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In terrestrial systems, the green wave hypothesis posits that
migrating animals can enhance foraging opportunities by tracking
phenological variation in high-quality forage across space (i.e., “re-
source waves”). To track resource waves, animals may rely on prox-
imate cues and/or memory of long-term average phenologies.
Although there is growing evidence of resource tracking in terres-
trial migrants, such drivers remain unevaluated in migratory marine
megafauna. Here we present a test of the green wave hypothesis in
a marine system. We compare 10 years of blue whale movement
data with the timing of the spring phytoplankton bloom resulting
in increased prey availability in the California Current Ecosystem,
allowing us to investigate resource tracking both contemporane-
ously (response to proximate cues) and based on climatological
conditions (memory) during migrations. Blue whales closely tracked
the long-term average phenology of the spring bloom, but did not
track contemporaneous green-up. In addition, blue whale foraging
locations were characterized by low long-term habitat variability
and high long-term productivity compared with contemporaneous
measurements. Results indicate that memory of long-term average
conditions may have a previously underappreciated role in driving
migratory movements of long-lived species in marine systems, and
suggest that these animals may struggle to respond to rapid devi-
ations from historical mean environmental conditions. Results fur-
ther highlight that an ecological theory of migration is conserved
across marine and terrestrial systems. Understanding the drivers of
animal migration is critical for assessing how environmental
changes will affect highly mobile fauna at a global scale.
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Spatiotemporal variation in resources is understood to be a
major driver of migration across terrestrial and marine taxa

(1), but which mechanisms underlie the when and where of mi-
gratory movements remains a key question in ecology. There is
growing recognition, however, that the distribution of resources
across space and time can influence the timing and pace of mi-
gration (2, 3). Both during migration and within seasonal ranges,
mobile consumers that move to exploit heterogeneity in re-
sources across space and time benefit from enhanced resource
gain (4–6). Resource tracking should be favored in environments
with resource waves, or ephemeral pulses of resources that
propagate across spatiotemporal gradients (7). There are nu-
merous examples of both primary and secondary consumers
exploiting resource waves (7), from migratory geese tracking a
narrow phenological window of high-quality forage (8) to grizzly
bears seeking out salmon spawning events across streams (9, 10).
Although resource waves may not be the primary driver of

migration, when a resource wave propagates across space, the
timing and pace of migration may be influenced by the pro-
gression of the resource wave (11). The green wave hypothesis
formalizes this notion, suggesting that migratory herbivores

should match their movements with ephemeral peaks in high-
quality forage that progress across the landscape, a behavior
termed “surfing the green wave” (8). The green wave hypothesis
originated to explain the migratory movements of barnacle geese
(12), and has recently been applied to ungulate migration (13).
Animal movements may respond to resource waves that are con-
temporaneous, as conceptualized by the green wave hypothesis, or
to resource waves that are climatological—namely the progression
of a shifting mosaic of predictably high-quality resource patches
averaged over longer (e.g., decadal) timescales. Although there is a
growing body of work to suggest that many terrestrial migrants
track resource waves (11, 14, 15) and derive an energetic benefit as
a result (4, 6), it remains unclear if and how resource tracking
interacts with spatial memory to shape migration patterns.
Recently, the role of memory in shaping animal movements, and

particularly migration patterns, has gained increased attention as a
mechanism for enhancing fitness beyond tracking proximate re-
sources (16, 17). Memory allows migrants to make movement
decisions using information beyond their immediate perceptual
ranges (16), and allows forecasting of future conditions based on
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long-term averages of past conditions (17). Indeed, migratory birds
and ungulates have been shown to track climatological resource
waves, having developed expectations of resource availability via
long-term memory (17, 18). Spatial memory can also improve ef-
ficiency of movement, for example by facilitating navigation to
high-quality forage patches (19–21), landscape features (19), or
stopover sites (22). As a result of these potential benefits, memory
is expected to play an important role in environments that exhibit
predictable temporal dynamics of resources (23).
Pinpointing the mechanisms underlying migration is important

