 46 2014–2015 5 adult ICUs, nationwide 34

Middle/northern regions
Finland 5 (3rd) 67 2004–2007 5 regions, nationwide 35
Austria 8.7 (3rd) 52.2 (1st) 2007–2008 9 centers 36
France 7.5 (3rd) 57 (1st) 2005–2006 180 ICUs, nationwide 37
United Kingdom 10.3 (3rd) 52 (1st) 2008 3 centers in Scotland,

2 centers in Wales
38

Switzerland 5.4 (4th) 61.9 (1st) 2004–2009 17 hospitals 39
Denmark 3.7 (3rd in females, 5th in males) 57.1 (1st) 2004–2009 6 hospitals 40
Norway 4.3 (4th) 67.7 (1st) 2004–2012 National surveillance study 41
Sweden 9 (3rd) 61 (1st) 2005–2006 Undefined, nationwide 42
Iceland 5 (5th) 56 (1st) 2000–2011 14 hospitals 43

America
South America

Continental study 26.5 (all episodes) 37.6 (all episodes) 2008–2010 21 hospitals from 7 countries 53
Argentina 23.9 (2nd) 42.5 (1st)
Brazil 25.8 (2nd) 40.5 (1st)
Chile 28.9 (2nd) 42.1 (1st)
Colombia 38.5 (1st) 36.7 (2nd) 2008–2010 21 hospitals from 7 countries 53
Ecuador 30.4 (2nd) 52.2 (1st)
Honduras 14.1 (4th) 27.4 (1st)
Venezuela 39 (1st) 26.8 (2nd)
Peru 25.3 (2nd) 27.8 (1st) 2013–2015 3 hospitals, Lima-Callao 50

28.1 (1st) 39.9 (1st) 2009–2011 9 hospitals, Lima 49
Argentina 22 (2nd) 44 (1st) 2010–2012 5 institutions 51
Brazil 24.1 (2nd) 34.3 (1st) 2007–2010 16 hospitals, 5 regions,

nationwide
52

North America
Continental study 12.2 (3rd) 49.5 (1st) 2004–2008 23 centers in USA, 2 in Canada 24
USA 17 (3rd) 38 (1st) 2008–2011 17 hospitals (Baltimore, MD),

24 hospitals (Atlanta, GA)
47

17.4 (2nd) 50.7 (1st) 1998–2006 52 hospitals, nationwide 48
Canada 21 (2nd) 59 (1st) 2003–2013 Nationwide NICU surveillance 54

Asia
Continental study 12.1 (4th) 41.3 (1st) 2010–2011 25 hospitals across Asia 46
Japan 23.3 (2nd) 39.5 (1st) 2003–2014 10 university hospitals,

nationwide
21

China 20.0 (2nd) 44.9 (1st) 2009–2014 65 general hospitals from
27 provinces

19

India 10.9 (3rd) 20.9 (2nd) 2011–2012 27 ICUs, nationwide 45

Oceania
Australia 16.5 (3rd) 44.4 (1st) 2014–2015 Nationwide surveillance 44

Africa
South Africa 35 (public hospitals) (2nd),

�50 (private hospitals) (1st)
46 (1st) 2009–2010 Hospitals in 11 public sectors,

�85 private sectors
12

aICU, intensive care unit; PICU, pediatric intensive care unit.
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common cause of neonatal candidiasis (41). Similarly, the United Kingdom neonatal
surveillance network also reported that during a 6-year period, C. parapsilosis was the
second most common cause of neonatal invasive Candida disease, accounting for 20%
of cases in England (55).

All these available data underscore the importance of C. parapsilosis and urge us to
enhance the investigation of this species’ pathogenesis.

GENOMIC ANALYSIS
Genome Organization and Properties

Since 2009, the complete genome sequence of C. parapsilosis strain CDC317 has
been available, along with those of five other species of the Candida clade (56). The
genome size is about 13 Mbp. C. parapsilosis is diploid, with eight chromosome pairs
whose sizes range from 0.9 to 3.0 Mbp. The chromosomes terminate at both ends with
tandem arrays of telomeric repeats of a 23-nucleotide-long motif (5=-GGTCCGGATGTT
GATTATACTGA-3=) that was originally identified by analysis of the RNA subunit of
telomerase TER1 (57). In Candida orthopsilosis and C. metapsilosis, classified in the C.
parapsilosis sensu lato complex, telomeric sequences differ from this motif at 6 and 8
nucleotide positions, respectively.

Initial analyses of the C. parapsilosis genome confirmed previous findings that the
mating-type locus MTLa2 is a pseudogene (58) and also revealed a strikingly low level
of heterozygosity, with only 1 heterozygous single nucleotide polymorphism (SNP) per
15,553 bases. The level of heterozygosity was 25- to 70-fold lower than that found in
other diploid Candida species. Characterization of the genetic variability among strains
using standard techniques, such as amplification fragment length polymorphism (AFLP)
analysis, revealed low levels of polymorphisms across clinical isolates from different
regions (59). Furthermore, analyses of more than 200 clinical isolates revealed that all
of them had only the MTLa idiomorph (i.e. no strain of the alpha type was found) and
confirmed that MTLa2 is a pseudogene (60). Altogether, such low genetic variability
suggested a recent global expansion of a virulent clone with a defective mating system
(60).

In the early 2010s, the significant drop in sequencing costs brought about by
next-generation sequencing (NGS) enabled the sequencing of additional clinical and
environmental strains (61). A comparison of four fully sequenced genomes of C.
parapsilosis isolates from Europe and North America further confirmed extremely low
levels of heterozygosity and low levels of genetic variation. The examined strains
contained a certain level of variation in gene content, which included genes encoding
lysophospholipases, efflux pumps, and peptidases. Notably, however, significant differ-
ences were found in the agglutinin-like sequence (ALS) gene family, which encodes
large cell surface glycoproteins that play a role in host-pathogen interactions (62). In
addition, the amount of copy number variations (CNVs) was considerable, with 40 such
events being detected among the four strains. Importantly, one such variation affected
the same gene, a putative arsenite transporter, with different genomic boundaries and
copy numbers, indicating its independent occurrence. This finding indicated a shared
strong selective pressure, which possibly occurred in the environment, as arsenite levels
are normally exceedingly low in the human body. This analysis suggested that clinical
isolates likely had recent, independent origins from the environment. In addition,
nonmonophyletic patterns of shared CNVs and the presence of clustered regions with
higher SNP density suggested the possibility of recombination among different C.
parapsilosis strains.

In 2005, Tavanti et al. confirmed by multilocus sequence typing that C. parapsilosis
isolates represent a species complex. This complex is now subdivided into three distinct
species: C. parapsilosis sensu stricto (previously group I), C. orthopsilosis (previously
group II), and C. metapsilosis (previously group III) (63). The first genome sequence of
a C. orthopsilosis strain was reported in 2012, from a highly homozygous isolate (64).
However, later sequencing of additional clinical strains obtained from the United States
and Singapore highlighted the existence of hybrids in this species. The hybrid genomes
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consisted of highly heterozygous blocks interspersed with highly homozygous blocks,
indicating that loss-of-heterozygosity events had occurred since the hybridization
event (65). It was subsequently proposed that the bulk of C. orthopsilosis isolates are
hybrids, resulting from at least four independent events of hybridization between the
same parental species, which diverge by approximately 5% at the nucleotide level (66).
Whole-genome sequencing of 11 clinical isolates of C. metapsilosis revealed that this is
also a hybrid species (67). All of the analyzed C. metapsilosis strains obtained from
globally distributed locations are the result of the same hybridization event between
two as-yet-unknown nonpathogenic parental lineages. Hence, the C. parapsilosis clade
is thought to consist of at least five lineages, of which two pairs can form hybrids.
Interestingly, both C. metapsilosis and C. orthopsilosis hybrids seem to have higher
virulence potential in humans than their parents, because the homozygous C. metap-
silosis parent strains have not been isolated from clinical samples, and only one of the
homozygous parents of C. orthopsilosis was found in the clinical environment. This
raises the possibility that virulent species can emerge from the hybridization of
nonvirulent (or less-virulent) species (68).

Today, the genome sequence of C. parapsilosis is accessible at the Candida Genome
Database (69), with up-to-date annotations, references, supplementations from genome-
wide or transcriptomic studies, and additional sources of both coding and noncoding
genomic regions (70). Its availability greatly contributes to advances in C. parapsilosis-
related investigations. The Candida Gene Order Browser (71) provides syntenic infor-
mation from comparisons of several Candida species, including C. parapsilosis. A
comprehensive evolutionary analysis of every gene of C. parapsilosis along with pre-
computed and browsable gene phylogenies are provided by PhylomeDB (72). In
addition, MetaPhORs provides phylogeny-based predictions of ortholog and paralog
relationships between C. parapsilosis genes and those of hundreds of other species,
including most other sequenced Candida species (73).

Unlike Saccharomyces cerevisiae, C. albicans, and most other yeast species, C. parap-
silosis possesses a mitochondrial genome with an unusual molecular architecture. The
mitochondrial genome consists of 30.9-kbp-long linear DNA molecules terminating on
both sides with specific telomeric structures that have little resemblance to telomeres
at the ends of eukaryotic nuclear chromosomes (74). The mitochondrial telomeres
consist of inverted repeats with a subterminal repeat followed by tandem arrays of a
738-bp-long unit. These linear molecules include the genes for conserved mitochon-
drial proteins (i.e., seven subunits of NADH:ubiquinone oxidoreductase, three subunits
of cytochrome c oxidase, apocytochrome b, and three subunits of ATP synthase), two
rRNAs, and a set of 24 tRNAs (75, 76). In addition, C. parapsilosis mitochondria also
contain extragenomic circular DNAs, dubbed telomeric circles (t-circles), that are com-
posed exclusively of multimers of the telomeric sequence. The t-circles replicate
autonomously via the rolling-circle mechanism, thus generating arrays of telomeric
repeats that eventually recombine with the ends of linear DNA molecules (77, 78).

