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Music can evoke a variety of emotions, which may be manifested by distinct signals on the electroencephalogram (EEG). Many
previous studies have examined the associations between specific aspects of music, including the subjective emotions aroused, and
EEG signal features. However, no study has comprehensively examined music-related EEG features and selected those with the
strongest potential for discriminating emotions. So, this paper conducted a series of experiments to identify the most influential
EEG features induced bymusic evoking different emotions (calm, joy, sad, and angry).We extracted 27-dimensional features from
each of 12 electrode positions then used correlation-based feature selectionmethod to identify the feature set most strongly related
to the original features but with lowest redundancy. Several classifiers, including Support Vector Machine (SVM), C4.5, LDA, and
BPNN, were then used to test the recognition accuracy of the original and selected feature sets. Finally, results are analyzed in
detail and the relationships between selected feature set and human emotions are shown clearly. .rough the classification results
of 10 random examinations, it could be concluded that the selected feature sets of Pz are more effective than other features when
using as the key feature set to classify human emotion statues.

1. Introduction

Recognition of emotion state is an important aim for the
development of advanced brain-computer interfaces (BCIs).
For this application, emotion recognition using the elec-
troencephalogram (EEG) has garnered widespread interest
due to the convenience, high resolution, and reliability of
EEG recordings. Music can evoke powerful emotions, and
these emotions are associated with distinct EEG signal
patterns. Identification of the EEG signals associated with
these emotions may help elucidate the neurological basis for
music appreciation, contribute to the development of music
programmes for mood therapy [1], and provide biomarkers
and novel methods for studying neuropsychiatric disorders
such as depression and Alzheimer’s disease [2].

Numerous studies have identified EEG signals associ-
ated with distinct features of music, including familiarity,
level of processing, phrase rhythm, and subjective

emotional response. .ammasan et al. extracted power
density spectra and fractal dimensions from the Database
for Emotion Analysis using Physiological Signals (DEAPs)
and found that using low familiarity music improved the
accuracy of recognition regardless of whether the classifier
was support vector machine (SVM), multilayer perception,
or C4.5 [3]. Kumagai et al. investigated the relationship
between cortical response and familiarity of music. .ey
found that the two peaks of the cross-correlation values
were significantly larger when listening to unfamiliar or
scrambled music compared with familiar music. Collec-
tively, these findings suggest that the cortical response to
unfamiliar music is stronger than that to familiar music and
so is more appreciate for classification applications by BCIs
[4]. Santosa et al. design series of experiments, in which,
different level noise, such as no noise (NN), midlevel noise
(MN), and high-level noise (HN), was added into the
music..e 14 subjects were tested in four different auditory
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environments: music segments only, noise segments only,
music + noise segments, and the entire music interfered by
noise segments..en, their responses data were analyzed to
determine the effects of background noise on the hemi-
spheric lateralization in music processing [5]. Hong and
Santosa investigated whether activations in the auditory
cortex caused by different sounds can be distinguished
using functional near-infrared spectroscopy (fNIRS) [6].
Bigliass et al. used musical stimuli as interference to ex-
amine how the brain controls action when processing two
tasks at the same time [7]. Lopata et al. reported stronger
activity of the frontal lobe alpha band, which is correlated
with the mental imagery of music after it has been played
and studied, in subjects with music improvisation training
compared with subjects without training. .us, level of
processing (e.g., creative processing) influences the EEG
response. Moreover, these results suggest that musical
creativity can be learned and improved and that these
changes are measurable by EEG [8]. Phneah and Nisar
compared the EEG responses induced by favourite subject-
selected music to “relaxing” music selected based on alpha
wave binaural beats and found that the relaxing music had
stronger and longer-lasting physiological and psycholog-
ical soothing effects [9]. .us, EEG signals can help in the
selection of mood-modifying music. Bridwell et al. com-
pared the EEG responses evoked by structured guitar notes
and random notes and found a waveform at 200ms that
was more strongly activated by the structured sequence.
Further, the result of this study is that 4 Hz note patterns
appears somewhat distinct from the sensitivity of statistical
regularities of “auditory oddball” [10]. Mart́ınez-Rodrigo
et al. found distinct EEG responses in theta and alpha bands
to phrase rhythm variations of two classical sonatas, one in
bipartite form and the other in rondo form [11]. Zhou et al.
compared the processing of musical meaning conveyed by
direction of pitch change in congenital amusia. Twelve
Mandarin-speaking amusia and 12 controls performed a
recognition (implicit) and a semantic congruency judge-
ment (explicit) task while their EEG waveforms were
recorded. .e authors concluded that amusia are able to
process iconic musical meaning through multiple acoustic
cues in natural musical excerpts but not through the di-
rection of pitch change [12]. Many researchers studied the
relationships between human emotions and their EEG
signal. Lu et al. selected nine musical passages as stimuli
and divided them into three groups using variance test and
t-test according to the two-dimensional model of emotion.
To analyse EEG signals, they extracted the power density
spectra of different bands and used principle component
analysis (PCA) dimensionality reduction for feature se-
lection. .ey found that emotion recognition accuracy by
SVM was higher using the average power information of
beta and gamma bands compared with other bands. .us,
beta and gamma bands appear to contain signal in-
formation useful for emotional discrimination [13]. Di
et al. presented an analysis procedure in order to study the
affect of human emotion using EEG characteristics induced
by sound stimuli with different frequencies [14]. Kurbalija
et al. proposed a method of emotion recognition from EEG