given ongoing global reductions in animal migration due to human
activities (24), especially for emblematic and endangered species
(25). While the drivers of terrestrial migration patterns have been
relatively well explored (2, 4, 26–29), those in marine systems are
less well understood (30, 31). Investigations into marine mega-
fauna migrations are difficult because despite recent technological
advances, large-scale tracking efforts are still extremely costly, and
data on resource distributions in highly dynamic ocean habitats
are difficult to attain (32). Thus, while there has been suggestion
that marine predators track seasonal cycles of primary production
and water temperature (33), no empirical investigation of resource
tracking among long-distance marine migrants exists. Rather,
most studies link the phenology of marine migrants with the
phenology of resources in a single foraging location (34–36). As
such, the role of memory in the movement patterns of marine
megafauna and the drivers of long-distance movements are both
considered key knowledge gaps (30). We address these questions
using a 10-y dataset on ocean productivity and migratory move-
ments of blue whales (Balaenoptera musculus).
The largest animal to ever exist, blue whales are listed as en-

dangered under both the US Endangered Species Act and the
International Union for Conservation of Nature Red List (37).
In the eastern North Pacific, blue whales perform seasonal lat-
itudinal migrations between winter/breeding grounds in the Gulf
of California or the Costa Rica Dome and productive foraging
grounds at higher latitudes in the California Current and Gulf of
Alaska (38–41) (SI Appendix, Fig. S1). In the spring, blue whales
depart the breeding grounds and travel north, spending the
summer months feeding progressively northward along the
North American west coast from Baja California to as far north
as British Columbia (38). In the California Current, seasonal
upwelling in the spring and summer drives a phytoplankton
bloom (here, “green-up”) that occurs progressively later at more
northern latitudes (42, 43). Though the onset and duration of the

upwelling season are characterized by significant interannual
variability (42, 43), the northward migration of blue whales oc-
curs during the same season as the bloom (39, 44). Blue whales
are specialist feeders on krill (45–47), but because krill avail-
ability is difficult to estimate, previous studies on blue whale
foraging ecology have used time-lagged chlorophyll-a concentra-
tion as a proxy (35, 48–52). Blue whales demonstrate temporal
synchrony with their prey (34, 36), and simulations have shown
that temporal heterogeneity in ocean productivity leads to the
emergence of their observed migratory behavior (53). However,
despite blue whales garnering significant conservation and re-
search attention, the relative roles of proximate cues and memory
in shaping their migratory behavior are unknown. Elucidating
these drivers is key to understanding blue whales’ behavioral
plasticity to changing environmental conditions.
We investigated the role of resource tracking, based on both

contemporaneous and climatological resource waves, in shaping
the phenology of blue whales’ northward migrations in the Cal-
ifornia Current. We consider here contemporaneous resource
tracking to indicate a response to proximate cues, and tracking of
long-term average conditions to indicate a memory-based mech-
anism (17). Using daily telemetry data for 60 blue whales tagged
between 1999 and 2008, we compared the phenology of migratory
movements with the phenology of peak resource availability, as
measured by time-lagged chlorophyll-a (34, 35, 49, 54) (Fig. 1A).
We calculated the mean climatology of chlorophyll-a over a de-
cade to reflect long-term average conditions. We also compared
blue whale locations with the presence of 15 to 17 °C sea surface
temperatures (SSTs; Fig. 1B), which are hypothesized to influence
blue whale presence directly via thermal preferences of the whales
themselves (48–50) or indirectly via thermal associations of krill
(55). We considered in this study two sets of hypotheses and
predictions: (i) If contemporaneous resource tracking dominates
migration timing, blue whales should adjust the timing of their
movements in response to the proximate availability of resources;
and (ii) if memory dominates migration timing, migration phe-
nology should track the climatological green-up (i.e., in interann-
ually predictable resource hotspots). We tested these hypotheses
using a three-pronged approach to (i) evaluate the influence of
environmental resources on blue whale migration phenology using
telemetry-derived movement data, (ii) compare empirical results
with those of simulated random migration tracks (Fig. 1C), and
(iii) evaluate the abundance and long-term predictability in re-
source availability at blue whale foraging locations.
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Fig. 1. (A and B) Average timing of (A) peak chlorophyll-a concentration and (B) 15 to 17 °C sea surface temperature along the western coast of North
America between 1998 and 2010. (C) Observed blue whale tracks (blue points) and simulated random migrants (red points) used in the analysis.
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Results
Regression between dates of whale use and contemporaneous
dates of peak chlorophyll-a concentration, with individuals nes-
ted as a random effect, showed no significant relationship when
tracks were pooled across all years (linear regression P = 0.23).
The only year with significant contemporaneous chlorophyll-a
tracking was 2004 (P < 0.001) (Fig. 2A). There was a weak but
significant correlation between whale use and the contempora-
neous timing of 15 to 17 °C SSTs (P < 0.001), but this effect was
also present in simulated random tracks (P < 0.01; Fig. 2B).
In contrast, blue whale migratory movements were significantly

