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Abstract

Twin studies as well as more recent genetics-based heritability analyses demonstrate that up to 40 

to 50% of the variance in predicting PTSD following trauma is heritable. However, most of the 

specific gene pathways and mechanism that mediate risk vs. resilience for PTSD following trauma 

exposure have yet to be elucidated. This review will examine the latest results from large scale 

Genome-wide association studies as well as other approaches aimed at understanding mechanisms 

of development of and recovery from PTSD.
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Introduction: Current state of Psychiatric Genomics and Consortium 

Efforts

Post-traumatic stress disorder (PTSD) is unique among psychiatric disorders in that it is 

contingent on traumatic environmental experience(s). Thus, how these environmental 

experiences shape the brain circuits involved in the traumatic response - dependent on 

emotional memory and synaptic plasticity - play a fundamental role in the etiology of the 

disorder. While many individuals throughout their lifetime will experience trauma, only a 

subset (5-15%) will go on to develop PTSD. (Kessler et al., 1995) Furthermore, twin studies 

and other approaches to understanding genetic susceptibility to disease suggest that PTSD is 

a heritable illness. Finally, the latest large-scale consortium efforts to examine the genomics 

of PTSD have confirmed its heritability using genomic analyses across tens of thousands of 

subjects. (Duncan et al., 2018) Together these facts highlight the pressing need to understand 
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the genetic differences that may predispose certain individuals to react maladaptively to 

traumatic experiences and develop PTSD.

Several primary criteria define PTSD, as outlined in the fifth edition of the diagnostic and 

statistical manual of mental disorders (DSM-V), they include: 1) exposure to a trauma, 2) re-

experiencing of that trauma, 3) avoidance of trauma-related stimuli, 4) negative thoughts or 

feelings that began or were worsened after the trauma, 5) trauma-related arousal and 

reactivity, and 6) general distress and functional impairment related to these symptoms. 

(American Psychiatric Association, 2013) In the DSM-V, PTSD was placed into a new 

category of “Trauma-and Stressor-Related Disorders,” reflecting the definitional necessity of 

traumatic experience(s).

Genome-wide association studies (GWAS) for psychiatric disorders, including PTSD, are at 

an exciting inflection point as sample sizes needed to identify loci significantly associated 

with the disease are being aggregated. Modern GWAS analyses typically include tens of 

thousands to hundreds of thousands of samples and perform a simple statistic at each of 

the~1 million queried Single Nucleotide Polymorphisms (SNPs – the common variation in 

single A, C, G, T nucleotides within DNA). While requiring very large, international, 

consortia-based sample sizes, they provide unparalleled power to discover new, unbiased 

genetic factors associated with illness.

These genetic association approaches are beginning to uncover gene pathways that may be 

important drivers of disease. There has been significant progress with several common 

disorders including autism, bipolar disorder, and schizophrenia. These GWAS studies have 

revealed hundreds of genetic loci significantly associated with psychiatric disease, and 

follow-up work are now identifying novel biological pathways that underlie pathology. 

(Consortium, 2014; Craddock and Sklar, 2013; Green et al., 2013; Klaus et al., 2018; Kwon 

et al., 2013; Sekar et al., 2016; Sklar et al., 2011; Voineagu et al., 2011; Wang et al., 2009).

Simultaneously with the above discovery studies, sophisticated statistical algorithms are 

being developed to enhance our understanding of the mountains of genetic data being 

produced. Just a few examples of the work being done include improved methods to 

leverage summary association statistics for a variety of analyses, methods to determine 

shared genetic risk across disorders, tissue-specific expression of risk-variants, functional 

genomic elements enriched for heritable SNPs, putative allele-specific transcription factor 

binding events, and optimized linear models for the analysis of large datasets. (Bulik-

Sullivan et al., 2015a; Finucane et al., 2018, 2015; Loh et al., 2018; Pasaniuc and Price, 

2017; Reshef et al., 2017) These advances across medicine are reshaping our ability to 

understand and treat disease.

In the past few decades, the field of psychiatry has stagnated with regards to drug discovery, 

as many of the targets studied via candidate gene approaches have failed to demonstrate 

efficacy. Retrospective analyses of candidate genes across medicine have demonstrated that 

the lack of statistical rigor has resulted in a great deal of effort towards the study of genes 

that may not be robustly associated with disease in human populations, with several analyses 
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of schizophrenia confirming this as well. (Farrell et al., 2015; Johnson et al., 2017; Kowalska 

et al., 2017).