Essentially the same molecular architecture of the mitochondrial genome has also
been found in several closely related species from the Lodderomyces clade, such as C.
metapsilosis, C. orthopsilosis, and C. theae (79, 80) (E. Hegedűsová, B. Brejová, and J.
Nosek, unpublished results). Because these species differ in the sequences of their
mitochondrial telomeres, the telomeric motifs were proposed as potential molecular
markers for clinical diagnostics (81). Interestingly, the mitochondria of several isolates
of C. metapsilosis and C. orthopsilosis contain a mutant form of the genome. These
mutants lack the t-circles, and their mitochondrial genomes have circularized via
end-to-end fusions, further supporting the key role of t-circles in telomere maintenance
(67, 79, 80, 82). Importantly, the t-circle-dependent maintenance of mitochondrial
telomeres may have medical implications, as it parallels the alternative (telomerase-
independent) lengthening of telomeres (ALT) at the ends of eukaryotic nuclear chro-
mosomes (83). Moreover, as human cells possess a circular mitochondrial genome, the
replication strategy of linear mitochondrial DNA in C. parapsilosis has been proposed as
a promising molecular target for therapeutic intervention (84).
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The linear mitochondrial genome and/or the corresponding DNA replication ma-
chinery seems to be responsible for the tolerance of C. parapsilosis to high doses of
intercalating agents, such as ethidium bromide and acridine orange (85). On the other
hand, compounds interfering with the splicing of a group II intron occurring in the
mitochondrial cox1 gene inhibit the growth of C. parapsilosis cells and represent potent
antifungal drugs (86). Moreover, other mitochondrial functions such as the intricate
electron transport pathways consisting of a conventional respiratory chain with all
three phosphorylation coupling sites, a parallel respiratory chain, and alternative
oxidase were shown to play a role in the susceptibility of C. parapsilosis cells to a range
of drugs (87–89).

In the following sections, we focus on C. parapsilosis group I isolates only. The
history, epidemiology, genomics, and virulence of the Candida psilosis complex have
recently been reviewed by Németh et al. (90).

Transcriptome Studies

Similar to whole-genome sequencing, NGS approaches enable the unbiased inter-
rogation of the transcriptome under various conditions. Massive sequencing of cDNA
libraries (RNAseq) has gradually replaced the use of microarray-based technologies in
transcriptome analyses of pathogenic species (91, 92). Standard, easy-to-use protocols
are available for RNAseq to determine differential gene expression profiles in yeasts
(93), which have been extensively applied in research of fungal pathogens. Further-
more, transcriptome sequencing technologies offer a plethora of additional possibilities
such as the refinement of genome annotation, including the determination of the
noncoding gene repertoire (94), assessing the structure of RNA transcripts (95, 96), and
the dual interrogation of host and pathogen transcriptomes (97).

The first comprehensive transcriptomic study of C. parapsilosis by RNAseq was
performed in 2011 after exposing this yeast to several conditions, including different
media, temperatures, and oxygen concentrations (98). The detection of differentially
expressed genes under these conditions enabled not only the identification of regu-
lators of the hypoxia response in this species but also a comprehensive reannotation of
the C. parapsilosis reference genome. Indeed, neither of the two previous versions of C.
parapsilosis gene annotations (using CPAG and CPAR as gene name prefixes, respec-
tively) included prediction introns in their gene models. RNAseq analyses of C. parap-
silosis cells under a diverse set of conditions enabled the detection of transcripts for
over 90% of the annotated protein-coding genes, enabling the identification of 422
introns, the annotation of 5= and 3= untranslated regions (UTRs), and the removal of
more than 300 unsupported and the correction of approximately 900 gene models.
RNAseq analysis of C. parapsilosis therefore facilitated a much-improved annotation of
the reference genome (the refined version uses CPAR2 as the gene name prefix).

Subsequent studies in C. parapsilosis have exploited RNAseq to identify genes
involved in specific pathways. One recent example is the identification of enzymes and
transporters involved in the metabolism of hydroxyderivatives of benzene and benzoic
acid in this species (as discussed below) (99, 100). In these studies, RNAseq, together
with phylogenetic and synteny analyses, was instrumental in pinpointing the right
candidates among paralogous members of several gene families, including 138 para-
logs of the major facilitator superfamily of transporters (MFS), by identifying those
expressed in the presence of the substrate. Finally, the identification of C. parapsilosis
transcripts expressed upon exposure to human macrophages was used to prioritize the
construction of knockout mutants to study host-pathogen interactions (101). Notably,
84% of the 19 constructed knockout mutants showed a phenotype different from that
of the wild type under conditions related to virulence and interaction with the human
host. The use of increased expression upon exposure to human macrophages as a
selection criterion likely facilitated the high ratio of deletion mutants exhibiting a
phenotype. It is expected that future studies will further exploit the possibilities of
RNAseq in C. parapsilosis, particularly with respect to the relevant interactions with the
host. In this context, the use of RNAseq for the identification of long noncoding RNAs
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(lncRNAs) and for the dual assessment of expression by the host and pathogen has the
potential to reveal novel pathways and interactions (97).

Genetic Toolbox
Use of reporter genes. Alternative codon usage in CTG clade species such as C.

parapsilosis (which translate CTG as serine rather than leucine) causes difficulties in the
design of reporter systems as well as the choice of selectable markers (102). Codon-
modified versions of green fluorescent protein (yeast-enhanced green fluorescent
protein [yeGFP]) suitable for use in C. albicans were first described by Cormack et al.
(103) and Morschhauser et al. (104). Gerami-Nejad et al. (105) used site-directed
mutagenesis to generate yellow fluorescent protein (yeYFP) and cyan fluorescent
protein (yeCFP) variants designed to integrate at the C terminus and later at the N
terminus (106) of target proteins. Red versions (red fluorescent protein [RFP] and
yemCherry) and a new C. albicans GFP (CaGFP) were added later (107–109).

GFP fusions were first used in C. parapsilosis by Kosa et al. (110). Those authors
constructed a series of replicating plasmids based on the CpARS7 origin of replication
and using MET2, LYS4, GAL1, URA3, or IMH3 as a selectable marker. Some of the plasmids
can be used to express heterologous genes from the CpGAL1 promoter. The introduc-
tion of eGFP by Cormack et al. (103) facilitated the tagging and localization of
mitochondrial carriers, mitochondrial telomere binding proteins, metabolic enzymes, as
well as plasma membrane transporters in C. parapsilosis (99, 100, 111–113). Constructs
suitable for PCR-mediated C-terminal tagging of target genes with green, yellow, or
mCherry fluorescent proteins using NAT1 as the selectable marker are also available
(114). GFP-labeled strains of C. parapsilosis have already been used to study phagocy-
tosis of macrophages (115).

Recently, Defosse et al. (116) described a comprehensive toolkit for labeling C.
parapsilosis and other yeasts of the CTG clade. Sets of plasmids express yeGFP, yeYFP,
yeCFP, or yemCherry from promoters selected to function in many CTG species. A series
of selectable markers is available, including SAT1, HPH, and IMH3, also expressed from
species-specific promoters. The plasmids integrate randomly into the target species.
Those authors also incorporated other reporter genes, including luciferase (gLUC59)
and beta-galactosidase (StlacZ). It is likely that these plasmids will prove to be ex-
tremely useful for future studies in C. parapsilosis.

Gene disruption methods. Deleting or editing genes in C. parapsilosis faces the
same problems encountered in many Candida species. The genome is diploid; thus, two
alleles of each gene must be targeted, and the noncanonical translation of the CTG
codon (102) means that many selectable markers cannot be directly used. However,
transformation methods have been available for several decades.

Early attempts using “Candida” species showed that Candida utilis and Candida
(Yarrowia) lipolytica, which do not belong to the CTG clade, can be transformed (117).
By 1985, true CTG clade species (Candida maltosa and Pichia guilliermondii) were
transformed with a plasmid expressing ARG4 from S. cerevisiae, which returned auxo-
trophic strains to prototrophy (118). ADE2 auxotrophs of C. albicans were comple-
mented by transformation in 1986 (119). Transformation procedures were rapidly
adapted for generating gene disruptions. Kelly et al. (120) used a C. albicans ADE2 gene
flanked by regions from URA3 to disrupt one allele of URA3 in C. albicans by homolo-
gous recombination. “URA blaster” methods remain popular methods for generating
gene disruptions in C. albicans. However, there are several concerns associated with
using ura3 auxotrophic strains. First, in some backgrounds (such as C. albicans strains
derived from CAI4), a proportion of the adjacent IRO1 gene involved in iron utilization
was removed when URA3 was disrupted (121). Second, expression of URA3 at ectopic
positions can affect virulence phenotypes (122). Generating strains with multiple
auxotrophies (e.g., C. albicans BWP17 his1 arg4 ura3) made several selectable markers
available (123).

Early gene disruption strategies for Candida species relied on having auxotrophic
strains, which somewhat limited the potential applications. Dominant drug-resistance-
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selectable markers were therefore developed by modifying the coding sequence of
existing systems to replace CTG codons.

The SAT1 (streptothricin acetyltransferase) gene, which confers resistance to
nourseothricin, is probably the most commonly used dominant selectable marker in
Candida species. The first codon-modified versions were generated by replacing CTG
codons with CTT or CTC and expressing the gene from the C. albicans ACT1 promoter
(124, 125). Reuss et al. (124) combined the marker with a regulatable FLP recombinase
and surrounded the entire region with FLP recombination target (FRT) sites. This SAT1
flipper cassette can be used to disrupt one allele of a target gene by homologous
recombination (directed by sequences outside the cassette). SAT1 and the rest of the
cassette are recycled by inducing the expression of the FLP recombinase by growth on
maltose, and the transformation step is repeated by using the same or a similar cassette
to target the second allele. The SAT1 flipper cassette was the first gene disruption
method that was adapted for use in C. parapsilosis. Gácser et al. (17) applied the C.
albicans constructs directly to C. parapsilosis, whereas Ding and Butler (18) adapted it
by replacing the promoters driving the expression of SAT1 and FLP with the ortholo-
gous sequences from C. parapsilosis. The SAT1 flipper cassette has since been used to
delete several genes in C. parapsilosis (60, 126–133).

The SAT1 cassette has numerous advantages, in that it can be used in any isolate and
more than one gene can be targeted. However, the system is relatively slow. Homol-
ogous sequences are usually added to the end of the cassette by cloning, and the
cassette must be recycled from the first allele of each target gene before the second
allele is disrupted. Some of these issues were addressed for C. albicans, when Noble and
Johnson (134, 135) developed a system using a strain auxotrophic for three markers,
leu2, arg4, and his1. Each allele of a target gene is disrupted using a different marker:
LEU2 derived from C. maltosa or HIS1 or ARG4 from C. dubliniensis. Sequences derived
from the target gene are added by PCR, in a rapid and efficient process. This approach
was used to delete several hundred regulatory genes in C. albicans (134). The system
was adapted for C. parapsilosis, first by using the SAT1 cassette to disrupt LEU2 and HIS1.
This facilitated the generation of a collection of �100 strains deleted for transcription
factors and protein kinases (127). Later studies used the same method for the gener-
ation of smaller mutant sets (101, 136, 137).

Another alternative for gene deletion in yeast is via the newly introduced clustered
regularly interspersed short palindromic repeat (CRISPR)-Cas9 system.