signals using distance-based time-series classification. .e
results showed that the EEG signal could be used suc-
cessfully to construct models for recognition of emotions,
individuals, and other related tasks [15]. Kobayashi and
Nakagawa presented the emotion fractal analysis method
(EFAM) in their paper. .ey assessed emotions based on
EEG data to propose a BCI system which can recognize
emotions including delight, anger, sorrow, and pleasure
and used that information to manipulate an electric
wheelchair [16]. Zhao et al. sampled the EEG signal of the
volunteers when they watched affective films. After
extracting the EEG features, SVM was employed as the
classifier to recognize human emotions [17]. Ivanovic et al.
collected EEG data from ten males between 25 and 40 years
old and presented an automatic real-time classification
algorithm using EEG data cited by self-induced emotions
[18]. Yoon and Chung proposed a Bayes’ theorem-based
classifier which used supervised learning algorithm to
recognize human emotion according to the volunteers’
EEG data. In the recognition, Fast Fourier Transform (FFT)
analysis was used for feature extraction [19].

.e complexity of EEG signals has hampered the se-
lection of optimal feature sets for discrimination of emo-
tions evoked by music. To compensate for the lack of single
feature recognition, many previous studies have attempted
to extract one or several linear or nonlinear dynamic
characteristics of EEG signals for distinguish different
music stimuli by machine learning. For example, to study
and prevent mild depression, Li et al. extracted 816 features
(17 features of 3 frequency bands from 16 electrodes) and
improved the recognition rate using CFS dimension re-
duction and machine learning. .ey also suggested that
signals from electrode positions FP1, FP2, F3, O2, and T3
are most strongly related to mild depression [20]. Xu and
Zuo proposed an algorithm based on mutual information
and PCA to compensate for the lack of nonlinear re-
lationships between the features of PCA alone using the
database of the 2005 international BCI competition. After
joint power spectrum estimation, continuous wavelet
analysis, wavelet package analysis, and Hjorth parameter
calculations, they used the newly proposed algorithm for
selection and compared results to the PCA algorithm alone.
.ey found that dimension reduction by the proposed
algorithm improved classification accuracy using SCM as
the classifier [21].

.ough many achievements have been gained in this
field, there are still some problems for emotion recognition.
Firstly, the main results in emotional recognition focus on
visual emotion recognition. .e researches in recognition
of emotion evoked by music are less and the recognition
rates are lower. But in human daily life, music-induced
emotions are effective and persistent, allowing a clearer
observation of brain activity in this emotional state [22].
Secondly, the spatial resolution of EEG signal is low. So, the
effect of the study of brain cognitive rules based on features
is poor; most of them can only be precise to a certain brain
area, but it is impossible to put forward more precise brain
cognitive mechanism. .e effectiveness of the study of
brain cognitive rules based on features is unsatisfactory.
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Most of them can only be located to a certain brain area, but
it is difficult to construct the relationships between EEG
electrode and emotions’ classification [23]. Lastly, due to
the complexity of the EEG, most previous studies on the
relationships between EEG signal features and music-
evoked emotions have focused on the analysis of a few
specific characteristics. However, few studies have con-
ducted a comprehensive unbiased analysis of whole-brain
EEG signals associated with music-evoked emotions and
then selected those with highest discriminative power for
various classifiers [24].