In PTSD, drug development centered on well-understood candidate genes have failed to 

demonstrate efficacy in clinical trials. An important example of this is CRFR1 (corticotropic 

releasing factor receptor 1) antagonists, for which a 2017 trial of an antagonist in women 

with PTSD failed to demonstrate efficacy in the primary endpoint of a reduced Clinician-

administered PTSD scale score. (Dunlop et al., 2017) This does not mean that this gene is 

not important to the disease, but rather, we do not understand the complexity of gene 

regulation and the specific components of human biology related to such genes to make 

inferences based on prior candidate genetic studies. Indeed, in a small sub-analysis of the 

CRFR1 antagonist trial, it was seen that individuals GG homozygous at rs110402, a SNP in 

the third intron of CRFR1, responded favorably to treatment with the drug, when there was a 

history of childhood maltreatment, compared to a matched placebo group. The patients in 

this group demonstrated improvements in the secondary outcome measure of the PTSD 

symptom scale-self report total score. While this was a very small sub-group within the 

larger study, the result suggests that gene-by-environment interactions may play an 

important role in determining the molecular pathways most relevant to disease in PTSD.

GWAS approaches promise to identify genetic loci of disease susceptibility amenable to 

drug targeting, biomarker development, and disease stratification. Additionally, the large 

sample sizes required for these efforts have stimulated the formation of large consortia to 

produce the datasets required to achieve well-powered results, which have the side benefit of 

enhancing collaboration across the field. Collaborative organizations such as PTSD working 

group of the psychiatric genomics consortium (PGC-PTSD) as well as the Million Veteran 

Program (MVP) have led this effort.

Smaller GWAS cohorts in the study of PTSD have revealed a variety of putative 

associations, however, none of these have yet robustly replicated across multiple datasets. 

(Nievergelt et al., 2018) The PGC-PTSD has established a multi-institution, multi-pronged 

approach to generating the large datasets required to characterize the phenotypic 

heterogeneity and biological underpinnings of the disorder. In particular, specific working 

groups have been established: psychophysiology, physical health, imaging, GWAS, copy 

number variation, epigenomics, transcriptomics, microbiome, and finally a systems biology 

working group aimed at analyses across these datasets.

In this review, we will focus on the latest iteration of the genetic association investigation 

carried out by the PGC-PTSD, and highlight areas for continued investigation, in particular, 

integration of environmental measures into our understanding of disease risk, and ongoing 

“big data” efforts that will elucidate biomarkers, disease subtypes, and environmental 

indices that will be informative for downstream studies.

Post-traumatic Stress Disorder heritability estimates and epidemiology

The two principle facets of PTSD are 1) undergoing a traumatic experience and 2) having an 

underlying susceptibility to disease. One could imagine that susceptibility to be driven by 
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genetic predispositions, environmental influences on developmental processes (e.g., early 

life stress, or stress experienced in utero), or the combination of both. Disentangling these 

interactions at the level of specific polymorphisms via genetic association studies is in its 

infancy, as we will discuss later on. However, epidemiological approaches can be very 

informative as to the magnitude of the role genetics play in heritability and to which 

environmental associations we should pay attention.

Twin studies were the first approach to defining genetic heritability of PTSD, by comparing 

the incidence of PTSD in pairs of monozygotic and dizygotic twins. Studies found a 46% 

heritability in a combined sample of male and female twins, and 72% in an all-female 

sample of twins. (Sartor et al., 2012, 2011) Twin studies have also demonstrated that genetic 

variation contributes to the risk of trauma exposure. A 2002 study suggested that risk for 

experiencing assaultive traumas (such as sexual assault or robbery) were moderately 

heritable, while non-assaultive traumas (such as natural disasters and car accidents) did not 

have a detectable genetic component. (Stein et al., 2002) While initially controversial, with 

the concern of ‘blaming the victim’, at the level of epidemiological studies, such findings 

suggest that factors such as risk-seeking behavior or inattention to danger could help to 

explain heritability of trauma exposure. Together these data suggest there is genetic 

susceptibility both to experiencing particular social trauma and to developing PTSD in the 

aftermath of trauma exposure.

