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TimeSignature’s power is that it is highly accurate
across transcriptomic platforms and experimental pro-
tocols. TimeSignature can be trained using data from
a single platform/study and be applied to indepen-
dent data without additional processing.

Demonstrating this robustness and generalizability
required applying TimeSignature to as diverse a set of
studies as possible (i.e., refs. 1–4). Because not all studies
hadmelatonin data, we chose to use draw time as a proxy
for melatonin phase. Laing et al. (5) criticize this method-
ology; however, each of the studies (1–4) selected sub-
jects for whomcircadian phasewas well alignedwith local
time. We have confirmed that dim-light melatonin onset
(DLMO)25%, the time at which 25% of maximum blood
melatonin is reached, is strongly correlatedwith local time
in studies with available melatonin data (1–3) (Fig. 1). As
expected, training on local time thus accurately predicts
melatonin phase (Fig. 2, oTS).

More importantly, when trained on melatonin phase,
TimeSignature predicts melatonin phase even more ac-
curately than our previously published draw-time results
(1), with a median absolute error of under 1:20 (Fig. 2,
mTS). This demonstrates that the TimeSignature algo-
rithm is a robust and universal method for making pre-
dictions of circular variables from transcriptomic data.

In regard to Laing et al.’s (5) second and third points,
there are important distinctions between TimeSignature
and differential partial least squares regression (dPLSR)
(6). While TimeSignature’s normalization uses the av-
erage between the time points as a reference, the
prediction yields two separate predictions that need
not be 180° (12 h) apart. In fact, TimeSignature could
articulate circadian asymmetries (e.g., a well-aligned
first time point but a delayed second time point). By
contrast, dPLSR makes a single prediction for the

midpoint of the two samples, and thus could not be
used to detect such effects. Although peak accuracy is
at 12 h apart, TimeSignature performs accurately even
for samples <12 h apart—a significant practical con-
sideration. Plots showing TimeSignature’s superior
performance predicting melatonin phase compared
to both PLSR and dPLSR are given in Fig. 2.

With respect to conormalization, we are specifically
referring to combining samples from different studies
(which can exhibit systematically different statistical
characteristics) and then normalizing the mixed samples
across study subjects. In the PLSR paper (6), data from
two studies (2, 3) were mixed in the training and testing
sets; quantile normalization was performed across the
mixture of studies in the training set, with the same nor-
malization applied to the validation mixture, followed by
z scoring across the mixture of samples. This constructs
an artificial situation in which the training and application
data have the same statistical characteristics (both are
equivalent mixtures of the same source studies, normal-
ized to the same reference) and generates dependen-
cies between data from independent studies.

A true test of an algorithm’s performance requires
validating the model in truly independent data. Hence,
we trained on a subset of samples from a single study (2)
and tested against independent studies (1, 3, 4), without
any mixing or renormalizing across subjects. Addition-
ally, z scoring across subjects (or any other cross-subject
renormalization) creates a situation in which predictions
for a given individual will depend on data from other
subjects, thus compromising interpretability and repro-
ducibility. TimeSignature avoids this drawback.

We absolutely agree with Laing et al. (5) that prog-
ress in this field requires careful validation of any
new method.
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Fig. 1. Comparison of circadian and clock time measurements in study subjects. (Left) Distribution of DLMO25% times for all subject-days with
melatonin data (n = 89; data from refs. 1–3); the median DLMO25% was 23:10. (Right) Local clock time vs. circadian phase (hours since
DLMO25%) for all samples with available melatonin data.

Fig. 2. TimeSignature predictions of melatonin phase [represented as Time Since DLMO25% (in hours)]. mTS refers to TimeSignature predictions
for Time Since DLMO25% when trained using Time Since DLMO25% as the outcome in the training data, whereas oTS refers to TimeSignature
predictions for Time Since DLMO25% using the original, local-time-trained predictor reported in ref. 1. Because of the close relationship
between local time and DLMO25% (Fig. 1), these predictions are similar, although the melatonin-trained predictor is more accurate (as
expected). Also shown are comparisons to the PLSR (mPL) and differential PLSR (dPL) models, both trained on Time Since DLMO25% in the same
set of samples used for TimeSignature. Data used to reproduce this figure are available from https://github.com/braunr/TimeSignatR (7).
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