Introduction of CRISPR-Cas9 gene editing. Gene editing using CRISPR together
with Cas9 and other endonucleases is gradually gathering momentum in yeasts
(reviewed in references 138 and 139). The tools have many advantages, including
the ability to target almost any sequence using carefully designed short guide RNAs
(sgRNA) and the fact that in diploid genomes, both alleles are usually edited at the
same time. In many yeasts, homology-directed repair (HR) is at least as efficient as, or
more efficient than, nonhomologous end joining (NHEJ). A double-stranded break
introduced by Cas9 can therefore easily be repaired using a donor DNA (repair
template) that introduces stop codons or specific mutations or that results in gene
deletions.

CRISPR-based systems have three main requirements: (i) expression of CAS9 and
targeting to the nucleus, (ii) expression of an sgRNA, and (iii) provision of a repair
template. CRISPR was first used for gene editing in C. albicans by Vyas et al. (140). A
codon-modified version of CAS9 with a nuclear localization sequence from simian virus
40 (SV40) and a SAT1 flipper cassette is targeted to the ENO1 gene by selection for
nourseothricin resistance. The SAT1 cassette can be excised by recombination, allowing
the marker to be reused to facilitate the integration of the sgRNA at a different site
(RP10 locus). Alternatively, both CAS9 and sgRNA are integrated at ENO1. The sgRNA is
expressed from a polymerase III (Pol III) promoter (SNR52). The repair template (con-
structed by overlapping PCR) is transformed into the cells at the same time as the
integration cassettes. The system is very efficient, leading to editing rates of up to 80%.
In early versions of the method, CAS9 remained in the genome. The approach also
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requires that both CAS9 and the sgRNA be integrated into the genome, which can be
slow and makes sequential editing of several genes difficult. Later, improved versions
of CRISPR-Cas9-based genome-editing methods were further developed by exploiting
recent observations of C. albicans genetic properties (141–146). These methods now
allow single- or double-gene deletions, tagging, as well as open reading frame (ORF)
reconstitutions.

The CRISPR-Cas9 system has been adapted for other Candida species, including C.
lusitaniae (147). The authors of that study found that the efficiency of homology-
directed repair in this species was increased by deleting KU70 and DNA ligase 4, parts
of the NHEJ pathway. CRISPR has also been used successfully in C. lusitaniae and
Candida auris by providing purified Cas9 protein (148). The CRISPR-Cas9 system devel-
oped for C. parapsilosis differs in many respects from systems used for other Candida
species (149). One significant difference is that most of the components are carried on
an autonomously replicating plasmid, originally described by the Nosek group (110,
150). The origin of replication (CpARS7) in the plasmid is artificial, in that it is derived
from two different places on the C. parapsilosis genome. However, it is maintained
under selection and is easily lost when selection is removed. A codon-adapted version
of CAS9 is expressed from the C. parapsilosis TEF1 promoter, and SAT1 is expressed from
the C. albicans ACT1 promoter. The guide RNA is present on the same plasmid,
expressed from a polymerase II promoter (C. parapsilosis glyceraldehyde-3-phosphate
dehydrogenase gene [GAPDH]) and surrounded by Hammerhead and hepatitis delta
virus (HDV) ribozymes. The repair template is cotransformed with the plasmid. One
significant advantage of the plasmid system is that it can be transformed into any
isolate of C. parapsilosis: Lombardi et al. (149) used it to edit genes in 20 different
clinical strains. Design of the repair template facilitates gene editing (introduction of
stop codons or specific mutations), gene deletion, or the addition of specific tags or
epitopes. Any number of genes can be sequentially edited in the same strain.

Autonomously replicating plasmids are not generally used in Candida species.
However, they have been described for Candida maltosa (151, 152) and Candida
tropicalis (153). It may therefore be possible to develop plasmid-based CRISPR systems
for other species in the CTG clade.

MOLECULAR MECHANISMS OF C. PARAPSILOSIS VIRULENCE
Adhesion

Adhesion to various biotic and abiotic surfaces is a key preliminary stage of host
colonization. These surfaces include indwelling medical devices, such as catheters and
prosthetic devices made of polyvinyl chloride (PVC), polyurethane, or silicone, as well as
host epithelial tissues. C. parapsilosis is particularly known for its ability to cause
systemic infections through the colonization of implanted medical devices and high-
glucose-containing parenteral nutrition. Therefore, the species’ adhesive abilities, a
critical step preceding biofilm formation, have been explored (154, 155). Interestingly,
during these studies, an unusually high intraspecies variation in adhesion has been
identified among C. parapsilosis clinical isolates compared to other Candida species
(156). A correlation between the site of isolation and the rate of adhesion has also been
observed, as C. parapsilosis mucocutaneous isolates express a higher-adhesion profile
(156). Furthermore, cell surface hydrophobicity strongly correlates with adhesion to
both polystyrene surfaces and buccal epithelial cells (ECs) (154, 156).

The molecular mechanisms for C. parapsilosis adhesion have also been investigated.
Several proteins have been suggested to influence the adherence of this species to
both abiotic and biotic surfaces. For example, either C. parapsilosis cell wall proteins
(CWPs) that are covalently attached to the fungal cell wall, known as “true” CWPs, or
cytoplasm-derived, temporary “atypical” CWPs effectively bind host cell extracellular
matrix (ECM) proteins such as fibronectin, vitronectin, and laminin (157). These include
true Als-, Hwp-, or Hyr-like proteins as well as transitory proteins required for various
metabolic processes. The glycolysis and gluconeogenesis regulatory proteins Pgk
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(phosphoglycerate kinase) and Eno1 (enolase 1) are required for the adhesion of C.
parapsilosis to silicone-made materials (158).

Als-like proteins are present on the surface of C. parapsilosis pseudohyphae (157).
The C. parapsilosis ortholog of CaALS7 is a key determinant for adhesion to host
epithelial cells, as gene disruption led to a decreased ability to adhere to human buccal
epithelial cells and also resulted in decreased virulence in vivo (129). CpALS7 is also
necessary for C. parapsilosis to adhere to host ECM proteins under shear force (159).
Additionally, C. parapsilosis cells require the presence of calcium, glutamic acid, and
proline for adherence under shear flow conditions. A study by Butler et al. predicted
that the C. parapsilosis genome encodes 5 Als-like proteins (56). Pryszcz et al. subse-
quently found a wide degree of variability among ALS genes, ranging from 1 to 5 gene
copy numbers per isolate (61). However, whether an increase in copy number contrib-
utes to a different degree of virulence has not yet been confirmed. Orthologs of CFEMs
(common in fungal extracellular membranes), another set of proteins influencing
adhesion and biofilm formation in C. albicans, are also present in the C. parapsilosis
genome, although their exact role in adhesion is not yet known (160, 161).

Morphology

Although various methods of molecular diagnostics are available to identify clinical
isolates, species identification through microbiological phenotyping is still a commonly
applied method. Laffey and Butler described four heritable colony morphologies of C.
parapsilosis, including smooth and crater-like or concentric and crepe phenotypes,
which are either white or creamy (162). Whereas the former two contain many yeast
cells, the latter have more pseudohyphae (162). Later, Nosek et al. described additional
colony phenotypes, such as wrinkled (white), stalk, and superwrinkled (creamy) (163).

To date, there is no record of true hyphae formed by C. parapsilosis. Environmental
stimuli that are thought to influence morphology transition are stress-inducing condi-
tions, including elevated temperature (37°C), the presence of serum, starvation, and
high CO2 levels and low O2 levels that are present within the host (164–166). Although
the exact inducers of the yeast-to-pseudohypha switch are poorly investigated, a
specific subset of amino acids promotes this behavior (167). Furthermore, morpholog-
ical transformation is usually associated with alterations in the cell wall structure. For
example, during the yeast-to-filamentous growth transition, pseudohypha-specific cell
surface proteins and adhesins (e.g., Als-like sequences) appear on the external layer of
the elongating yeast’s cell wall (157).

C. parapsilosis pseudohyphae contribute to virulence. Although in terms of uptake,
host phagocytic cells do not differentiate between yeast and pseudohyphal forms, C.
parapsilosis pseudohyphae are more resistant to killing by macrophages and induce
higher levels of host cell damage in vitro, thus contributing to the species’ pathoge-
nicity (115, 168). Therefore, the underlying molecular mechanisms regulating morphol-
ogy transition have also been investigated. Recent studies have identified several
transcriptional regulators responsible for morphology regulation. These include tran-
scriptional factors and kinases that are also involved in adhesion and biofilm regulation.

One such regulator is the ortholog of C. albicans EFG1, a transcriptional factor
inhibiting the yeast-to-filamentous growth transition, that plays a similar role in con-
trolling C. parapsilosis morphology (126). The transcriptional factor UME6 also induces
filamentous growth in C. parapsilosis, which is similar to its reported function in C.
albicans (127, 169). Orthologs of C. albicans CPH2 and CZF1 in C. parapsilosis also
positively regulate the yeast-to-pseudohyphal switch, as their removal results in re-
duced colony wrinkling and biofilms of the corresponding strain with the mutants
growing mainly as yeast cells (127). C. parapsilosis OCH1 also determines morphology,
as deletion of this gene significantly decreases the amount of pseudohyphae under
filamentous-growth-inducing conditions (170). Additional regulators of C. parapsilosis
pseudohyphal growth include the ortholog of CaSPT3 (CPAR2_200390), which nega-
tively regulates filamentous growth, whereas CPAR2_501400, equivalent to CaCWH41, is
essential for pseudohyphal formation (101, 171, 172). Notably, CpEFG1, CpOCH1, and
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CpSPT3 are important factors in virulence (101, 126, 170). Due to their pleiotropic effects
as signaling regulators, the specific key points at which these genes contribute to
morphology status are still unclear.

Biofilm Formation

Adhered cells set the stage for biofilm formation on both biotic and abiotic surfaces.
Following attachment, fungal cells rapidly proliferate to colonize the base material,
thereby forming a monolayer. Following initiation, yeast cells undergo morphology
transition, and filamentous forms appear, enhancing multilayer formation. Besides
establishing a mixed population, during maturation, fungal cells also produce and
secrete extracellular matrix elements to provide both structural and functional stability.
Once the complex and stable multistructural biofilm stage is achieved, fungal cells are
protected and await beneficial environmental conditions to initiate dispersal (173). The
generated mature biofilm is a threat to the host, as it provides protection against both
antifungal reagents as well as immune recognition (174, 175).