correlated with the climatological (10-y average) timing of peak
chlorophyll-a (linear regression P < 0.001; Fig. 3C). Based on
linear regression slopes, the climatological timing of peak
chlorophyll-a bloom matched the movements of blue whales more
than threefold better than those of simulated random migrants.
Blue whales’ migration phenology was also significantly correlated
with the climatological timing of 15 to 17 °C SSTs (P < 0.001), but
the same was true for random migrants, suggesting this relation-
ship is correlative but not causative (Fig. 3D).
Analysis of 2,373 foraging locations identified by a state-space

model (Movement Data) revealed that these areas were char-
acterized by significantly higher long-term average chlorophyll-
a concentrations compared with that of contemporaneous
chlorophyll-a concentrations experienced by the whales, and both
of these distributions were significantly greater than climatological
background distributions available in the environment (10-y average
x ̅ = 0.24 ± 0.67 mg/m3; contemporaneous x ̅ = 0.08 ± 0.87 mg/m3;
background x ̅ = −0.64 ± 0.65 mg/m3; 10-y-contemporaneous,
background-contemporaneous, and background-10-y Bhattacharyya
similarity coefficients = 0.68, 0.26, and 0.11, respectively; Kolmogorov–
Smirnov test and Welch’s t test P < 0.001 for all; Fig. 4A). All
chlorophyll-a concentration values reported are on a log scale. In
addition, foraging locations had significantly lower interannual
variability in productivity compared with background distributions
(10-y temporal SD x ̅= 0.44 ± 0.13 mg/m3; background temporal SD
x ̅ = 0.55 ± 0.17 mg/m3; Bhattacharyya similarity coefficient = 0.30;
Kolmogorov–Smirnov test and Welch’s t test P < 0.001; Fig. 4B).

Discussion
Understanding the mechanisms driving the movement behaviors
of animals can inform our expectations of how animals will re-
spond to changing resource phenology and distributions as pre-
dicted under climate change. Across both marine and terrestrial
systems, animals should benefit from increased resource gain by
matching their movements in space and time to the availability of
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resources (4, 7). Thus, the movement of an animal should be
fined-tuned to its resource landscape, and different resource
landscapes should favor different movement mechanisms, such
as random search, memory, and taxis (i.e., gradient tracking)
(23). Animals likely use a mixture of different movement
mechanisms to interact with their environment. Here, we dem-
onstrate that resource tracking in highly dynamic environments
can be enhanced by long-term memory of highly productive and
relatively stable foraging sites. Memory is hypothesized to be fa-
vored in organisms that are long-lived, which can have extended
periods of learning, and in resource landscapes that are hetero-
geneous and predictable (16). Our findings are consistent with
these predictions and, in addition, provide a test of the green wave
hypothesis in a marine system.
Our results demonstrate that blue whales track the long-term