In the presented study, we want to obtain the most
influential EEG signal feature set of the human emotion
classification. To achieve this goal, 18-dimension linear
features and 9-dimension nonlinear features were extracted
for every electrode, and the correlation-based feature se-
lection (CFS) method was employed to select the influential
feature set. To verify the influence of the selected feature set,
the classification methods including BPNN, SVM, C4.5, and
LDA were used in the procedure of human emotion clas-
sification. .e experiment results showed that the selected
feature set of Pz electrode and the classification method C4.5
were more effective in human emotion recognition.

2. Methods

As shown in Figure 1, there were five stages in this study:
collection of volunteers’ subject data, EEG recording during
listening music, extraction of EEG features, emotion clas-
sification, and detailed analysis for validation, dimension
reduction, and accuracy improvement.

2.1. Source of Music Stimuli. .e music stimuli used in this
study are from the database of 1000 songs, which was se-
lected by Mohammad Soleymani and colleagues of the
University of Geneva for emotion analysis from the Free

Music Archive (http://freemusicarchive.org/). For each
song, the sampling rate in the database is 44,100Hz and the
length is 45 s. Each song is also marked with the arousal
dimension and the valence dimension for classification by
the two-dimensional model [25, 26]. For classification, we
separated the data into four groups according to the highest
average scores and variance and there were 22 samples in
“joy” and “calm” group, while 20 samples in “sad” and
“angry” group. To balance the data number, 20 music
samples were chosen for every emotion. .e average scores,
variance of arousal, and valence values were provided by the
above database. As shown in Figure 2, there was no sig-
nificant difference between the scores in different groups by
checking the correlation between the groups using analysis
of variance (ANOVA). As shown in Table 1, scores in arousal
dimension of sad and calm are same; scores in valence
dimension of angry and calm are same. So, we just compared
12 pairs in the table which showed the homogeneity test of
variance. .en, according to the reviewer’s suggestion, we
used the analysis of variance in Table 2. It is showed that the
P value is all less than 0.05, indicating that there are sig-
nificant differences in the four emotional statues in valence
and arousal dimension. Four kinds of emotions can be
regarded as different kinds of data and used as different
stimulus to cause EEG signals of audiences in experiments
[27]. In the experiment, the data with highest scores for both
arousal and valence dimension were defined as “happy” or
“joy,” that with lowest scores for the two dimensions were
defined as “sad,” and that with highest arousal and lowest
valence as “angry” and defined the data as “calm” in the
opposite case.

2.2. EEG Recording. .e participants were eight graduate
students who have not music background (23.11± 3.14 years
old, six males and two females). Before the experiment, the
subjects provided personal information and informed
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consent. .ey were requested to avoid stimuli and refrain
from activities that may induce strong emotions before one
day of the experiment. At the beginning of the experiment,
EEG electrodes were applied, and subjects were requested to
remain calm with eyes closed for 2min without playing any
music. To avoid carryover effects, the music was played in
the order calm, happy, sad and angry during EEG re-
cordings. Each music passage was 45 s long, and to get same
music number, we select 20 music passages in each music
emotion group. To avoid volunteer fatigue, subjects rested
for approximately 10–15min between each block of 20
music passages in a given group. Every subject was asked to
repeat the experiment 2 or 3 days later, yielding a total of 16
datasets. Due to failure of one trial, however, only 15 datasets
were obtained.

A NCCMEDICAL NCERP-P series EEG system and 24
electrodes EEG map was used for all recordings (Figure 3),
and EEG electrodes were arranged according to the 10–20
international system. .e average resistance of bilateral
papillae reference and scalp recording electrodes was
5 k·Ohm, the sampling rate was 256Hz, and the power
frequency was 50Hz. Before data processing, the eye power
was filtered by ICA on EEG devices. .e original signal is

filtered through adaptive filtering to remove 50Hz power
frequency noise, and the final signal is obtained through
wavelet filtering and preprocessing.

