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A spin-1/2 lattice Heisenberg Kagome antiferromagnet (KAFM)
is a prototypical frustrated quantum magnet, which exhibits
exotic quantum spin liquids that evade long-range magnetic
order due to the interplay between quantum fluctuation and
geometric frustration. So far, the main focus has remained on
the ground-state properties; however, the theoretical consen-
sus regarding the magnetic excitations is limited. Here, we
study the dynamic spin structure factor (DSSF) of the KAFM by
means of the density matrix renormalization group. By com-
parison with the well-defined magnetically ordered state and
the chiral spin liquid sitting nearby in the phase diagram, the
KAFM with nearest neighbor interactions shows distinct dynam-
ical responses. The DSSF displays important spectral intensity
predominantly in the low-frequency region around the Q = M
point in momentum space and shows a broad spectral distri-
bution in the high-frequency region for momenta along the
boundary of the extended Brillouin zone. The excitation con-
tinuum identified from momentum- and energy-resolved DSSF
signals emergent spinons carrying fractional quantum numbers.
These results capture the main observations in the inelastic neu-
tron scattering measurements of herbertsmithite and indicate the
spin liquid nature of the ground state. By tracking the DSSF
across quantum-phase transition between the chiral spin liquid
and the magnetically ordered phase, we identify the conden-
sation of two-spinon bound state driving the quantum-phase
transition.
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Quantum spin liquid (QSL) is a novel quantum phase, which
behaves differently from conventional magnetic states (1–

3). It does not show any magnetic order or lattice symmetry
breaking even on approaching the zero-temperature limit. The-
oretical studies have shown the intrinsic nature of a QSL,
including massive entanglement and fractionalized excitations
(4–7), although these quantities are challenging to measure
directly in experiments. Experimentally, QSL candidates have
been identified in frustrated magnetic materials, such as Kagome
and triangular lattice compounds (8–15). Among them, the
Kagome antiferromagnet (KAFM) herbertsmithite (8–11) is
one of the most promising spin liquid candidates. A possi-
ble magnetic order of this material has been excluded down
to temperatures a few orders of magnitude below the cou-
pling energy scale (9, 10). Furthermore, the inelastic neutron
scattering (INS) measurement characterizes the dynamic spin
structure factor (DSSF) as a broad continuum spectrum in fre-
quency domain (10), which is distinct from the spectrum of
conventional magnon excitations. So far, it remains an open
issue as to what information regarding the topological order
and the fractionalization of spin excitations can be extracted
from such measurements. Moreover, additional factors in real
materials, such as disorder, may also lead to a similar contin-

uum of the DSSF (16), making theoretical understanding of
the INS essential for distinguishing different physics. Further-
more, whether such a spin liquid candidate has a finite spin gap
remains unresolved in experimental probes, including INS (10)
and NMR (11). To clarify these questions, theoretical studies
on dynamic responses related to experimental probes are highly
desired.

Theoretically, the ground state of the spin-1/2 KAFM with
nearest neighbor Heisenberg interactions, which captures the
dominant interactions for herbertsmithite, has been investi-
gated intensively (17–35). Although a QSL ground state has
been established in the KAFM, its full nature, including frac-
tionalized quasiparticles and the existence of a spin gap, is
still under debate. While earlier density matrix renormalization
group (DMRG) simulations suggested a gapped spin liquid
(25–28), parton construction and variational Monte Carlo stud-
ies found a gapless U (1) Dirac spin liquid as the energy-
optimized ground state (20–23). Such a gapless spin liquid
scenario is also indirectly supported by recent DMRG and ten-
sor network results (34, 35). However, more direct evidence
from low-energy excitations is still absent. The open question
regarding the nature of this QSL phase demands new theo-
retical approaches to explore excited-state properties, such as
the DSSF. To date, other than the studies based on a mean
field analysis or approximate methods (36–40), the unbiased
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evidence from microscopic calculations is rare or limited to small
systems (41).