average phenology of the spring/summer phytoplankton bloom
as they forage progressively farther north along the west coast of
North America, signifying that memory plays an important role
in the movement decisions of these long-lived animals. In other
words, we find that blue whales surf climatological resource
waves, using memory to track shifting hotspots of predictable
and high-quality resources. Long-term memory has been shown
to be a strong driver of migration patterns across taxa (17, 22),
and in some cases a stronger driver than proximate cues. For
example, the migration direction of zebra during long-distance
migrations in southern Africa was predicted significantly better
by memory (modeled as tracking of past average conditions)
than by tracking of contemporaneous resource waves (17).
Similarly, several species of long-distance avian migrants have
been shown to track decadal averages of vegetation conditions
(18). In addition, many migratory megafauna display extreme
individual-level fidelity to their interannual migration routes
(56–58). Our study indicates that an interplay between both long-
term memory and resource tracking shapes the long-distance
migrations of marine megafauna.
Tracking of climatological resource waves suggests that blue

whales time their northward migrations to exploit expected re-
source availability in interannually predictable productivity hot-
spots. Even in years with the largest sample sizes of tagged
individuals (e.g., 2005, 2008), we did not detect a significant
signal for tracking of proximate resource waves (Fig. 2). Thus, we
did not find support for the green wave hypothesis for tracking of
contemporaneous resource waves among blue whales. Because
the timing of upwelling-driven productivity in the California
Current Ecosystem has significant interannual variability and
habitat patches are highly dynamic (42, 43), blue whales may
instead maximize their resource gain by targeting predictable
foraging areas, a strategy that should theoretically favor memory
(23). This conclusion is supported by evidence that during mi-
gration, foraging areas selected by blue whales were charac-
terized by low year-to-year variability and high long-term
productivity compared with contemporaneous measurements as

well as with habitats available in their environment (Fig. 4).
Similarly, a recent study found that over an 11-y period, blue
whales consistently arrived in Monterey Bay during periods when
prey availability was more predictable, with low interannual
variance, relative to time periods of higher but more variable
prey density (36). Interestingly, similar responses to the tradeoff
between selecting habitats with consistent versus potentially
higher but more variable resource availability have been ob-
served in migratory ungulates; specifically, saiga antelope (Saiga
tatarica) selected habitats in their spring range that had lower
forage abundance but also more consistent year-to-year pro-
ductivity than other available habitats (59). In coastal marine
systems, persistent productivity hotspots are often geographically
fixed at capes and headlands along the coast, which generate
increased upwelling and primary productivity (60) and form
upwelling shadows favorable for krill aggregations (61, 62). In-
deed, one blue whale for which tag data were available in suc-
cessive years arrived at the same foraging area near Cape
Mendocino within the same week 1 y later, suggesting it timed its
arrival to an expected increase in food availability (39).
Clarifying the mechanistic drivers underlying movements of wide-

ranging species is a multifaceted and challenging endeavor given the
noisiness of environmental gradients inherent to natural systems (11,
63). While we demonstrate that memory of climatological resource
waves may lead whales to historically productive foraging areas, blue
whales likely also fine-tune their movements at finer spatial scales in
response to local, proximate conditions to locate individual prey
patches. At subbasin scales, baleen whales are hypothesized to use a
combination of social and sensory information to locate prey
(64); however, substantial knowledge gaps remain. In addition,
exogenous cues or endogenous factors, such as body condition,
may play a role in other aspects of migratory behavior, such as
whether and when migration is first initiated.
Testing the roles of memory and resource tracking in driving