3. Data Analysis

3.1. Feature Extraction. Many previous studies on EEG
correlates of human emotion have examined only linear
features [28–30]. However, developments in nonlinear dy-
namics have enhanced our understanding of the brain as a
high-dimensional complex chaotic system, and nonlinear
dynamic characteristics are now widely used in EEG re-
search [31–33]. As shown in Figure 4, the EEG data acquired
were first preprocessed and filtered for noise and the 50Hz
frequency signal filtered by adaptive filtering..e ICA signal
was then filtered out to extract a 15 s EEG epoch for each
music passage which is located in the middle of the 45 s
music. .is is because we want to avoid volunteers’ mood
swing at the beginning of the testing and fatigue at the end of
the testing. So, the first and the last 15 s data were removed.
We focused on electrodes FP1, FP2, F3, F4, F7, F8, Fz, C3,
C4, T3, T4, and Pz as these positions are strongly related to
emotion. .e 18-dimensional linear features (peak, mean,
variance, centre frequency, maximum power, and power
sum of 3 frequency bands, theta, alpha, and beta) plus the 9-
dimensional nonlinear dynamics features (singular spectral
entropy, Lempel–Ziv complexity, spectral entropy, C0
complexity, maximum Lyapunov exponent, sample entropy,
approximate entropy, K entropy, and correlation di-
mension) were extracted.

.e linear features were expressed as following. Peak
could be presented as

Pe � max[x(n)]. (1)

where x(n) is the sampling EEG data.
Mean and variance are just the mean value and variance

of x(n). Centre frequency could be expressed as

Fa � Fc ×
fs

a
, (2)

where a is the scale value in wavelet transform and fs is the
sampling frequency; Fc is the wavelet centre frequency when
the scale was 1; Fa was the centre frequency when the scale
was a. If r(k) was the self-correlation function of EEG data
x(n), maximum power could be defined as

Pm � max[P(ω)], (3)

in which,

P(ω) � 􏽘
+∞

k�−∞
r(k)e
−jωk

. (4)

Power sum was the summation of P(ω).
.e nonlinear features could be obtained according to

the following references. Approximate entropy was pre-
sented by Pincus in 1983 [34]. It is a positive number and
for EEG signals, the larger the value, the higher the
complexity or the stronger the irregularity. Sample Entropy
is an improvement of approximate entropy by Richman
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Figure 2: Emotional classification of the sample music.

Table 1: Homogeneity test of variance.

Pairs Levene statistic df1 df2 Saliency
sad_arousal-clam_arousal 2.445a 7 12 0.083
sad_arousal-joy_arousal 2.905b 7 12 0.050
sad_arousal-angry_arousal 2.749c 7 12 0.054
clam_arousal-joy_arousal 1.036a 4 14 0.423
clam_arousal-angry_arousal 1.392b 4 14 0.287
joy_arousal-angry_arousal 0.473a 4 14 0.755
sad_valence-clam_valence 0.398a 5 13 0.842
sad_valence-joy_valence 2.512b 5 13 0.084
sad_valence-angry_valence 2.307c 5 13 0.104
clam_valence-joy_valence 1.219a 6 13 0.357
clam_valence-angry_valence 0.969b 6 13 0.483
joy_valence-angry_valence 2.516a 3 11 0.058
a, b, and c are the ignored abnormal values
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and Moorman [35], which can reduce the calculation error
and improve the calculation accuracy. Correlation di-
mension is an important branch of fractal dimension and
was proposed by Grassberger and Procaccia in 1983 [36]. K
entropy was also called information dimension and was

presented by Kolmogrov and was improved by Sinai. It can
be expressed according to reference [37]. .e higher the LZ
complexity is, the more irregular the change of time series
is. It indicates the rate at which a given time series increases
with its length to cause a new pattern increasing. .e new
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Table 2: Variance analysis.