The incidence of PTSD is directly related to the type, severity, and pervasiveness of trauma 

in a population. People who have experienced more trauma are at higher risk for the eventual 

development of PTSD. For this reason, GWAS approaches have taken the approach of using 

trauma-matched controls–so that the associated variants will better delineate the risk alleles 

that characterize the 5-15% of the population susceptible to PTSD. Longitudinal 

epidemiological studies of military personnel have further characterized risk versus 

resilience.

Studies in military personnel who had directly experienced combat in the Vietnam War 

demonstrated a 19% lifetime risk for PTSD, 10-year post-war rates as high as 28%, and as 

many as 11% of veterans continued to demonstrate PTSD symptoms up to 40 years after 

combat. (Dohrenwend et al., 2006; Marmar et al., 2015) In studies of soldiers who have 

served in Iraq or Afghanistan, the incidence of PTSD is proportional to the severity of the 

trauma experienced. However, a ceiling is observed in that the maximal incidence appears to 

be about 25-30% in such studies, suggesting a threshold after which the dose-response effect 

of trauma-severity on population risk does not continue to increase. Another result from 

these longitudinal studies has been the characterization of the diversity of outcomes post-

trauma, including spontaneous recovery (recovery without any treatment) and delayed PTSD 

(the development of more severe symptoms sometime after the initial traumatic experience). 

(Smid et al., 2009)

Another important observation from epidemiological studies is that the lifetime risk of 

PTSD in women is double that of men. (Norris, Foster, & Weisshaar, 2002) An active area of 

inquiry is to understand whether this enhanced risk stems from increased exposure to 

traumatic events (i.e., sexual abuse and rape), or whether there may be a differential sex-
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dependent genetic predisposition to PTSD. The data are mixed, and it remains possible that 

both a higher exposure to particular traumatic events and genetic predisposition may both 

play a role. The majority of studies suggest that even when differences in trauma experience 

are accounted for, sex differences in PTSD incidence persist. The most convincing evidence 

coming from studies of matched trauma histories, wherein the greater female risk for PTSD 

cannot be accounted for by greater exposure to trauma, and this finding appears to be stable 

across a variety of types of trauma. (Breslau et al., 1999; Breslau and Anthony, 2007) 

However, conflicting evidence was reported in a 2006 study of intimate partner violence, 

suggesting that once differences in trauma exposure are accounted for, the increased risk for 

PTSD in females disappears. (Cortina and Kubiak, 2006) Indeed, the authors of this study 

make valid criticisms of the questionnaires that are used to quantify types of trauma and 

suggest that improvements could be made to gather data that better reflects the reality of the 

female trauma experience. More work is required to generate the large, representative 

datasets needed to answer these questions. (Yehuda et al., 2015)

While all of these interesting genetic facets of PTSD are detectable at an epidemiological 

level, the first step in unraveling which genes play important roles in disease, is to 

understand the gene variants with a main effect on PTSD risk, independent of environmental 

variables. In the past 10 years, several candidate gene associations have elucidated sex-

specific and gene-by-environment (GxE) interactions with trauma. More recently 

consortium efforts have gained momentum to aggregate the number of samples needed for 

GWAS to identify strongly associated variants.

Candidate Gene Studies

As mentioned previously, recent analyses of candidate gene studies have suggested that in 

general, these prior studies were underpowered, have led to many false positives, and thus 

far rarely replicate in larger, well-powered genetic studies. (Farrell et al., 2015; Johnson et 

al., 2017; Kowalska et al., 2017). That said, we believe that it is informative to provide a 

brief discussion of prior candidate gene analyses in PTSD, for a historical account, as well 

as to illustrate how to identify functional aspects of genes once GWAS has validated new 

targets. Several candidate gene association studies have demonstrated associations with 

PTSD. Two of the most prominent associated genes have been ADCYAP1R1 and FKBP5, 

which have been found to confer risk for PTSD symptomology in a sex-specific and a GxE 

manner, respectively. These genes, discussed briefly below, provide examples of mechanistic 

studies aimed at understanding the association of a risk variant SNP with PTSD as a 

function of environment or other biological factors (sex and estrogen status). However, 

variants in these genes have not yet been observed to have a main effect on PTSD risk in 

large scale GWAS analyses.