the timing and pace of migration is necessary for assessing how
migratory species will respond to a world with changing resource
distributions and phenology. As a K-selected, highly migratory
species, blue whales are under threat from human activity and
are a species of conservation concern (65–67). Climate change is
likely to affect blue whales in the eastern North Pacific in ways
that are not fully understood. Reliance on expectations developed
by past average conditions may be detrimental as novel ecosystem
states emerge. Climate variability underlies changes in prey
abundance and distribution (68), as well as regime shifts to eco-
logically similar prey (69). Certain top predators, such as the
sympatrically foraging humpback whale (Megaptera novaeangliae),
can prey switch from krill to forage fish to buffer against ecosystem
variability (70), but blue whales are specialists that must find dense
patches of krill to achieve sufficient foraging efficiency (45–47).
Warming oceans may affect the vertical distribution of krill by
deepening the thermocline and increasing stratification of the water
column (71), and krill populations may shift poleward or even de-
cline over time in response to warming temperatures and predicted
changes in coastal upwelling systems (72–75). Further, blue whale
habitat is predicted to decrease significantly with current climate
change projections (76). Whatever patterns and processes arise over
the next century, it is likely that behavioral plasticity will be required
for blue whales to continue to thrive in this ecosystem.
To further elucidate the drivers of animal migration, it is im-

portant to assess the interplay between resource tracking and
memory across a wide range of species, in a diverse range of re-
source landscapes. The drivers of resource phenology vary across
systems (e.g., marine versus terrestrial) and differ depending
on the target resource. For example, in terrestrial systems, the
emergence of highly nutritious plant growth can be influenced by
static features, such as elevation (5), and less predictable weather
events, such as rainfall (2). Likewise, the resource landscape of
marine consumers is influenced by a suite of factors that shape
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primary production (e.g., winds, ocean currents, and mixing and
stratification of the water column) (77) and prey distribution (e.g.,
intrinsic factors such as growth rates or physical features such as
fronts and eddies that aggregate prey) (78). Despite these differ-
ences across systems, our study suggests that ecological theory of
migration, and in particular the importance of resource tracking, is
conserved across marine and terrestrial systems.

Methods
Movement Data. We used daily telemetry data regularized with a Bayesian
state-space model from previously published studies of blue whales in which
104Argos-linked satellite tags were deployed between 1994 and 2008 (38, 39,
48). These data are published in the Movebank Data Repository (79). We
examined tracks with at least 14-d duration, totaling 10,495 locations for 60
individuals (mean tag duration 134 ± 90 d; tag years 1999 to 2002, 2004 to
2005, and 2007 to 2008; SI Appendix, Fig. S2). We focused analyses on spring/
summer northward movements from the southern tip of Baja California to
British Columbia, coinciding with the northward progression of the spring/
summer phytoplankton bloom (42, 43). We used changes in net squared
displacement from the first location of each track to delineate the start and
end of each northward migration annually (11, 80).

Following Thorup et al. (18) and Aikens et al. (11), we compared observed
migration tracks with simulated random migration tracks to test a null hy-
pothesis in which any observed relationships could simply be by-products of
latitudinal migratory behavior decoupled from the environment. For each
empirical whale track, 40 random migration tracks were simulated from
correlated random walks based on empirical step length and turn angle dis-
tributions (Fig. 1C; see ref. 48 for details). A flag value was assigned to each
simulated track indicating its similarity to the empirical track based on dis-
tance and net angular displacement from the true track (48, 81). To ensure
random tracks simulated a realistic latitudinal migration, only random tracks
in the upper 90th percentile of flag values were used for comparison.

Putative foraging locations were identified as area-restricted search (ARS)
locations from the state-space model (38). The state-space model estimated
one location per day and produced a continuous “behavioral mode” value
from 1 to 2 for each location, with 1 representing idealized transiting behavior
and 2 representing idealized ARS behavior (38, 82). Following previous studies
(38, 82), we conservatively used values >1.75 to classify ARS behavior. ARS
locations were time-matched based on date to contemporaneous and 10-y
mean chlorophyll-a concentrations to examine the distribution of environ-
mental conditions in putative foraging areas. In addition, the 10-y SD of
chlorophyll-a concentration, representing the interannual variability, was
extracted for each ARS location. Finally, we sampled the long-term mean and
SD chlorophyll values at 10,000 randomly generated locations over the same
time period within the study area to compare the distribution of variables at
foraging locations with those available in the environment.