Pairs Sum of squares df Mean of square F Saliency
sad_arousal∗ clam_arousal 1.195 7 0.171 5.898 0.033
sad_arousal∗ joy_arousal 1.377 11 0.125 7.597 0.026
sad_arousal∗ angry_arousal 2.326 14 0.166 10.661 0.015
clam_arousal∗ joy_arousal 0.354 11 0.032 521.398 0.001
clam_arousal∗ angry_arousal 0.654 14 0.047 23.641 0.001
joy_arousal∗ angry_arousal 2.46 14 0.176 10.649 0.018
sad_valence∗ clam_valence 0.593 8 0.074 231.87 0.001
sad_valence∗ joy_valence 1.037 8 0.13 12.58 0. 015
sad_valence∗ angry_valence 0.539 10 0.054 11.042 0.018
clam_valence∗ joy_valence 1.56 10 0.156 22.03 0.001
clam_valence∗ angry_valence 0.957 10 0.096 22.464 0.001
joy_valence∗ angry_valence 2.025 10 0.203 1.16 0.404
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pattern shows a decreasing trend with the increase of time,
which means that the change of original data series is
slower. It can be expressed according to reference [38].
Whether the maximum Lyapunov exponent is greater than
zero is the criterion to judge whether the system is chaotic
or not, and it can be expressed according to reference [39].
.e idea of the C0 complexity is to decompose the time
series to be analyzed into random sequence and regular
sequence. It can be expressed according to reference [40].
Singular spectrum analysis is to reconstruct the delay of
one-dimensional EEG time series into multidimensional
phase space. After singular value decomposition, the im-
portance of decomposed quantities is determined
according to the order of energy [41]. .e spectral entropy
can be expressed according to [42]. In the procedure, firstly,
the signal is transformed by Fourier transform, then the
power distribution of the signal is calculated and the unit
power is normalized.

3.2. Feature Selection. .e CFS method, which is widely
used for feature selection and data cleaning, compre-
hensively evaluates the correlations between features and
classifications as well as the redundancy between features
[43, 44]. .e core idea of this method is to remove re-
dundant features and select unique class-related features
from the original feature set using correlation analysis
[45]. Briefly, CFS calculates the correlations between
features as well as between features and categories of
feature concentration. .e calculation formula is shown
below:

Merit �
krcf������������

k + k(k− 1)rff
􏽰 . (5)

Merit is an evaluation of the characteristic subset s,
where s contains k characteristics, rcf represents the
average correlation between feature f(f ∈ S) and category
c, and rff represents the average relativity value between
features. Formula (5) shows that for the feature subset s,
when the correlations between each feature and class label
were greater, and the correlations between each two fea-
tures were smaller, the value of merit would be much
greater, and it means that the feature set s was the better
one.

.e correlation between the features can be calculated
using the information gain method. Assuming that y is a
possible value of attribute Y, then the entropy of Y is cal-
culated as

H(Y) � −􏽘
y∈Y

p(y) log2(p(y)). (6)

If a certain property X is known, the method to calculate
the entropy of Y under X conditions is

H(Y ∣ X) � − 􏽘
x∈X

p(x) 􏽘
y∈Y

p(y ∣ x) log2(p(y ∣ x)).
(7)

.e additional information that feature X contributes to
Y is called information gain. .e correlation between

information gain and two features is positive. Information
gain is defined as

H(Y)−H(Y ∣ X). (8)

Since information gain is a measurement method of
symmetry, it must be normalized. To this end, we used the
following formula:

UXY � 2.0 ×
H(Y)−H(Y ∣ X)

H(Y) + H(X)
. (9)

.e correlation coefficient describes the strength of
correlation between two variables, with values closer to 1
indicating a stronger correlation.

A greedy progressive search algorithm was used to gen-
erate candidate feature subsets from feature sets. Using this
algorithm, feature selection produces a feature sequence that is
sorted by the degree of correlation f1, f2, f3, . . . , f27, then
uses the classifier to identify the feature subset (f1), (f1, f2),
(f1, f2, f3), (f1, f2, f3, f4), (f1, f2, f3, f4, . . . f25, f26).

As shown in Table 3, for every feature, we calculated the
average Merit value of every volunteer. From the result, if we
set the threshold as 0.1, the average Merit value of feature 4,
8, 10, 14, 16, 17, 20, 21, 22, 23, 25, 26 are higher than the
threshold while other features were much lower. So, they
were selected as the influential features which were agreed
with the data in Table 4.