A polymorphism in ADCYAP1R1 (the receptor for pituitary adenylate cyclase-activating 

polypeptide or PACAP), has been associated with PTSD in women, but not men. We 

previously identified a SNP in a putative estrogen response element of ADCYAP1R1 which 

predicted PTSD diagnosis, and whole blood methylation of this gene’s CpG island 

correlated with PTSD symptom severity. (Ressleret al., 2011a) Furthermore, the initial SNP 

association has been replicated at a GxE level by several groups. (Almli et al., 2013; Pohlack 
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et al., 2015; Uddin et al., 2013; Wang et al., 2013) Neuroimaging approaches demonstrated 

further that this ADCYAP1R1 risk variant is associated with increased amygdala and 

hippocampal activation in response to threat stimuli, as well as reduced functional 

connectivity between these two regions in women. (Stevens et al., 2014) Mechanistic work 

has further demonstrated allele-specific binding of estradiol to the estrogen response-

element within the gene, with reduced binding to the risk allele, increased expression of 

ADCYAP1R1 in mice treated with estradiol, and showed that women with the risk allele 

also harbor lower ADCYAP1R1 expression. (Mercer et al., 2016) PACAP peptide and 

ADCYAP1R1 biology has been extensively covered elsewhere. (Ramikie and Ressler, 2016)

Similar to ADCYAP1R1, a polymorphism in the glucocorticoid receptor element of FK506 

Binding Protein 51 (FKBP5) has been shown to associate with PTSD in the context of 

childhood maltreatment. (Binder et al., 2008) Further studies demonstrated that the locus 

harboring the risk variant was epigenetically regulated in an allele-dependent manner, both 

at the level of chromatin structure and DNA methylation. In particular, it was seen that 

changes in whole blood methylation of the variant glucocorticoid receptor element were 

dependent on the history of childhood maltreatment. (Klengel et al., 2013) FKBP5 
polymorphisms have also been linked with a variety of additional psychopathologies, 

including aggressive behavior, depression recurrence and response to antidepressant 

treatment, and suicide risk. (Bevilacqua et al., 2012; Binder et al., 2004; Roy et al., 2010) 

FKBP5 biology has also been covered extensively elsewhere. (Zannas and Binder, 2014)

The main criticisms of the above candidate gene by environment studies (cGxE), is that 

these approaches are not demonstrating main effects on PTSD diagnosis in large-cohort 

GWAS investigations and are prone to bias. It is possible, and may be likely, that the large 

GWAS studies in PTSD are still insufficiently powered to capture these polymorphisms, 

especially given that they may need to be studied in a gene x environment context. 

Nonetheless, there are clear limitations. In the case of FKBP5, for example, while it appears 

to be strongly associated with a variety of outcomes, it is unclear to what extent FKBP5 
represents a druggable target or possesses sufficient predictive power to be useful clinically. 

In terms of identifying GxE interactions, while the critical importance of certain 

environmental variables in the development of psychopathology has been convincingly 

demonstrated epidemiologically, methods to statistically integrate genetic and environmental 

variables need to be developed. We discuss several possibilities later on. However, the most 

immediate need is to elucidate the genetic architecture of PTSD using large-scale GWAS, at 

the sufficiently powered samples sizes to identify variants that are significantly associated 

with PTSD diagnosis.

Genome-wide association studies of PTSD

To date, published GWAS results have largely been underpowered to detect genomewide 

significant loci that have replicated within and across studies, though some have yielded 

genome-wide significant loci (p < 5 × 10−8) in the discovery cohort. See Nievergelt et al. for 

a review of the gene variants that have reached genome-wide significance in any study. The 

largest published PTSD GWAS to-date is the freeze 1 dataset of the PGC-PTSD, which 

comprised 11 multiethnic cohorts with 5000 cases versus 15000 mostly trauma-exposed 
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controls (87.7% trauma-exposed). This analysis was not sufficiently powered to identify 

PTSD associated SNPs at a genome-wide significant p-value (Duncan et al., 2018). The next 

iteration of the psychiatric genomics consortium’s PTSD GWAS dataset, freeze 2, will 

include 32,000 cases and 100,000 trauma-exposed controls. (Nievergelt et al., 2018) This 

sample size is approaching the level at which genome-wide significant loci have been 

discovered for other psychiatric disorders, such as schizophrenia.