The structure and composition of biofilms formed by Candida species are highly
species dependent. Compared to C. albicans, C. parapsilosis forms less-complex and thin
biofilms. However, the presence of C. parapsilosis biofilms on plastic medically im-
planted devices is still the major source of infections. In terms of structure, biofilms
formed by this species mainly consist of aggregated blastospores, pseudohyphae, and
large amounts of extracellular carbohydrates with low levels of proteins (176, 177).
Large variation in the overall biofilm-forming abilities among different clinical isolates
was reported (176, 178). In the presence of high-glucose or lipid-rich media, however,
C. parapsilosis biofilms are readily formed (179), which correlates with the increased
incidence of C. parapsilosis-driven candidemia in patients receiving parenteral nutrition
(163).

Previous studies also reported the resistance of Candida biofilms to various antifun-
gal drugs. Nett et al. used radiolabeled fluconazole to show that beta-glucans in the
ECM of C. albicans biofilms effectively sequester the drug (180). Subsequent work
showed that matrix beta-glucans sequester multiple classes of antifungals in biofilms
formed by C. albicans, C. parapsilosis, and other Candida species (181–183). The activity
of efflux pumps was also shown to contribute to antifungal resistance in early-stage
biofilm production by C. albicans. Mukherjee et al. showed that deletion of drug efflux
pumps (encoded by CDR1, CDR2, and MDR1) led to increased azole sensitivity of this
species within the first 6 h of biofilm formation (184). The role of these families in the
drug resistance of C. parapsilosis biofilms is currently unknown. Nevertheless, resistance
to amphotericin B, terbinafine, fluconazole, voriconazole, ravuconazole, and posacona-
zole was recorded in various cases of C. parapsilosis biofilms (185–187).

Due to the necessity and complexity of the various stages of biofilm formation,
the process requires an extensive regulatory network. Although the molecular
background of C. albicans biofilm formation is the most extensively studied to date,
advances have been made in understanding C. parapsilosis biofilms. The described
biofilm regulatory network in C. albicans is different from that of C. parapsilosis.
Holland et al. compared the transcriptional profiles of biofilms formed by the two
species and found that the expression of genes involved in metabolism and hyphal
growth was increased in biofilms of both species (127). A cohort of C. parapsilosis-
specific genes was further identified, including many predicted membrane trans-
porters as well as a large number of genes with as-yet-unknown functions. In
addition, the transcriptomic changes revealed during biofilm formation are similar
to transcriptomic responses to hypoxia in this species (188). Many of the genes
upregulated under both conditions encode proteins involved in fatty acid (FA)
biosynthesis or glycolysis. Hydrolytic lipase secretion as well as trehalose metabo-
lism also influence biofilm development (17, 132).

Although C. parapsilosis’ biofilm regulatory network has not yet been entirely
defined, major differences have been observed in biofilm development regulation
relative to that of C. albicans. For instance, BRG1 and TEC1 have key roles in C. albicans
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biofilm formation; however, no such role has been confirmed for the orthologous genes
in C. parapsilosis (127). Although CZF1, UME6, GZF3, and CPH2 were highlighted as key
contributors in C. parapsilosis, all these genes are negligible in C. albicans (127). ACE2,
BCR1, and EFG1 are further required for biofilm development, similar to C. albicans (126,
127, 161). Additionally, RBT1, a cell surface protein, was confirmed to promote C.
parapsilosis biofilm formation (188). MKC1 was also suggested to be involved in the
formation of C. parapsilosis biofilms (127). CFEM proteins, such as Rbt5, Pga10, and
Csa1, were proposed to be required for C. albicans biofilms (189). Although the CFEM
family has undergone expansion in C. parapsilosis (7 genes), these proteins appear not
to be required for biofilm formation (161). Likewise, four members of the C. albicans
biofilm regulatory network (TEC1, ROB1, FLO8, and BRG1) have no role in C. parapsilosis
(127, 190). Furthermore, although the role of NDT80 and NRG1 in C. albicans biofilm
development is evident, their function in C. parapsilosis may be altered, as deletion of
the corresponding genes results in a severe growth deficiency (127, 191). All these
recent findings confirm that biofilm formation in the two species is regulated in
different ways.

Hydrolytic Enzyme Production

During invasion, pathogenic fungi secrete various hydrolytic enzymes in order to
facilitate host entry. Secreted hydrolytic enzymes disrupt host cell membranes, degrade
extracellular matrix elements, and, thus, damage host tissues. Besides impairing host
barrier function, fungal hydrolytic enzymes may also promote cell adhesion, biofilm
formation, or intracellular survival. Such secreted fungal enzymes are divided into three
major groups: secreted aspartyl proteases, lipases, and phospholipases. To date, among
C. parapsilosis secreted hydrolytic enzymes, aspartyl proteases and lipases are the best
characterized.

Previously, Ramos et al. showed that 15 out of 16 C. parapsilosis clinical isolates,
derived from cases of cutaneous candidiasis, actively secreted aspartyl proteases (Saps)
(192). Similarly, additional studies reported that �88% of C. parapsilosis clinical isolates
actively secreted these enzymes (168, 193–195). On the other hand, others reported a
lower number (�37%) of clinical strains producing hydrolytic proteases (196–199).
Although there is wide variability among C. parapsilosis isolates in terms of Sap
production, it is commonly agreed that isolates derived from host surfaces (e.g., skin or
vaginal mucosa) are more likely to produce and secrete these enzymes than those
obtained from systemic infections or from the environment. This could explain why
surface isolates are more invasive. The molecular background of C. parapsilosis Sap
production has been rigorously investigated. To date, three aspartyl protease-encoding
genes (SAPP1 to SAPP3) have been identified. Out of these, SAPP1 is responsible for the
majority of Sapp production. Interestingly, this gene is duplicated in the C. parapsilosis
genome, generating SAPP1a and SAPP1b loci (131). Studies with a ΔΔsapp1a-ΔΔsapp1b
deletion mutant strain confirmed that C. parapsilosis secreted proteases enhance yeast
cell survival in human serum, promote resistance to phagocytosis and killing by the
host, and also facilitate intracellular survival and host cell damage (131). SAPP genes are
further suggested to contribute to host invasion by degrading proteins involved in host
defense, such as complement and antimicrobial proteins, or antibodies to evade
humoral immune responses. They are also thought to degrade various additional
proteins (e.g., extracellular matrix and cell surface proteins) in order to enhance
nutrient acquisition during invasion. Although Sapp1 greatly determines the viru-
lence of C. parapsilosis, it is not solely responsible for protease production. Horvath
et al. previously showed that in the absence of SAPP1, the expression of an
additional secreted-protease-encoding gene (SAPP2) is significantly elevated, reveal-
ing a compensatory effect (131). Sapp2 acts on substrates different from those cleaved
by Sapp1, which suggests that there are altered activation mechanisms for the two
proteins (200). SAPP3 may also translate to an active protein, as Silva et al. reported
elevated SAPP3 expression levels during infection of reconstituted human oral epithe-
lium (201). Although these studies confirmed the activation of Sapp2 and Sapp3 under
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the applied conditions, their direct role in C. parapsilosis virulence has yet to be
determined. In addition to the disruption of SAPP1, the protease inhibitor pepstatin
A greatly decreases the destruction of host epithelial and epidermal surfaces by this
species (202, 203). Hence, C. parapsilosis secreted proteases are some of the most
potent pathogenicity-enhancing factors.

Lipases secreted by C. parapsilosis are also considered key virulence determinants. If
present, their secretion varies greatly between isolates (36% to 80%), and they signif-
icantly enhance pathogenicity (168, 197). To date, four secreted-lipase-encoding genes
have been identified in the genome of C. parapsilosis, although only two (LIP1 and LIP2)
have been confirmed to encode functionally active proteins (17). Deletion of CpLIP1 and
CpLIP2 revealed their role in mechanisms required for successful host invasion, includ-
ing nutrient acquisition and sustainability in a lipid-rich environment, enhancement of
adhesion and biofilm formation, suppression of both cellular and humoral immune
responses during infection, promotion of survival after phagocytosis, and progression
of host tissue invasion (17, 115, 204). Furthermore, the lipase inhibitor ebelactone B and
aspirin also protect reconstituted human tissue (RHT) in the setting of C. parapsilosis
infection, which supports a role for secreted lipases in pathogenesis (203, 205). For
a comprehensive review of C. parapsilosis secreted lipases as potent pathogenicity
determinants, see our previous minireview (206).

C. parapsilosis also secretes phospholipases albeit with wide intraspecies variation,
with studies reporting that 9 to 90% of clinical isolates produce the enzyme (193, 196,
198, 199). However, their contribution to pathogenicity is still a matter of debate, as
there is no direct link between their expression and the degree of virulence. It is
hypothesized that fungal phospholipases may enhance virulence by disrupting host
cell membranes (207, 208). Unfortunately, the molecular background of phospholipase
production is as yet unexplored in C. parapsilosis.

Cell Wall Assembly

Given that the first contact of the host-pathogen interaction takes place between
the fungal cell wall and host cell surface receptors, studying the nature of this
interaction is indispensable in order to explore host immune responses. However,
the dynamically changing nature of fungal cell walls makes their investigation rather
challenging. Such behavior is due to the changes in the environmental conditions
between specific niches that these cells encounter.

Regardless of environmental stress conditions, in general, fungal cell walls contain
four major components in different layers. Ranging from interior to exterior, the cell
wall of Candida species consists of a basal chitin layer, coated by �-1,3- and �-1,6-
glucans, that is penetrated by highly glycosylated mannoproteins and covered by a
relatively rich layer of mannans (209). Depending on the site of mannosylation, one can
differentiate between N-linked (oligosaccharides attached to asparagine) and O-linked
(oligosaccharides binding to serine/threonine) mannans that influence cell adhesion
and also cell wall integrity (170, 210). The compositions of C. albicans and C. parapsilosis
cell walls are quite similar; however, the proportions and organizations of the different
components vary. For example, while C. albicans chitin and �-1,3-glucans are mostly
found close to the plasma membrane and are therefore masked by mannans (211, 212),
both polysaccharides are significantly more exposed on the surface of C. parapsilosis
cells (213). This observation is consistent with the high cell wall porosity found in C.
parapsilosis (213). The obtained data also suggest that C. parapsilosis N-linked mannans
are shorter than those of C. albicans, generating a porous wall surface, and this feature
could help to expose inner wall polysaccharides on the cell surface (213, 214). Further-
more, the amount of glycan under the mannan layer of C. parapsilosis is larger than in
C. albicans, which may function to strengthen/stabilize the cell wall (213, 215). In
contrast to the C. albicans cell wall, C. parapsilosis O-linked mannans are naturally
masked by N-linked mannans, which may affect interactions with immune cells (170).
These data demonstrate that despite having similar components, C. albicans and C.
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parapsilosis cell walls have subtle but relevant differences in both composition and
organization.