3.3. Classifier Verification. SVM, decision tree, and neural
network are the most common classification methods used
in machine learning. In this study, SVM, C4.5, BP neural
network, and LDA were used to verify the recognition rate
(accuracy) after feature selection. We used the method of
10% cross validation, 10% of data is the training data, then
took the mean value of 100 times repetitions to identify the
correct rate as the recognition rate. Finally, as shown in
Figure 5, for every subfigure, the horizontal axis is the
electrodes and the vertical axis is the recognition rate. For
every classification method, using Pz, T3, and T4 elec-
trodes’ data, we can get much higher recognition rates than
using other electrodes. So, these 3 electrodes were chosen in
the classification procedure. Moreover, to compare the
results in details, the recognition accuracy values using the
3 electrodes’ data through the four classification methods
are shown in Table 5.

According to classification results, the recognition rates of
the features selected by CFS (feature subset) were greater than
the recognition rates before dimension reduction using SVM,
C4.5, and BP. But for LDA method, the situation was op-
posite. According to previous validation studies, LDA is a
robust emotion classifier [46]. But in the current study, BP,
SVM, and C4.5 achieved good classification accuracy.

In order to evaluate the classifier performance, the ROC
curves of four different classifiers are shown in Figure 6. .e
ROC curve of C4.5 and LDA classifier is good, and the AUC
average value is larger, so the performance of LDA and C4.5
classifier is better than that of BP and SVM.

For statistical feature analysis, two samples of t-tests
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were performed on the different emotional features and
different electrodes (at significance level p � 0.05). .en,
each feature of each electrode was tested by paired t-test,
and the number of features rejected according to the null
hypothesis was recorded. Table 6 examines whether the
features of the same electrode are irrelevant when different
emotions are stimulated, and the values in the table indicate
the number of P values bigger than 0.05. From the t-test
results in Table 6, the number of unrelated features was
greater for electrodes T4 and Pz than for any other elec-
trode pair.

3.4. Feature Test. .e analysis above indicates that the
features selected by CFS are more effective for discrimi-
nation than the original features. To identify the most
effective features in the original feature set, the features in
the optimal feature subset, which means the feature set
contains n features selected by CFS for one volunteer, were
analyzed. Since the optimal feature subset selected by CFS a
little differs by volunteer, it is necessary to consider the
optimal recognition rate which is get using optimal feature
subset, for all volunteers. .erefore, we extracted the
recognition rate of all feature subsets for all subjects and
verified the best feature subset for most subjects. From the
analysis shown in Figure 7, when the feature number n
changes from 2 to 27, electrodes T4 and Pz were the most
effective for recognition of music-evoked emotions.
Moreover, recognition accuracy was better of C4.5 than
other classification methods, and the accuracies of T4 and
Pz electrodes are much better than that of P3. .e data
corresponding to Figure 7 are shown in Table 7.

.is recognition analysis using signals from different
electrodes and different classifiers indicated that recognition
accuracy was not improved so much or was even reduced
when the selected feature subset had more than 10 di-
mensions, regardless of the recognition algorithm or EEG
channel used. .e top 10-dimensional feature subsets of
each music group in the 15 datasets were selected to con-
struct a frequency distribution histogram. In the histogram,
a more effective feature has higher frequency to be selected
by CFS. As shown in Figure 8, for three electrodes, there are
15 volunteers’ experiment data of different features in fre-
quency domain. .e total chosen times of every feature by
CFS for every volunteer are shown in Table 4. We chose the
features whose chosen time was higher than 20 as the fea-
tures correlated with the class labels closely, such as feature 4
(Alpha centre frequency), 8 (.eta average value), 10 (.eta
centre frequency), 14 (Beta average value), 16 (Beta centre
frequency), 17 (Beta maximum power), 20 (entropy of K), 21
(approximate entropy), 22 (the maximum Lyapunov ex-
ponent), 23 (the complexity of C0), 25 (the spectral entropy),
and 26 (Lempel–Ziv complexity). .e above features in-
cluded 6-dimensional linear features, and 6-dimensional
nonlinear features were the final selected optimal feature
subset. .is represents the characteristic feature combina-
tion most effective for most subjects.

Table 4: Accuracies for different dimension features subset across
different electrode.