A number of analyses were carried out with the initial PGC-PTSD study that elucidated 

some interesting aspects of the underlying genetic architecture of disease, including 

heritability and cross-disorder genetic overlap. The authors'estimated overall molecular 

heritability of PTSD to be ~15%, however, they found much higher estimates for females 

compared to males. Female heritability was calculated to be 29% whereas heritability for 

males was not significantly greater than 0%. In contrast to twin studies, these heritability 

estimates for PTSD are much lower. Previous work has estimated heritability for PTSD in 

the ranges of 13-34%, 46%, and 72%. (Sartor et al., 2012, 2011; True et al., 1993) However, 

the underpowered sample size of the initial PGC-PTSD study resulted in a low heritability z-

score of 3.0 – a score influenced by the sample size, SNP-based heritability, and the 

proportion of causal variants. (Hill et al., 2016) Thus, the heritability estimates are more 

speculative than they will be in a larger dataset. Notably, investigations of heritability 

estimates in other traits, specifically schizophrenia and height, have suggested that 

heritability can be more fully accounted for by gene variation if all SNPs are included in the 

analysis, but this requires larger sample sizes. (Loh et al., 2015; Yang et al., 2010)

Analysis of other well-powered datasets suggests not only that genetics can indeed account 

for a large fraction of heritability, but also that most complex traits are extremely polygenic. 

Recent advances in analytical approaches of GWAS data, suggests that the inflation of 

GWAS test statistics in well-powered datasets may be the result of polygenicity rather than 

genomic inflation. (Bulik-Sullivan et al., 2015b) The next iteration of the PGC-PTSD dataset 

will likely provide a clearer picture of the molecular heritability of PTSD.

To analyze cross-disorder genetic correlation, the PGC-PTSD authors were similarly limited 

by the size of the dataset, and so limited their comparisons to schizophrenia, major 

depressive disorder, and bipolar disorder. Notably, using different polygenic risk score 

approaches, significant overlap was observed between PTSD and all three other psychiatric 

disorders, consistent with the shared heterogeneity of risk across disorders. (Duncan et al., 

2018)

Integrating the Genetic and Environmental Components of Disease

A multitude of epidemiological evidence clearly indicates the importance of distinct 

environmental influences on risk for PTSD – in particular, childhood adversity has been very 

strongly linked with a variety of future psychopathologies. (Bremner et al., 1993; Lang et 

al., 2006) Understandably, there have been extensive efforts in the field to discover the 

genetic underpinnings that may render one susceptible to early life adversity, however, 

statistical approaches have lagged behind our ambitions. Previously, a paucity of rigorous, 

genome-wide approaches to GxE have resulted in investigators selecting candidate genes for 

cGxE studies. In PTSD, cGxE investigations with relatively small sample sizes have yielded 
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some intriguing results. In particular, genes such as FKBP5, conferring sensitivity to early 

life stress and gender-specific susceptibility to stress have been identified (Almli et al., 2013; 

Binder et al., 2008; Boscarino et al., 2012; Collip et al., 2013; Dias and Ressler, 2013; 

Lavebratt et al., 2010; Ressler et al., 2011b; Stevens et al., 2014; Zimmermann et al., 2011). 

However, these cGxE investigations have come under scrutiny – in particular, more 

sophisticated statistical modeling and an appreciation for the effect sizes seen in large-scale 

GWAS for exemplary psychiatric disorders suggest that studies to date have been 

underpowered and insufficiently modeled to generate rigorous genetic associations. (Ashley-

Koch et al., 2015; Eaves and Verhulst, 2014; Matthew C Keller, 2014; Moore and 

Thoemmes, 2016)

In the field of PTSD genetics, the contingency of PTSD on exposure to trauma makes it 

particularly salient to include environmental measures of trauma into statistical models of 

genetic association. However, there are many statistical challenges to this approach, many of 

which have not been sufficiently accounted for in analyses to date. Covered extensively 

elsewhere, specific difficulties include properly scaling measurement variables, controlling 

for the effects of covariates on interaction, and a deeper understanding of potential nonlinear 

relationships between predictors and the outcome of interest that may masquerade as true 

associations. (Border and Keller, 2017; M C Keller, 2014; Moore and Thoemmes, 2016) 