To identify specific proteins present on the surface of C. parapsilosis cells, surfaceom-
ics and shotgun proteomics studies have been performed. In addition to classic CWPs
(e.g., Als adhesins and Hwp), atypical proteins (glyceraldehyde-3-phosphate dehydro-
genase, Hsp70 chaperones, enolase 1, and endo-1,3-beta-glucanase) are also present
on the surface, as mentioned above (157). Fungal CWPs not only play a structural role
in maintaining the shape and strength of this cellular component but also have diverse
functions during fungal adaptation to different niches. For example, transcriptional
regulation of proteins involved in glycolysis (Eno1, Pgk, and Gapdh), general metabolic
enzymes (Pdc1 and Pdc11), and heat shock proteins (Ssa1) is markedly altered under
oxidative stress (216). Similarly, a CFEM family member (cell surface adhesins in C. albicans)
and two orthologs of C. albicans classic cell wall proteins, Pir1 and Ecm33, are differentially
regulated in the presence of human sera (217). Under the same conditions, human serum
proteins attached to the surface of C. parapsilosis cells were also examined, among which
complement components, apolipoproteins, fibrinogen, vitronectin, and albumin were iden-
tified (217). Interacting partners of laminin, fibronectin, and vitronectin as major extracel-
lular matrix proteins were subsequently identified, as described above. Fungal proteins
with possible human plasminogen and high-molecular-mass kininogen binding roles
were also later identified. These include the heat shock protein Ssa2, the above-
mentioned Als-like proteins, and 6-phosphogluconate dehydrogenase 1 (217, 218). This
could represent a mechanism to disguise the fungal cells, avoiding recognition by
elements of the immune system.

Immunogenic proteins associated with the cell wall also modify host-pathogen
interactions. Among the most prevalent immunogenic proteins found in the C. parap-
silosis cell wall are the translation initiation factor eIF4A subunit (Tif1), ATP synthase
subunit beta (Atp2), enolase (Eno1), glyceraldehyde-3-phosphate dehydrogenase (Gap1),
heat shock protein 70 (Ssb1p), pyruvate decarboxylase (Pdc11), ATP synthase subunit
alpha (Atp1), phosphoglycerate kinase (Pgk1), alcohol dehydrogenase (Adh1), fructose-
bisphosphate aldolase (Fba1), isocitrate dehydrogenase (Idh2), and guanine nucleotide
binding protein subunit beta-like protein (Bel1) (219). These cell wall moonlighting
proteins have also been identified as being immunogenic in C. albicans, with the
exception of Idh2 (219). Other CWPs could have a role in nutrient acquisition or
interaction with host components, such as the cell wall adsorbed aspartic proteinase 1
(Aspp1) or an ectophosphatase, as they influence adhesion to epithelial cells (220, 221).

Thus far, there are no functional studies to demonstrate how C. parapsilosis cell wall
components are synthesized, but bioinformatic analyses of the genome indicate that
this organism possesses the basic components to elaborate glucans and mannans, as
described for C. albicans (56). The �1,6-mannosyltransferase Och1 is one of the few
proteins characterized so far in C. parapsilosis, and as in C. albicans, it provides the
addition of the first mannose residue of the N-linked glycan outer chain, allowing the
further extension of the �1,6-polymannose backbone that is further decorated by
lateral mannooligosaccharides (170). Possibly via regulating cell wall homeostasis, C.
parapsilosis Och1 also regulates virulence, similarly to that of C. albicans (170).

Although no mechanistic studies have been conducted, orthologs of C. albicans
CHS1, CHS2, CHS3, and CHS8 (encoding chitin synthases) and CHT1, CHT2, CHT3, and
CHT4 (encoding chitinases) have been identified within the C. parapsilosis genome
(101). This suggests that similar machineries are present for cell wall biosynthesis and
chitin homeostasis regulation in both species. Notably, however, a recent study dem-
onstrated the role of C. parapsilosis Spt3, a filamentous growth regulatory transcrip-
tional factor, in cell wall homeostasis maintenance, which is a function not associated
with the orthologous gene in C. albicans, and this finding might suggest the presence
of alternative routes for cell wall homeostasis regulation (101).

Among the targets currently explored for detection of this species in the clinical
setting, hyphal wall protein 1 (HWP1), a hypha-specific cell wall protein with adhesive
properties, has been suggested to be a good marker for species identification (222). The
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cell wall �-1,3-glucan content has been used to discriminate fungal cells growing in a
planktonic stage from those forming biofilms. The level of this cell wall component
increased 10-fold in both in vivo and in vitro biofilms generated by Candida cells,
including those from C. parapsilosis (223). Therefore, it has been proposed that the
�-1,3-glucan levels in cells isolated from indwelling devices be evaluated to assess the
possible formation of fungal biofilms (223). In contrast, other cell wall components were
not effective markers of C. parapsilosis infections. For example, detection of mannan
antigen with the Platelia Candida Ag Plus assay showed a relatively low sensitivity in
clinical samples (224).

Although our knowledge has recently significantly expanded regarding the cell
wall structure of C. parapsilosis, there are major unexplored areas that are yet to be
investigated.

Fatty Acid Metabolism

Fatty acids, as key building components of lipids, play an indispensable role in
the organization and maintenance of cell membranes and various intracellular
compartments. Both saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs)
determine membrane flexibility, regulate metabolic processes, and serve as precur-
sors for a wide variety of complex macromolecules; thus, they are essential for
viability. Recently, it was also suggested that FAs influence the virulence of patho-
genic species; however, whether this is a direct or an indirect effect needs to be
further investigated.

Pathogenic species acquire fatty acids either via de novo synthesis or through the
degradation of external sources. De novo fatty acid synthesis requires both fatty acid
synthases (chain elongation) as well as fatty acid desaturases (double-bond introduc-
tion), while secreted hydrolytic lipases contribute to the utilization of fatty acid from
external lipids. A defect in either route will not affect fungal viability on its own,
although if they malfunction simultaneously, the result is lethal (225).

Fatty acid synthases along with elongases are required for long-chain SFA biosyn-
thesis, a preliminary step for later UFA production. CpFAS1 is essential for the growth
of C. parapsilosis in the absence of exogenous (saturated) fatty acids, as disruptant cells
are severely restricted in UFA production (130). Furthermore, subsequent gene deletion
affects not only the yeast’s fatty acid metabolism but also its pathogenicity, as �/�fas2
cells were sensitive to the presence of human serum and less virulent both in vitro and
in vivo (130). Nguyen et al. showed that the fatty acid desaturase Ole1, which introduces
the first double bond to saturated fatty acids, is also essential in C. parapsilosis, as
�/�ole1 cells were unable to produce unsaturated FAs in the absence of exogenous
fatty acids. Furthermore, CpOLE1 also influences virulence, as �/�ole1 cells were
sensitive to human serum and less virulent both in vitro and in vivo, similarly to �/�fas2
cells (128).

In order to provide protection against gluco- and lipotoxicity, C. parapsilosis cells
form lipid droplets (LDs) to prevent the accumulation of fatty acids and free glucose in
toxic concentrations within the cytoplasm. In C. parapsilosis, FIT2 regulates the forma-
tion of such triacylglycerol-containing cytoplasmic compartments serving as free fatty
acid and lipid precursor reservoirs. Besides regulating fungal viability, FIT2 also affects
C. parapsilosis’ virulence, possibly in an indirect manner (226). Interestingly, it has been
suggested that FAS2 and OLE1 are also required for protection against gluco- and
lipotoxicity via enhancing the formation of LDs. This was confirmed by the impaired LD
formation in both the �/�fas2 and �/�ole1 strains (227).

Ole2, another fatty acid desaturase with hypothetical delta-9 desaturase activity,
is involved in the processing of palmitoleic and oleic acids in C. parapsilosis (136).
Interestingly, the amount of monounsaturated FAs increased markedly in the �/�ole2
strain, thereby calling into question Ole2’s presumed delta-9 desaturase activity (136).
Enhanced phagocytosis and killing of �/�ole2 cells and the induced increased levels of
interleukin-10 (IL-10) suggested that CpOLE2 may also be involved in virulence regu-
lation (136). Although functional Δ12/Δ15- and Δ15-fatty acid desaturases (FAD2 and
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FAD3) have also been identified in this species, their influence on virulence has not yet
been investigated (228).

Prostaglandin Production

FAs also serve as precursors for the synthesis of complex macromolecules, including
immunomodulatory prostaglandins. In the host, prostaglandins are physiologically active
compounds acting as potent regulators of diverse mechanisms, including inflammation.
Several genera of pathogenic fungi are capable of producing prostaglandin-like molecules
(136, 229–233), and these macromolecules enhance fungal pathogenesis by hijacking
host immune responses (233). C. parapsilosis, similarly to C. albicans, is able to produce
prostaglandins from exogenous arachidonic acids. This includes the biosynthesis of
prostaglandin E2 (PGE2) and PGD2, although other subsets of prostanoids have also
been identified in smaller amounts (e.g., PGA2 and PGB2) (136). To date, only a few
attempts have been made to identify the molecular bases of their biogenesis.

Due to the presence of a cytochrome b domain, it has been suggested that besides
regulating fatty acid metabolism, Ole2 is also involved in the regulation of prostaglan-
din production, particularly PGE2. However, while Ole2 greatly determines PGE2 pro-
duction in C. albicans, it cannot be associated with such functions in C. parapsilosis (136,
230). Recently, Chakraborty et al. identified genes potentially involved in C. parapsilosis
prostaglandin production. These include the orthologous genes of CaFET3, ScPOX1-3,
and ScPOT1, affecting the production of PGE2, 15-keto-PGE2, and PGD2 (137). Besides
regulating eicosanoid biosynthesis, they also influence fungal pathogenicity, as their
removal results in enhanced phagocytosis and killing by human macrophages and also
alters cytokine responses in vitro. Furthermore, disruption of CpFET3 and CpPOT1
resulted in attenuated virulence in vivo.