Tagging was approved by the Oregon State University Institutional Animal
Care and Use Committee (permit nos. 2284, 2715, and 3158; to B.R.M.) and
conducted under NationalMarine Fisheries Service research permits (nos. 841,
369-1440, and 369-1757; to B.R.M.). Tagging in Mexican waters was con-
ducted under permits issued by the Secretarìa de Medio Ambiente y Recursos
Naturales (nos. DOO 028319 and SGPA/DGVS 0576).

Environmental Data. Because higher trophic levels are difficult to quantify
over large spatial extents and timescales, satellite-based estimates of primary
production have been used to examine spatiotemporal variability in food
availability (83), including for secondary consumers (18, 54). We used
chlorophyll-a concentration quantifying phytoplankton biomass (GlobColor
merged product; 25-km spatial resolution; daily temporal resolution) to

proxy food availability, as chlorophyll concentration is commonly related to
zooplankton abundance and predator foraging behavior in marine systems
(54, 84, 85), and in particular is a significant predictor of blue whale presence
and foraging behavior (34, 44, 48–50, 52). Because secondary production
lags primary production, and blue whale presence has been shown to lag
chlorophyll peaks by 0 to 3 mo (34, 35, 49), we tested the relationship be-
tween blue whale presence and peak chlorophyll at lag times of 2 wk and 1,
2, and 3 mo, in addition to testing peaks in contemporaneous chlorophyll-a.
We found that a 1-mo lag relative to peak chlorophyll-a best predicted blue
whale use over the study area, as measured by linear regression slope
(Statistical Analyses). To reflect long-term average conditions, we calculated
the mean climatology (i.e., long-term average for each Julian day) from 1998
to 2010. The period of 1998 to 2010 was chosen because it encompasses the
study period, and because chlorophyll data at the requisite extent and res-
olution are not available before September 1997.

Sea surface temperature data were obtained from AVHRR Pathfinder
version 5.3 L3-Collated (25-km spatial resolution; daily temporal resolution).
The majority of blue whale tracks stayed within a “goldilocks zone” of 15 to
17 °C throughout the annual migration cycle (Fig. 2B and SI Appendix, Fig.
S3). The average SST experienced by blue whales during the northward
migrations was 16.33 ± 2.00 °C, which is only slightly higher than the mean
temperature they experience over the full year (15.69 ± 2.40 °C), consistent
with other observations of the species (50, 86). We therefore examined blue
whale use in relation to the median date that a location’s SST was within this
goldilocks zone.

Because the seasonal green-up in the California Current is a nearshore
phenomenon driven by interactions between alongshore winds, coastal to-
pography, and subsurface nutrient conditions (42), we examined environ-
mental layers within 200 km of the coast, where the majority of blue whale
locations occurred (Fig. 1). Testing a narrower band (within 50 km of the
coast) had negligible impacts on results.

Statistical Analyses. Studies of resource tracking typically compare the date an
animal uses a given location with the date of optimal resource availability at
the same location (9–11, 18, 87). We used linear mixed-effects regression to
evaluate the relationships between the date of blue whale use and the date
of peak productivity (lagged by 1 mo), while controlling for SST, for (i)
each year (to reflect current conditions), and (ii) the mean climatology. In-
dividuals were nested as a random effect. We repeated analyses using tracks
from the simulated random migrants. We tested for similarity between the
distributions of contemporaneous, long-term mean, and long-term SD
chlorophyll values at foraging locations and those available in the envi-
ronment using the Bhattacharyya similarity coefficient, which ranges from
0 (no overlap in distributions) to 1 (perfect overlap), and tested for significance
using Kolmogorov–Smirnov tests and Welch t tests. All spatial and statistical
analyses were conducted in R 3.4.1 (88).
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