In this paper, we aim to understand the DSSF for the
KAFM and extended models with either small farther neigh-
bor Heisenberg interactions or Dzyaloshinskii–Moriya (DM)
interaction, and both are relevant to the experimental mate-
rial. With these perturbative couplings, we identify characteristic
features of the DSSF for different quantum phases, includ-
ing a q=(0, 0) magnetically ordered phase, a gapped chiral
spin liquid (CSL), and a QSL connecting to the phase of the
KAFM with nearest neighbor interactions [we denote it as
Kagome spin liquid (KSL)]. In the q=(0, 0) phase, the key
signature of long-range magnetic order is a single-magnon exci-
tation mode with the largest intensity at the corresponding
magnetic wave vector. In the CSL phase, the energy scans of
the DSSF show a peak in intensity at finite frequency, which
illustrates the emergent gapped spinon pair excitations. In the
KSL, the momentum-resolved DSSF concentrates along the
boundary of the extended Brillouin zone (BZ) and shows a broad
maximum at the M point. In the energy scans for the KSL,
the intensity of the DSSF forms a continuum, which extends
over a wide frequency range, concomitant with a pronounced
intensity in the low-energy region. These findings are consis-
tent with the INS results on herbertsmithite (10). The evidence
from the DSSF, including the excitation continuum in energy
scans and the sensitivity of the excitation gap by imposing dif-
ferent boundary conditions (BCs) and by tuning the DM inter-
action, is in support of a QSL with gapless fractionalized spin
excitations.

Results
Model. We study the spin-1/2 KAFM with farther neighbor an-
tiferromagnetic interactions

H = J1
∑
〈i,j〉

Si ·Sj + J2
∑
〈〈i,j〉〉

Si ·Sj + J3
∑
〈〈〈i,j〉〉〉

Si ·Sj , [1]

where J1, J2, J3 are the first-, second-, and third-neighbor cou-
plings [J3 is the coupling inside the hexagon (Fig. 1A, Inset),
and we take J1 =1 as the energy scale]. The previously obtained
ground-state phase diagram is shown in Fig. 1A (42). Dif-
ferent phases surround the KSL, including a q=(0, 0) mag-
netically ordered phase, a gapped CSL phase, and a valence
bond crystal (VBC) phase. Motivated by the experimental
observation (43, 44), we also consider a DM interaction Dij ·
(Si ×Sj ) (45, 46) in addition to the KAFM. The phase dia-
gram is shown in Fig. 5A, and the related discussion will be
shown below.

Static Spin Structure Factor. We first present the static spin struc-
ture factor that is defined as (SI Appendix, section II)

S(Q)= 〈S(−Q) ·S(Q)〉= 1

N

∑
i,j

e iQ·(ri−rj )〈Si ·Sj 〉, [2]

where the wave vector Q=(q1, q2)= q1~b1 + q2~b2 in the BZ is
defined by the reciprocal vectors ~b1,2 (Fig. 2D). In Fig. 1B, S(Q)
shows sharp peaks at the M points, revealing a q=(0, 0) mag-
netic order (47). In the nonmagnetic phases, S(Q) is featureless
as shown in Fig. 1 C and D. In the KSL phase, S(Q) concentrates
along the boundary of the extended BZ and shows a broad max-
imum near the M point, which agrees with the features of the
INS data of herbertsmithite (10).

DSSF. The DSSF is defined as

Sαβ(Q,ω)=− 1

π
Im〈Sα(−Q)

1

ω− (H −E0)+ iη
Sβ(Q)〉, [3]

where E0 is the ground-state energy, η is a small smearing
energy (SI Appendix, section I), and α,β denote spin com-
ponents. We first discuss the salient features of the DSSF in
different phases as shown in Fig. 2. For the q=(0, 0) phase
(Fig. 2 A and D), we observe a sharp elastic peak at the M
point resulting from the contribution of static correlations of
Néel order. Obscured by the finite-size effect, a small excitation
gap is observed in the DSSF (as the second peak at nonzero ω
at Q=M in Fig. 2D). Despite this, magnetic excitations form
a single mode-like peak structure at each momentum, which
is related to the magnon excitations. The magnetic excitation
peak at M point shows a tail with reduced weight in the higher-
energy region, which we speculate is related to magnon–magnon
interactions. For all other momenta, the spectral intensity is
significantly reduced, consistent with the expectation that the
largest weight should be at the magnetic ordering wave vector for
Néel order.