Nutrient Competition

During invasion, pathogenic fungi require carbon and nitrogen sources as well as
trace elements for survival within the host. Such species are in constant competition
with the host, along with the residual commensal microbes. In order to acquire
essential nutrients under such restrictive environmental conditions, pathogenic species
have evolved different acquisition mechanisms. For instance, several pathogenic fungi
secrete various hydrolytic enzymes to degrade complex macromolecules in their close
environment, which, besides enhancing deep invasion, also provide a wide range of
carbon as well as nitrogen sources ready for uptake. Such enzymes include the
above-mentioned fungal secreted lipases and proteases. Trace elements are like-
wise important for both viability as well as pathogenicity, due to the diverse roles of
metalloproteins. These proteins require zinc, copper, or iron cofactors for proper
functioning. HAP5, a subunit of the core binding factor (CBF) transcription regulatory
complex, is required for the uptake of accessible iron in C. parapsilosis, similar to its role
in C. albicans (101, 234). It has also been suggested that CpHAP5 influences the activity
of cytochrome proteins (hemeproteins) of the respiratory chain, possibly in an indirect
manner. C. parapsilosis HAP5 also enhances virulence, as null mutant strains were less
virulent both in vitro and in vivo (101). Unfortunately, to date, we lack information about
zinc and copper acquisition regulatory factors that could influence uptake mechanisms
in this species. Previous studies revealed that C. parapsilosis cells tolerate the presence
of potassium (KCl), sodium (NaCl), and lithium cations (LiCa) at high concentrations
(235–237). However, whether this feature directly contributes to pathogenesis is yet to
be determined.

Survival Strategies

In order to survive the restrictive environmental conditions present in the host,
several pathogenic fungi have evolved different escape mechanisms (238–244). Besides
inducing a delayed, tolerogenic immune response (discussed below), other survival
mechanisms have been observed during C. parapsilosis infections. For example, similar
to other pathogenic yeasts, C. parapsilosis cells are able to survive within phagocytes
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and endothelial cells (115, 245). Intracellular budding, pseudohypha formation, and
induced exocytosis were also observed. Furthermore, engulfed yeast cells inhibited
the host cells’ attempt to complete mitosis (115). In endothelial cells, internalized
yeasts resist acidification by the host cell and are protected from neutrophil killing
in vitro (246). Although the underlying molecular mechanisms regulating the above-
mentioned phenomena are largely unknown, it has been suggested that the species’
secreted lipases and extracellular proteases might be involved in survival within
maturing phagosomes. For instance, removal of CpSAPP1 as well as CpLIP1-LIP2 resulted
in delayed phagolysosome maturation following uptake by human macrophages (131,
247).

Metabolism of Hydroxyderivatives of Benzene and Benzoic Acid

Hydroxyderivatives of benzene and benzoic acid are toxic compounds exhibiting anti-
microbial activities. For example, salicylate (2-hydroxybenzoate), aspirin (acetylsalicylate),
phenol, and catechol are highly toxic to C. parapsilosis cells (113, 248). However, this yeast
is able to assimilate a range of hydroxybenzenes (hydroquinone and resorcinol) and
hydroxybenzoates (3-hydroxybenzoate, 4-hydroxybenzoate, 2,5-dihydroxybenzoate
[gentisate], 2,4-dihydroxybenzoate, and 3,4-dihydroxybenzoate [protocatechuate]).
Functional analyses have demonstrated that these compounds are metabolized via the
3-oxoadipate and gentisate pathways, and most of the genes coding for the corre-
sponding enzymes are organized into metabolic gene clusters (MGCs). The gentisate
pathway gene cluster is located in the subtelomeric region of chromosome V and
comprises the genes for four enzymes catalyzing biochemical reactions in this pathway
(3-hydroxybenzoate 6-hydroxylase, gentisate 1,2-dioxygenase, a putative maleylpyru-
vate isomerase, and fumarylpyruvate hydrolase), a transporter belonging to the major
facilitator superfamily (MFS) involved in hydroxybenzoate transport across the plasma
membrane, and a binuclear zinc cluster (Zn2Cys6) transcription factor controlling gene
expression. The 3-oxoadipate pathway gene cluster contains genes for three metabolic
enzymes (hydroxyquinol 1,2-dioxygenase, a putative maleylacetate reductase, and
3-oxoadipate CoA transferase) and a zinc cluster transcription factor. The remaining
enzymes of this pathway (i.e., 4-hydroxybenzoate 1-hydroxylase, hydroquinone
hydroxylase, and 3-oxoadipyl-CoA thiolase) and the corresponding plasma mem-
brane transporters are encoded by genes located outside this cluster. Both MGCs are
regulated independently in a substrate-specific manner. They are highly expressed in
cells assimilating hydroxyaromatic substrates but repressed in cells grown in glucose-
containing media (99, 100, 113; A. Cillingová, R. Tóth, A. Gácser, and J. Nosek, unpub-
lished data).

Although both hydroxybenzoates and hydroxybenzenes can be degraded via the
3-oxoadipate pathway, there is an important physiological difference in the degrada-
tion of these compounds. The conversion of 4-hydroxybenzoate to hydroquinone
includes a decarboxylation step, releasing carbon dioxide that is readily converted by
a carbonic anhydrase into bicarbonate anion. In fungi, bicarbonate activates intracel-
lular signaling via adenylyl cyclase, thus affecting various processes, including filamen-
tation and virulence (249). These features illustrate another difference between C.
parapsilosis and C. albicans, as the latter assimilates hydroxybenzenes but does not
metabolize hydroxybenzoates. The C. albicans genome contains two MGCs coding
for the catechol and hydroxyhydroquinone branch of the 3-oxoadipate pathway,
but it lacks the gene for decarboxylating monooxygenase (4-hydroxybenzoate
1-hydroxylase), orthologs of hydroxybenzoate transporters, as well as the gentisate
pathway cluster. Hence, it grows in media containing phenol, catechol, hydroqui-
none, or resorcinol as a sole carbon source (250).

In addition to hydroxybenzenes and hydroxybenzoates, other compounds can be
channeled into these pathways. For example, C. parapsilosis cells overexpressing
monooxygenases that catalyze the first reaction in both pathways (i.e., 3-hydroxy-
benzoate 6-hydroxylase and 4-hydroxybenzoate 1-hydroxylase) exhibit increased
tolerance to terbinafine (Lamisil) (113). This observation is consistent with the
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finding that salicylate 1-monooxygenase from Aspergillus nidulans also confers
resistance to this antifungal drug (251). Esters of phthalic acid (phthalates) are
additional putative substrates of the 3-oxoadipate pathway (e.g., terephthalate can be
decarboxylated to 4-hydroxybenzoate or hydroquinone) (A. Cillingová and J. Nosek,
unpublished data). These compounds are commonly used as additives to increase the
flexibility and durability of plastic materials, and the ability of C. parapsilosis to utilize
phthalates as carbon sources may, in part, explain its affinity for surfaces of medical
plastics.

ANTIFUNGAL SUSCEPTIBILITY AND RESISTANCE

Although an extensive discussion of pharmacotherapy for candidiasis is beyond the
scope of this review, a discussion of some points relevant to infections caused by C.
parapsilosis is warranted. Unlike C. glabrata, C. parapsilosis has maintained high rates of
susceptibility to the azole antifungals. Although testing for azole susceptibility is
recommended, these agents have largely retained their usefulness for C. parapsilosis
infections. Echinocandins (caspofungin, micafungin, and anidulafungin) are currently
recommended as first-line empirical therapy for patients with suspected or proven
disseminated candidiasis in many clinical settings (252). C. parapsilosis has been re-
ported to have higher MICs for the echinocandins than other Candida species (9, 253).
However, patients with C. parapsilosis candidemia who were initially treated with
echinocandins have not been noted to have worse outcomes (254), and no clinical
studies have demonstrated the superiority of another class of antifungals over echino-
candins for C. parapsilosis (252).

Susceptibility testing is recommended for all Candida isolates associated with
invasive disease. In particular, azole testing is recommended to provide an oral thera-
peutic option. Especially for patients previously receiving an echinocandin, echinocan-
din susceptibility testing of C. parapsilosis isolates should be performed (252). With the
exception of endocarditis, amphotericin B is no longer commonly used in adults for
invasive candidiasis due to toxicities, albeit the lipid formulations have reduced neph-
rotoxicities (255–257). Notably, amphotericin B is relatively well tolerated in neonates
(258, 259). Susceptibility testing for C. parapsilosis has been well validated by method-
ologies from both the Clinical and Laboratory Standards Institute (CLSI) (standard
M27-A4) (260) and the European Committee on Antimicrobial Susceptibility Testing
(EUCAST) (10, 261).

Azole resistance is well documented in C. parapsilosis. Despite the concern for a
genetic predisposition to resistance to echinocandins, surveys of Candida collections
show that azole resistance occurred more commonly than echinocandin nonsuscepti-
bility. For example, out of 122 C. parapsilosis strains, 9.8% were resistant to fluconazole,
while 3.2% were resistant to echinocandins (10). In a prospectively collected series of C.
parapsilosis isolates, 4.8% were resistant to fluconazole and 0.6% were resistant to
echinocandins (11). The global rates of fluconazole resistance range between 2 and 5%
(262, 263), and a recent review assessed 6,023 isolates and revealed an overall rate of
resistance to fluconazole of 3.4% (25).

Azole resistance has been well associated with prior or current fluconazole use
(264–267), and resistance can develop even with exposure to systemic antibiotics (268,
269). Surveys of isolate collections reveal the rate of fluconazole resistance to be 0 to
4.6% (270–274). The average MIC50 values of fluconazole for C. parapsilosis are from 0.5
to 1 �g/ml (186, 200, 271, 275–277). Rates of resistance to itraconazole range from 1.5
to 4% (270, 271). Given the low MIC50 (�0.03 �g/ml) of voriconazole, the rate of
resistance is less than 2% (272, 278). Cross-resistance to azoles can occur, including in
strains responsible for outbreaks (279). For example, one large study found that only
37% of fluconazole-resistant isolates were susceptible to voriconazole (272). Voricona-
zole resistance can also develop in patients during exposure to fluconazole (280).

During recent years, advances have been achieved in terms of understanding the
molecular bases of decreased antifungal drug susceptibility. For example, alterations in
ergosterol biosynthetic mechanisms and upregulation of multidrug transporters in the

Candida parapsilosis: from Genes to Bedside Clinical Microbiology Reviews

April 2019 Volume 32 Issue 2 e00111-18 cmr.asm.org 19

https://cmr.asm.org


cell wall are the two most common pathways of development of azole resistance
(281–283). In C. albicans, three major regulators are commonly highlighted to regulate
azole resistance, two multidrug transporters (Cdr1 and Mdr1) and an enzyme involved
in ergosterol biosynthesis (Erg11), as all three are overexpressed in the presence of
azole derivates.