Furthermore, it is now being appreciated that the candidate gene variants that have 

historically been employed in GxE studies are not likely to be significant drivers of disease 

in human populations. (Farrell et al., 2015; Johnson et al., 2017)

In principle, it may be possible that certain genetic associations will not be detectable 

without including an environmental component in the statistical model. A simple example 

would be a type of cross-over interaction, wherein alleles that increase the risk for a certain 

disorder in a particular environment may confer protection to that same disorder in another 

environment. (Sharma et al., 2015) A concrete example would be if a polymorphism in a 

gene interacts with early life stress, such that in the context of early life stress, one allele 

confers protection to future psychopathology while the other confers risk; however, in the 

context of a “less” stressful early life experience, those relationships are reversed. Some in 

the field argue this type of interaction is unlikely, however, more investigation is required to 

rule this possibility out. (Duncan et al., 2014) Furthermore, given the small effects any 

particular genetic variant exerts on disease risk, as we have observed for schizophrenia and 

other psychiatric disorders with well powered GWAS’, it is likely that much larger sample 

sizes and a more sophisticated statistical approach will be required to properly answer this 

question.

However contentious GxE studies have been, the contribution of environmental variables to 

psychopathology is clear and unbiased approaches to identify molecular correlates of 

environmental influences are needed. Some clever approaches have been developed that 

mitigate the statistical hurdles of genome-wide or candidate GxE studies. One method 

developed just this year called EAGLE (environment-ase through generalized linear 

modeling) – utilizes RNA sequencing data combined with environmental measures in order 

to infer GxE interactions at the level of exonic, allele-specific gene expression at 

heterozygous loci.The authors developed a hierarchical Bayesian model, that utilized within-
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sample allelic differences in RNA-seq reads to allow for each test to have an internal control. 

This method allows for one to infer the relationship between an environmental factor and 

allele-specific expression of a particular gene. (Knowles et al., 2017)

Another solution to evaluating genetic risk is to use polygenic risk scores (PRS) to model 

genetic variation rather than to focus on specific polymorphisms. This abrogates the risk 

associated with multiple testing of alleles by aggregating risk or resilience across many 

alleles that have independently been shown to associate with disease, thus greatly improving 

predictive power. An excellent example of this comes from a recent paper on early life 

complications and schizophrenia risk, mediated by the polygenic risk score (PRS) for 

schizophrenia. Here, the PRS was calculated as a function of the loci that had reached 

genome-wide significance for a main effect on schizophrenia risk. Schizophrenia PRS was 

used to approximate genetic risk for disease and its interaction with early life complications. 

(Ursini et al., 2018) PRS for schizophrenia interacted with early life complications (ELCs), 

with greater degrees of ELCs correlating strongly with increased odds ratios for future 

schizophrenia development. In general, ELCs were not predictive of case-control status (i.e., 

a diagnosis of schizophrenia); however, in the context of high-risk PRS, ELCs predicted an 

increased odds ratio of schizophrenia development – demonstrating a tractable genetic 

signature of risk to ELCs. To further parse apart the specific contribution of risk variants, the 

authors developed a “placental PRS (PPRS).” Here, the authors hypothesized that the 

genetic risk conferred by early life stress would be mediated by those risk variants that are 

both highly and differentially expressed with respect to delivery complications in the 

placenta. This PPRS score, turned out to interact with a history of ELCs to correlate with 

schizophrenia diagnosis in adulthood. (Ursini et al., 2018)

This is an excellent example linking a clinical phenomenon (ELCs) with future 

psychopathology. For many years it was appreciated how ELCs seemed to play a role in the 

development of schizophrenia – in particular, obstetric complications have long been 

associated with a risk for schizophrenia development; however, our ability to identify 

particular gene pathways and tissues mediating risk has been limited. (Cannon et al., 2002; 

Jones et al., 1998; Nicodemus et al., 2008; Zornberg et al., 2000) This study offers an 

example of how PRS can be used to investigate GxE interactions in a statistically tractable 

fashion.

Across psychiatric disorders, such an approach can greatly benefit the clinical utility of 

genetic information, as caregivers may be able to put more effort into mitigating 

environmental risk factors for those at greater risk of disease. In PTSD, the role of early life 

stress, or specific high impact trauma types have been strongly linked to PTSD risk. 