For the CSL, the DSSF along high-symmetry lines is presented
in Fig. 2 B and E. Importantly, the DSSF shows a fully gapped
excitation branch. The extracted spin gap ∼ 0.4J1 is consistent
with a direct measurement of the gap in static simulations. For
momentum points along the boundary of the extended BZ, the
DSSF has a broad distribution with suppressed intensity. Since
theoretically, the CSL is well described as the Laughlin state
with spinons satisfying semionic statistics (48), the peak at the
M point is composed of spinon pair excitations (SI Appendix,
section III).

Next, we turn to the KSL shown in Fig. 2 C and F. The dom-
inant intensity of the DSSF is carried by the momenta near
the M point, and the spectrum at each momentum (along the
boundary of the extended BZ) shows a broad distribution that
spans a wide energy regime. For example, S(Q=M ,ω) shows
a dominant intensity at low energies and a long tail up to ω≈
1.2 (in units of J1); the overall feature is quite different from
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Fig. 1. Static spin structure factor of different quantum phases on the KAFM. (A) Quantum-phase diagram of the Kagome model in the J2− J3 plane
obtained in ref. 42. (B–D) Static spin structure factor in momentum space for (B) the q = (0, 0) phase at J2 = 0.25, J3 = 0.0; (C) the CSL at J2 = 0.25, J3 = 0.25;
and (D) the KSL at J2 = J3 = 0. The extended BZ is marked by the white dashed line.
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Fig. 2. DSSF of different quantum phases on the KAFM. (A–C) Contour plots of the DSSF as a function of energy and momentum for (A) q = (0, 0) phase
at J2 = 0.25, J3 = 0.0; (B) CSL at J2 = 0.5, J3 = 0.5; and (C) KSL at J2 = J3 = 0. The white (black) dashed line in C shows the constant-energy values at the
low-frequency (high-frequency) region, which are compared with the INS observations in herbertsmithite (Fig. 4 has details). (D–F) The energy scans of the
DSSF with the momentum along the path Γ→M1→K1→M2 in the extended BZ. The intensity scales differ among the different panels. D, Inset shows
the extended BZ with denoted high-symmetry momentum points and reciprocal vectors (~b1,2).

the spectrum of the q=(0, 0) phase, where the overwhelm-
ing part of the spectral weight is carried by a single excita-
tion mode. Compared with the CSL phase, here the spectral
weight moves down in energy, consistent with a reduction of the
spin excitation gap. Interestingly, S(Q=M ,ω) shows a domi-
nant narrow peak structure, which supports deconfined stable
(long-lifetime) spinon excitations. The appearance of an exci-
tation continuum in the high-frequency region is similar to the
case of the one-dimensional Heisenberg model, where a critical
spin liquid phase has been identified as the ground state with
gapless spinon excitations (49). We remark that the DSSF results
of the KSL phase capture the main features of the INS results
on herbertsmithite, including the low-energy spectral peak at
the M point and the nearly flat spin excitations between the M
and K points at higher energy, which will be discussed below
in detail.

Condensation of Two-Spinon Bound State and Quantum-Phase Tran-
sition. It is also interesting to study the quantum-phase tran-
sition from the perspective of the DSSF, which reveals the
dynamic driving mechanism of the transition. Here, we study the
transition from the CSL to the q=(0, 0) phase (SI Appendix,
section III). As shown in Fig. 3 A–C, from the evolution of
the DSSF at the M point by tuning J3, we observe the fol-
lowing key features. Starting inside the CSL phase (J3> 0.15)
and approaching the transition point, the predominant peak
moves toward lower frequency, and the peak intensity gradually
increases. Around the phase boundary (J3∼ 0.15), the lowest
excitation peak experiences a discontinue jump together with
the appearance of an elastic peak (Fig. 3D). In this context, a
natural interpretation of the peak structure in the CSL phase
is a two-spinon resonance state, while the magnetic excitation
in the Néel phase corresponds to a two-spinon bound state,
which is equivalent to the magnon state. The above observa-
tions indicate that the quantum-phase transition between the
CSL and the Néel phase can be understood as being driven by
the condensation of the spinon pairs to form spin-1 magnon

excitations. That the lowest peaks in DSSF of the CSL and
the Néel phase occur at the same momentum point Q=M
makes the above picture possible. Here, the evolution of the
DSSF across the critical point not only elucidates the nature
of the low-energy peak structure in the DSSF but also, pro-
vides a microscopic understanding for the continuous-phase
transition between a spin liquid and a magnetically ordered
phase that is less understood in a previous study using static
probes (42).