Among the members of the ERG family (genes encoding proteins involved in the
ergosterol biosynthesis pathway) in C. albicans, as well as in C. parapsilosis, overexpres-
sion of ERG11 (encoding a lanosterol 14-�-demethylase) in the presence of azoles has
been highlighted by multiple studies (25, 283–285). In C. albicans, Upc2, the key
transcriptional regulator of ERG11, has also been identified, as gain-of-function muta-
tions in the corresponding gene’s sequence led to a significant increase in ERG11
expression (286). The Y132F substitution in ERG11 is exclusively found in azole-resistant
isolates of C. albicans (25, 285). In C. parapsilosis, the same substitution event also
correlates with azole resistance (281, 287). However, the transcriptional regulator Upc2
does not regulate ERG11 (overexpresses independently from UPC2) in this species but
is required for the expression of 13 other ergosterol biosynthesis genes (281, 288).
Besides Upc2, another transcriptional factor, Ndt80, is also suggested to regulate
ergosterol synthesis in C. parapsilosis and thus determines azole resistance, similarly to
C. albicans (288, 289).

In C. albicans, besides ERGs, upregulation of multidrug transporters (efflux pumps)
has also been observed during exposure to azole derivates. Two such efflux pumps are
encoded by CDR1 and MDR1 (290–293). The expression levels of both transporters are
elevated if mutations occur in the corresponding transcriptional regulators’ sequences.
Of these, upon gain-of-function mutations in the transcriptional factor MRR1, expres-
sion levels of MDR1 are elevated, whereas gain-of-function point mutations in TAC1
enhance the expression of CDR1 in C. albicans (294, 295). The upregulation of CDR1 and
MDR1 orthologs was also confirmed in C. parapsilosis in the presence of azoles (281,
283). However, their regulation differs from what was observed in C. albicans. In C.
parapsilosis, overexpression of MDR1 and CDR1 is less dependent on mutations in MRR1
and TAC1 (281). Further studies revealed that both Cdr1 and Mdr1 in this species are
only partially required for decreased azole susceptibility, as disruption of the corre-
sponding genes resulted in only a mild decrease in fluconazole MICs (281). These
studies suggest that there is often a combination of molecular mechanisms, including
sterol and efflux pump gene alterations, responsible for resistance in C. parapsilosis
(133, 283, 296).

C. parapsilosis displays reduced susceptibility in vitro to echinocandins (297–299),
and the yeast can cause infection in the setting of echinocandin administration
(300–305). Notably, caspofungin MICs for C. parapsilosis are higher than for other
Candida species, with MIC50 values typically ranging from 0.85 to 2 �g/ml (186, 271,
275, 306, 307). Similarly, micafungin has an average MIC50 of 1 �g/ml (271, 308), and
anidulafungin has an average MIC50 of 2 �g/ml (271, 276, 309). Interestingly, pharma-
codynamics evaluations reveal that echinocandin requirements for efficacy against C.
parapsilosis by AUC/MIC (area under the concentration-time curve over 24 h in the
steady state divided by the MIC) targeting were higher than for the other Candida
species tested (310). Alterations in cell wall structure, reduced affinities for the glucan
synthase protein complex, and variations in regulatory networks are thought to con-
tribute to resistance (307). C. parapsilosis has more naturally occurring fks polymor-
phisms than most other pathogenic Candida strains (311). One such example is the
naturally occurring amino acid substitution “P660A” in the “hot spot” 1 (HS1) region of
FKS1, which might result in a decreased sensitivity of the corresponding glucan
synthase to echinocandins (312, 313). It has also been suggested that substitutions in
the HS regions of FKS2 could have similar effects, although to date, no such alterations
have been revealed (314). According to Martí-Carrizosa et al. (314), mutations outside
the HS regions of FKS sequences could also contribute to such a response (304, 312,
315). Notably, C. parapsilosis FKS1 and FKS2 mutations are different from those located
in HS regions of other Candida species (314). Interestingly, the mitochondrial respira-
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tory pathways in C. parapsilosis are also linked to echinocandin susceptibilities (89). A
concerning result was obtained in an experiment where susceptible C. parapsilosis
isolates were subjected to serial exposure to echinocandins, which led to high rates of
resistance to caspofungin, micafungin, and anidulafungin as well as cross-resistance to
all three drugs. Furthermore, serial exposure to echinocandins also induced resistance
to azoles and flucytosine (316). Remarkably, echinocandins can paradoxically promote
the growth of some isolates of C. parapsilosis and other Candida species in vitro at
concentrations above the MIC50 for the isolates (317). However, murine studies with
caspofungin-resistant isolates have revealed that administration of caspofungin to mice
infected with caspofungin-resistant isolates modified virulence, demonstrating that in
vitro data may not clearly correlate with in vivo outcomes and suggesting that host
immune responses may contribute to this effect (318).

Ongoing studies continue to expand our understanding of azole and echinocandin
resistance. Interestingly, resistance to these agents can be linked to single pathways.
For example, a recent publication reveals that C-5 desaturase activity regulates sus-
ceptibility to both azoles and echinocandins, as disruption of ERG3 leads to high-level
azole and intermediate- to high-level echinocandin resistance (319).

Amphotericin B “tolerance” in C. parapsilosis was first noted in 1983, when minimal
fungicidal concentrations of several strains were noted to be �32-fold higher than their
respective MICs (320). Moreover, resistance to amphotericin has been well documented
(321–323), with surveys of clinical strains revealing a resistance rate of �3% (271).
However, a recent analysis of C. parapsilosis isolates from pediatric patients in Argentina
reveals that 15% of the isolates displayed high amphotericin MIC50 values, with a range
of 0.5 to 2 �g/ml and a geometric mean of 1 �g/ml (324). A review of data from a large
collection of studies, however, shows that the typical MIC50 range of amphotericin B for
C. parapsilosis is 0.13 to 1 �g/ml (186, 200, 271, 275–277).

Although infrequently utilized, flucytosine can be used in combination, typically
with azoles or amphotericin B, for candidal meningitis (325, 326) or endocarditis (327).
Flucytosine resistance rates generally range from 2% to 6.4%, although a 1975 study
reported that 24% of C. parapsilosis isolates were resistant (271, 328).

The studies described above show that in vitro drug susceptibility results are not
clearly correlated with patient outcomes. C. parapsilosis biofilms are a major factor in
outcomes for certain patients (329), particularly in the setting of infected foreign
materials. In particular, C. parapsilosis is frequently associated with central venous
catheters (330–333). Biofilms can adversely impact the function of antifungals, primarily
through binding the compounds or otherwise impairing their ability to reach yeast
cells. C. parapsilosis biofilms have increased resistance to standard formulations of
amphotericin B and azoles (185, 334), but amphotericin lipid formulations may retain
activity (186), and echinocandins can reduce the metabolic activities of C. parapsilosis
biofilms (185, 186, 335).

HOST IMMUNE RESPONSES

Our knowledge of antifungal immunity has expanded at a remarkable pace over the
past decade. For example, new host recognition mechanisms with intracellular signal-
ing pathways along with intercellular and humoral effects have been revealed. The
control of C. parapsilosis-driven infections, similarly to other fungal species, relies on the
proper activation of both innate and adaptive immune responses. Along with new
knowledge about other pathogenic fungi, advances have also been achieved in terms
of the exploitation of anti-C. parapsilosis immune responses.

Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) are two main classes of
pathogen recognition receptors (PRRs) that commonly recognize fungal pathogen-
associated molecular patterns (PAMPs). Among the TLRs, TLR2, TLR4, and TLR6 are
involved in the recognition of C. parapsilosis cells by both gingival epithelial cells
(ECs) and human macrophages (336, 337). Further studies suggest that among CLRs,
Galectin-3 and Dectin-1 are required for C. parapsilosis-induced immune responses
(338–340). According to Linden et al., Galectin-3 blockers added to neutrophils inhib-
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ited C. parapsilosis phagocytosis, while the addition of exogenous Galectin-3 to the
culturing medium enhanced yeast cell uptake (338). Additionally, gal3�/� mice were
more susceptible to C. parapsilosis infection than wild-type mice (339). The same study
further demonstrated that lower levels of Galectin-3 are present in human neonatal
cord blood sera than in healthy adult sera, which might also explain the susceptibility
of infants to this species. Decreased inflammatory cytokine levels after Dectin-1 inhi-
bition also suggested the receptor’s inclusion in C. parapsilosis recognition by human
blood-derived macrophages (340). To date, we lack further information about the
inclusion of other pattern recognition receptors in C. parapsilosis recognition.

In terms of the immune responses triggered following recognition, the activation
and effector functions of innate and adaptive immune cells have also been examined.

Among myeloid cells, peripheral blood mononuclear cells (PBMCs), peripheral blood
mononuclear cell-derived macrophages (PBMC-DMs), polymorphonuclear neutrophils
(PMNs), dendritic cells (DCs), and bone marrow-derived macrophages (BMDMs) all
participate in the innate immune responses triggered by C. parapsilosis. Out of these,
effector functions and cytokine release of PBMC-DMs, PMNs, and PBMCs upon C.
parapsilosis challenge are the most examined. Professional phagocytes actively phago-
cytose and kill C. parapsilosis cells (both yeast and pseudohyphae) to enhance clearance
(115, 341–344). Complement activation and proinflammatory (IL-1�, IL-6, and tumor
necrosis factor alpha [TNF-�]) and anti-inflammatory (IL-10) cytokine production were
further observed in the case of PBMCs (340, 343). Upon C. parapsilosis infection, all three
classical mitogen-activated protein kinases (MAPKs) (p38, extracellular signal-regulated
kinase [ERK], and Jun N-terminal protein kinase [JNK]) are involved in cytokine produc-
tion in mononuclear cells, although the induced cytokine responses vary from those
induced by C. albicans (340). NF-�B activation was also confirmed during C. parapsilosis
invasion, along with the formation of a granuloma-like structure by PBMCs, which
was later infiltrated by PMNs and CD4� and CD8� lymphocytes, enhancing the early
production of gamma interferon (IFN-�) and control of the infection (344, 345). Besides
phagocytosis, killing, and the production of proinflammatory cytokines (IL-1�, IL-6,
TNF-�, and CXCL-8), DCs also form fungipods, pseudopodial protrusions observed
especially in the presence of C. parapsilosis that are thought to promote fungal
recognition (346, 347). On the contrary, BMDMs have been shown to release IL-27 in the
presence of this fungus, which resulted in an anti-inflammatory response. This was
supported by the observation that IL-27R�/� mice displayed enhanced fungal clear-
ance (348). Thus, innate immune responses against C. parapsilosis greatly differ be-
tween the examined myeloid cell types.

Regarding host cell killing, C. parapsilosis causes relatively mild damage to PBMC-
DMs compared to C. albicans (115). Host cell rupture due to pseudohyphal growth of
the ingested cells has been reported (115). Additionally, this species induces macro-
phage death via inflammation-derived apoptosis (pyroptosis) similarly to C. albicans,
although this event is possibly differently regulated by the two species (337).