(Bremner et al., 1993; Heim and Nemeroff, 2002, 2001; Kaufman et al., 2000; Lang et al., 

2006; Stovall-McClough and Cloitre, 2006) Well-powered GWAS results for PTSD and the 

identification of risk loci would allow the construction of PRS scores that can be used to 

parse genetic vulnerability to specific types of trauma, and other environmentally relevant 

variables.
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Future Directions

The first and foremost goal in the coming years will be the construction of large datasets of 

genetic and environmental information in order to generate high-quality analyses of genetic 

risk for PTSD. These datasets will lay the foundation for future investigations into basic 

research as well as applied research and drug development.The freeze 2 dataset and the next 

iteration of the Million Veterans Programs will provide the sample sizes needed to elucidate 

risk variants significantly associated with PTSD.

At the level of basic biology, understanding genetic risk in an unbiased manner will allow us 

to parse apart the specific cells and tissues that play roles in mediating disease risk. Already, 

sophisticated algorithms have been developed that allow one to assign GWAS risk loci to 

tissues, either through imputing gene expression alterations through an understanding of 

which variants influence gene expression or by using the GWAS risk loci themselves. 

(Finucane et al., 2018, 2015; Hormozdiari et al., 2018; Pasaniuc and Price, 2017) Single cell 

transcriptomic and epigenetic data will greatly expand our understanding of the unique 

expression profiles of all cells throughout the body. This information will allow us to 

localize risk loci to particular cell types within the body, and hopefully associate particular 

types of genetic risk with specific outcomes and disease subtypes. In the same way that risk 

for early life birth complications and future schizophrenia risk was parsed by tissue-specific 

gene expression profiles, it’s likely that massive single-cell transcriptomic atlases of the 

human brain will similarly aid us in localizing the genetic risk for PTSD and other 

psychiatric disorders to specific neural circuits and tissues. This type of information can be 

tremendously useful to home in on particular tissues and cell types in terms of GxE 

associations. And finally, genome-editing technologies may then enable us to functionally 

query these variants with causal experiments.

Even after GWAS studies reveal genome-wide significant hits, an open question in the field 

remains – how to use this information to identify pathways that are actually relevant to 

PTSD. Recent analyses have suggested that genetic heritability is even more polygenic that 

just our genome-wide significant hits suggests. Analyses of schizophrenia GWAS have 

suggested that heritability and disease risk is quite widespread. One analysis from Loh, et al. 

2015 demonstrated that >71% of 1 megabase regions in the genome harbor at least one 

variant that contributes to risk of disease. Another study from Boyle, et al. 2017 

demonstrated that most genomic regions contributing to the heritability of schizophrenia are 

in fact broadly expressed and are not genes that are particularly enriched in the brain. This 

led the authors to propose the “Omnigenic model” of disease risk which is as follows: while 

disease risk is likely to be driven by aberrations in relevant biological processes which we 

have an understanding of (i.e. synaptic pruning in schizophrenia), gene networks are so 

densely interconnected, that any gene that is widely expressed will have some nonzero 

influence on core gene function; core genes being those directly responsible for the 

biological processes underlying disease (i.e. extinction of fear in PTSD). Furthermore, since 

widely expressed genes outnumber core genes, the majority of heritability on a genome-

wide scale will be driven by variation in these peripheral gene networks (Boyle et al., 2017; 

Loh et al., 2015).
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This insight raises several interesting possibilities: for any given disease, to what extent is 

heritability driven by variation in core vs non-core genes? Are there variants that influence 

core gene expression but don’t necessarily confer risk? How do we define core genes? These 

insights demonstrate that much work is needed to truly understand the associations that 

GWAS will provide for us. Nonetheless, the international studies aimed at understanding the 

genomic underpinnings of PTSD, a disorder with clear heritable risk, are making rapid 

progress, and the biological basis of PTSD is indeed tractable.
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Highlights:

• Over 40% of the risk for PTSD may be genetically heritable.

• Large-scale genome wide association studies offer the current best 

approaches.

• Incorporating environment into genetic models is critical for stress-related 

disorders.

• It is hoped that genetic discoveries will lead to novel targets for intervention 

in PTSD.
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