Connection with Experiment. In Fig. 4, we show the plots of the
constant-energy scan of the DSSF and compare our results qual-
itatively with the experimental data (figure 1 in ref. 10). The
main observation from the INS experiment is that (10), in the

A B C D

Fig. 3. Evolution of the DSSF across the phase boundary. (A–C) We show
the evolution of S(Q = M,ω) by varying J3 and setting J2 = 0.2. (D) The
positions of excitation peaks (red circles) at different J3 around the phase
boundary. Black crosses (squares) show the long-distance spin correlations√
|〈S0Sd〉| [chiral correlation

√
|〈χ0χd〉|; d = Lx/2 is the longest available

distance, χ= Si · (Sj × Sk), and i, j, k belong to the same triangle]. Red circles
are peak positions of the two-spinon state (solid circles mark elastic peak in
Néel phase).
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Fig. 4. Comparison between experimental measurements and numerical
results for the DSSF. Rescaled experimental data at fixed frequency are
shown for (A) ω= 0.75 meV and (B) ω= 6 meV [data from ref. 10]. The-
oretical results for the DSSF of KAFM with nearest neighbor couplings (J2 =

J3 = 0) at fixed frequency are plotted for (C) ω= 0.2J1 and (D) ω= 0.6J1

(related to the dashed line cut in Fig. 2C). The extended BZ is indicated by
the white dashed lines.

low-frequency region, the measured DSSF shows a peak struc-
ture around the M points; while at higher frequencies, the peak
structure is smeared out, and the DSSF is almost evenly dis-
tributed along the boundary of the extended BZ. In Fig. 4 A
and B, we replot two constant-energy plots of the DSSF from
the experimental measurements at low and high frequencies,
respectively. Accordingly, we show two calculated DSSF plots at
two constant energies in Fig. 4 C and D. Our numerical DSSF
develops peak structures around the M points at low frequen-
cies and a flat distribution along the boundary of the extended
BZ at high frequencies, respectively. Through this comparison,
we conclude that the calculated DSSF can capture the main INS
experimental observations in both the low-frequency regime and
the high-frequency regime.

While the KAFM is generally believed to be a good start-
ing point to understand the spin liquid-like behaviors of
herbertsmithite, due to the absence of inversion symmetry, the
spin–orbit coupling between two adjacent Cu2+ ions in herbert-
smithite yields a DM interaction Dij · (Si ×Sj ) (45, 46). Electron
spin resonance (43) and magnetic susceptibility measurements
(44) suggest an out-of-plane DM interaction Dz

ij ≈ 0.04∼ 0.08
(in units of J1). To make a closer comparison between exper-
iments and numerical simulations, we study the DSSF of the
KAFM with an out-of-plane DM interaction Dz for nearest
neighbor spins.

We show the phase diagram of the extended KAFM as a func-
tion of Dz and J2 in Fig. 5A (we set J3 =0), which includes
the KSL and the q=(0, 0) phase. We obtain the phase diagram
by studying the magnetic order parameter and spin excitation
gap (SI Appendix, section IV). In the absence of J2, we find
a transition at Dz

c ≈ 0.08, slightly smaller than previous results
(36, 50, 51) but larger than the estimation in ref. 52. With
increasing Dz , the spin excitation gap (defined by the energy
difference between lowest-energy state with S z

tot =1 and that
with S z

tot =0) decreases monotonically as shown in Fig. 5B. For
Dz < 0.08, the spin excitation gap depends on the BCs. Since
the DM interaction breaks spin rotational symmetry, we calcu-
late the DSSF in both the longitudinal and transverse modes
as shown in Fig. 5 C and D under different BCs. It is found
that the intensity distribution of the DSSF remains similar to
the results of the KAFM (SI Appendix, section IV), showing a
broad distribution with a long tail to higher energies. Impor-
tantly, the low-energy excitations are governed by the trans-
verse mode, which also shows substantial difference by tuning
the BC. The dominant spectral peak in the antiperiodic BC
shifts toward the low-frequency regime, showing the signal of
gapless spin excitations. These results indicate the KSL as a
critical phase.