ECs at barrier sites are also active participants in innate immune responses, as during
colonization with a pathogenic species, they produce various cytokines and chemo-
kines to attract professional immune cells to the site of invasion. For example, C.
albicans infection triggers strong cytokine release from epithelial cells, including the
secretion of neutrophil and monocyte attractants (349–351). In contrast, small amounts
of cytokines are released during oral epithelial cell colonization by C. parapsilosis (352).
This phenomenon is possibly due to the unresponsiveness of the MAPK/c-Fos signaling
pathway, the primary invasion-alarming intracellular signaling route in epithelial cells
for other yeasts (353). Besides maintaining a defined although still relatively low level
of IL-1� induction, only mild host cell damage has been observed after coincubation of
C. parapsilosis with oral squamous epithelial cells (352).

Nevertheless, by using an engineered human oral mucosa model, C. parapsilosis has
been shown to be capable of forming biofilms and invading connective tissues (336).
Interestingly, however, in this model, upregulation of TLR2, TLR4, and TLR6 was
observed in human gingival epithelial cells, which was accompanied by the production
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of IL-1�, TNF-�, IFN-�, �-defensin-1, �-defensin-2, and �-defensin-3 (336), which is likely
responsible for the growth inhibition of C. parapsilosis cells (336).

These results suggest that during the colonization of epithelial barriers, host inflam-
matory responses triggered by C. parapsilosis may be present; however, they are
not comparable to those induced by C. albicans. As during C. albicans invasion, the
presence of true hyphae is thought to be the major inducer of immune responses (352),
C. parapsilosis’ inability to form true hyphae may contribute to the lack of an effective
inflammatory reaction. Previous studies also showed that C. albicans hyphae actively
secrete candidalysin, a fungal toxin encoded by ECE1 that also actively contributes to
host cell damage (354). In silico data analyses suggest that the orthologous gene is not
present in C. parapsilosis, which may further explain the ineffective induction of an
adequate immune response.

In terms of adaptive immunity, T helper 1 (Th1) and T helper 17 (Th17) cells are the
main T lymphocytes required for anti-Candida albicans responses (355, 356). Interest-
ingly, C. parapsilosis is not able to induce significant levels of cytokines that are
associated with Th1/Th17 responses; instead, host cells infected with this species
produced elevated levels of IL-10, a cytokine that is characteristic of Th2 activation
(340). Such results suggest that C. parapsilosis may cause a Th1-to-Th2 shift in T
lymphocyte responses during infection, which might promote anti-inflammatory
responses.

Inflammasomes are cytoplasmic multiprotein complexes that are required for the
regulation of proinflammatory cytokine production (IL-1� and IL-18) as well as for
pyroptosis induction (357, 358). As a result of its function, the processed mature and
released form of IL-1� activates acute-phase inflammatory responses as well as adap-
tive immune responses through inducing the differentiation of Th17 cells (359). How-
ever, for the activation of caspase-1, a member of the NLRP3 inflammasome required
for pro-IL-1� maturation, a second signal (i.e., a danger signal) is required (360). For
instance, NLRP3 inflammasomes activate rapidly upon C. albicans exposure, due to
lysosome rupture, increased K� efflux, and intracellular reactive oxygen species (ROS)
release (361). C. parapsilosis also induces NLRP3 inflammasome activation although only
after 24 h of coincubation. The difference between the two species might be due to the
lack of early-phase ROS release from mitochondria after engagement with C. parapsi-
losis and also to delayed lysosome rupture possibly as a result of slow phagocytosis
(337). Consequently, the delayed activation of NLRP3 inflammasomes causes late-phase
IL-1� release and, thus, a late antifungal immune response to C. parapsilosis.

It is therefore possible that instead of the early-phase acute immune activation
commonly observed in the case of C. albicans, C. parapsilosis induces a prolonged and
possibly tolerogenic host reaction that may promote the fungus’ hiding as a potential
survival strategy. These observations further highlight the differences between the
biologies of C. albicans and C. parapsilosis infections.

Nevertheless, it has also been shown that human peripheral blood lymphocytes are
capable of inducing the production of immunoglobulins against invasive Candida
species to promote fungal clearance (362). During investigations of such responses,
antibodies specific to the carboxyl fragment of C. albicans heat shock protein 90
(HSP90) have been identified (363, 364). The level of such antibodies was shown to
correlate with disease outcome (365, 366). Given that the identified epitope also has
homologs in other closely related species, such as C. parapsilosis, a recombinant human
antibody fragment (Mycograb) was produced, and its efficiency and synergy with other
anticandidal drugs were tested in vitro and later in vivo (367, 368). Mycograb alone
reduced fungal burdens in the liver, kidney, and spleen of mice challenged with C.
parapsilosis and reduced the number of positive biopsy samples. A certain level of
synergy with amphotericin B but no synergistic effect with fluconazole was detected in
mice infected with this species (368). Later, a recombinant human IgG1 antimannan
antibody, whose epitope is found on the cell walls of several Candida species, including
C. parapsilosis, was used to passively immunize mice before infection with lethal doses
of fungal cells. Immunized animals were significantly more resistant to disseminated
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infection by C. albicans than control animals and showed reductions of infection foci in
kidneys (369). This protection involved the promotion of fungal uptake and killing by
macrophages, demonstrating that a humoral response could lead to protective immu-
nity against Candida cells (369).

CLINICAL PERSPECTIVES

Clinical features of human infections with C. parapsilosis in many ways mimic those
associated with Candida infection in general. Although the signs and symptoms vary
according to the characteristics of the patient population at risk, a common presenta-
tion is sepsis or septic shock, which can be indistinguishable from the same condition
attributable to a bacterial infection (370). As such, a high index of suspicion must be
maintained in appropriate clinical settings in order to consider and empirically treat a
fungal etiology. For example, a disseminated fungal infection must be among the
etiologies considered in a neutropenic bone marrow transplant patient with fever
and/or other signs of sepsis, particularly if other risk factors are present, such as the
presence of a central venous catheter or recent exposure to broad-spectrum antibiotics.
Empirical antifungal therapy is warranted in these cases, as early recognition and
treatment are associated with decreased mortality (371). The clinical features in neo-
nates are likewise similar to those seen with bacterial infections. However, neonates
who develop invasive candidiasis are more likely to be thrombocytopenic and to have
hyperglycemia (372–374).

Despite the significant overlap in clinical aspects of candidiasis, some features that
distinguish C. parapsilosis infection from that associated with C. albicans have been
noted. Data from a population-based surveillance study in Spain compared 78 episodes
of C. parapsilosis bloodstream infection with 175 controls with infection caused by C.
albicans. Factors that independently predicted C. parapsilosis infection included being
of a neonatal age, being a transplant recipient, having prior antifungal therapy (mainly
fluconazole), and receiving parenteral nutrition. The mortality rate was lower in patients
with C. parapsilosis than in those with C. albicans infections (375, 376). A lower mortality
rate from C. parapsilosis infection was also noted in a prospective, population-based
study among adults hospitalized in medical and surgical ICUs throughout Spain. The
rate of death within 7 days for C. parapsilosis infection was 7%, versus 56% for C.
albicans (odds ratio, �0.21), in this series (371).

The lower mortality rate seen with C. parapsilosis is consistent with its reduced
virulence relative to C. albicans, as described above and as noted in animal models (339,
377, 378). A recent series of autopsy findings in premature infants with candidemia who
died likewise supports the reduced virulence of this species (379). C. albicans infection
is frequently widely disseminated in postmortem tissues and can also be associated
with inflammatory and tissue-destructive features. In contrast, C. parapsilosis-infected
tissues generally lacked severe inflammation, and the organism was not easily detected
by routine histopathological staining. However, a heavy fungal burden was nonetheless
present in blood, intestines, and lungs when assessed by targeted immunohistochem-
ical assays.

CONCLUDING REMARKS

During recent years, a decrease in the frequency of C. albicans-driven invasive
disease has been observed, while the number of C. parapsilosis infections has risen.
Although invasive candidiasis caused by the two species manifests similarly, there are
considerable differences between the pathobiology of C. albicans and that of C.
parapsilosis. Such divergent behaviors might determine the patient groups at risk as
well as the species’ incidence.

In this review, we summarize factors that could help clinicians and infection biolo-
gists better understand the pathogenesis of C. parapsilosis, which may later set the
groundwork for a different approach for treating such infections. C. parapsilosis is most
common in Latin America and the Mediterranean regions of Europe; however, out-
breaks have occurred in diverse geographical regions. The reason for the species’ region
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preference is yet unknown, although similarly to the cases of other pathogenic species, HLA
polymorphism could be a potential factor that may determine prevalence. At this time,
more is known about the preferred patient groups at risk: the increased prevalence among
children and low-birth-weight neonates is possibly due to horizontal transmission of the
fungus. Both transition from the hands of health care workers and prolonged use of total
parenteral nutrition are suggested to serve as the origins of neonatal infections, while
prolonged use of central venous catheters and other medically implanted devices serve as
high-risk factors for infections among surgically treated patients.

Following the local colonization of abiotic surfaces, C. parapsilosis forms biofilms
effectively, providing protection for planktonic cells that later serve as the source of
infection (Fig. 1A). Following the rapid colonization of biotic surfaces, fungal cells may
invade an impaired barrier that is promoted by morphology transition along with cell
wall rearrangements, secretion of host cell/tissue-degrading enzymes, and the release
of other host immunomodulatory compounds, e.g., fungal prostaglandins (Fig. 1B).
Fungal cell wall rearrangements may further contribute to impairment of recognition
and the host response. Notably, C. parapsilosis cells not only survive phagocytosis but
also may induce exocytosis and actively proliferate within host cells (Fig. 1C).

Despite our increased understanding of C. parapsilosis biology through discoveries
by clinical and basic science research over the past decade, several virulence and
survival mechanisms are yet to be explored. For example, fungal metabolic pathways
are altered during a progressing infection, although how this contributes to virulence
in C. parapsilosis is not yet known. Furthermore, pathogens compete for available
micronutrients and trace elements, but the strategy by which C. parapsilosis acquires
these essential elements during interaction with the host is not known. Such mecha-
nisms are yet to be revealed.

FIG 1 Transmission routes and pathogenesis of C. parapsilosis. (A) Central venous catheter (CVC) colonized by C. parapsilosis cells as
the source of infection. Implantation of the contaminated device results in systemic dissemination. (B) Colonization and invasion of
host epithelial surfaces. Invasion is supported by various virulence factors, including morphology transition and the release of fungal
secretions such as hydrolytic enzymes. (C) Following phagocytosis, fungal cells not only survive but also may induce exocytosis or
replicate within host cells. (Microscopic image series were taken by Csaba Papp.)
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