Summary and Discussion
We have investigated the DSSF of the spin-1/2 Heisenberg
model on a Kagome lattice with either farther neighbor or addi-
tional DM interactions using DMRG. The DSSF of the KSL
shows different features from those in the gapped CSL or in
the q=(0, 0) magnetic phase. For the KSL, the weight of the
DSSF mainly concentrates along the boundary of the extended
BZ, with a broad maximum near the Q=M point. In the energy
scans, the dominant intensity shifts to the low-energy region,
and a wide spectral distribution spans the high-energy region,
showing a continuum expected for a spin liquid state. In par-
ticular, the calculated DSSF fairly reproduces the key features
of the INS measurements of herbertsmithite. We also unveil
the properties of the DSSF around the quantum critical point
between the spin liquid and the magnetically ordered phase,
which could be used to characterize topological quantum-phase
transitions.

In closing, we would like to make some remarks about the
nature of the KSL. The DSSF and spin gap for the KSL are
sensitive to the BCs, pointing to the gapless nature of the KSL.
In this respect, one plausible scenario is that the KSL is a U (1)
Dirac QSL (19–21, 23, 34, 53). The comparison of the low-energy
behaviors of the DSSF in the CSL and KSL phases (SI Appendix,
section I.D) also supports that the KSL is not consistent with a
gapped spin liquid, although the finite-size calculations are not
optimal to distinguish a gapless ground state. However, the Dirac
QSL can be considered as the “parent state” for the CSL. That
is, the CSL arises if a finite topological mass term (induced by
flux piercing the hexagons and triangles) is spontaneously gener-
ated in the Dirac QSL by the correlation effect. Therefore, when
the energy scale exceeds the gap value of the CSL, higher-energy
excitations of the CSL and the Dirac QSL will likely be similar

A B

C D

Fig. 5. DSSF of the KSL when including the DM interactions. (A) Phase dia-
gram of the KAFM when including second nearest neighbor coupling J2 and
out-of-plane DM interaction Dz. The black square represents the KAFM with
nearest neighbor couplings. The red star line shows the possible parame-
ter regime for herbertsmithite (43, 44). (B) Spin gap for various Dz under
periodic (blue squares) and antiperiodic (purple circles) BC. The DSSF of the
KSL phase at J2 = 0, Dz = 0.06 under (C) periodic BC and (D) antiperiodic BC
for the longitudinal mode (purple dashed line) and the transverse mode
(blue line).
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in terms of spectral weight distribution of the DSSF. In this con-
text, the similarity of the dynamic spectra (above the gap scale)
of the CSL and the KSL in our calculations (Fig. 2) is another
indication of the nature of the KSL as a U (1) Dirac QSL.

Methods
In this study, we develop a DMRG program to calculate dynamic structure
factor, which can apply to general strongly correlated systems. We consider
cylinder geometry with closed boundary in the y direction and open bound-
ary in the x direction, with Lx (Ly ) as the numbers of unit cells along the x (y)
direction. Most of calculations are performed on the Ly = 4 cylinder. [For the
q = (0, 0) phase, we also obtain results for Ly = 6.] The length of the cylin-
der is set to be Lx = 24. Generally, we first obtain the ground state on the
cylinder using finite DMRG (54). We ensure that the discard error of ground
state is of the order or smaller than 10−6 by keeping up to 3,200 states. The

static spin structure factor (Eq. 2) is calculated using static correlations in the
middle Ly × Ly unit cells. After obtaining the ground state, we calculate the
dynamical properties in the middle Ly × Ly unit cells by finite sweeping (55,
56). The advantage of this method is avoidance of edge excitations, which
is similar to the setup to calculate the spin excitation gap as proposed in ref.
57. More details of this numerical scheme and related benchmarks on the
square antiferromagnet Heisenberg model are presented in SI Appendix,
section I.
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