No. Feature Selected
times

Correlation
degree

1 Alpha peak 0 Low
2 Alpha average value 2 Low
3 Alpha variance 0 Low
4 Alpha centre frequency 28 High
5 Alpha maximum power 0 Low
6 Alpha power sum 0 Low
7 .eta peak 0 Low
8 .eta average value 41 High
9 .eta variance 0 Low
10 .eta centre frequency 26 High
11 .eta maximum power 7 Low
12 .eta power sum 0 Low
13 Beta peak 0 Low
14 Beta average value 40 High
15 Beta variance 0 Low
16 Beta centre frequency 27 High
17 Beta maximum power 21 High
18 Beta power sum 0 Low
19 Singular spectral entropy 19 Low
20 Entropy of K 30 High
21 Approximate entropy 27 High
22 Maximum Lyapunov exponent 35 High
23 Complexity of C0 31 High
24 Sample entropy 18 Low
25 Spectral entropy 39 High
26 Lempel–Ziv complexity 40 High
27 Correlation dimension 19 Low

Table 3: .e differences of average value Uxy for every feature.

No. Feature Uxy

1 Alpha peak 0.042
2 Alpha average value 0.061
3 Alpha variance 0.035
4 Alpha centre frequency 0.146
5 Alpha maximum power 0.024
6 Alpha power sum 0.021
7 .eta peak 0.019
8 .eta average value 0.127
9 .eta variance 0.031
10 .eta centre frequency 0.189
11 .eta maximum power 0.072
12 .eta power sum 0.012
13 Beta peak 0.031
14 Beta average value 0.194
15 Beta variance 0.014
16 Beta centre frequency 0.124
17 Beta maximum power 0.101
18 Beta power sum 0.023
19 Singular spectral entropy 0.055
20 Entropy of K 0.202
21 Approximate entropy 0.138
22 Maximum Lyapunov exponent 0.129
23 Complexity of C0 0.121
24 Sample entropy 0.061
25 Spectral entropy 0.183
26 Lempel–Ziv complexity 0.211
27 Correlation dimension 0.074
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4. Experiments and Analysis

4.1. Linear Features. We found that the beta wave accounted
for the largest proportion of linear features selected by CFS,
consistent with previous research on emotion recognition
[47]. Of the linear features, the band centre frequency was
also of obvious importance, possibly because the centre
frequency best represents and distinguishes the band.

In this study, EEGLAB was used to analyse the linear
features..e steps are as follows. First, the wavelet was used to
process the frequency-band divisions (theta, alpha, and beta)
of the 15 datasets. .en, the EEG data acquired during music

evoking the four emotions, and the associated frequency
bands were superimposed on the average. Finally, EEGLAB
was imported and brain topographic maps constructed for
each emotion using the 12 emotion-related electrodes.

As shown in Figure 9, when the subject was listening to
angry or quiet music, band energy was higher in the frontal
area. When listening to joyful music, theta and alpha band
energy was higher in the occipital cortex region, while beta
band energy was higher at the forehead. When listening to
sad music, the alpha wave exhibited a wider activity range.
Comparing these activity patterns, the alpha band appears to
change mostly with emotion evoked by music, suggesting
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Figure 5: .e recognition rates of SVM, C4.5, BP, and LDA classifiers before and after dimension reduction. (a) Feature reduction
recognition rate verified by SVM. (b) Feature reduction recognition rate verified by C4.5. (c) Feature reduction recognition rate verified by
BP. (d) Feature reduction recognition rate verified by LDA.
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Table 5: .e classification accuracy through the 4 methods using 27 features and the CFS feature set.

Methods Feature set Electrode Recognition rate (%)

SVM

27 original features
Pz 47.68
T3 51.22
T4 57.49

Feature set selected by CFS
Pz 75.42
T3 55.83
T4 63.74

C4.5

27 original features
Pz 72.24
T3 52.56
T4 73.32

Feature set selected by CFS
Pz 85.46
T3 63.78
T4 80.95

BP

27 original features
Pz 79.63
T3 54.64
T4 72.27

Feature set selected by CFS
Pz 82.55
T3 62.96
T4 78.71

LDA

27 original features
Pz 92.23
T3 63.54
T4 88.65

Feature set selected by CFS
Pz 89.78
T3 56.89
T4 70.43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

T3 BP’s ROC (1 – specificity)

Angry AUC = 0.74352
Calm AUC = 0.6627
Joy AUC = 0.73467
Sad AUC = 0.68216

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

T4 BP’s ROC (1 – specificity)

Angry AUC = 0.73213
Calm AUC = 0.70588
Joy AUC = 0.67725
Sad AUC = 0.71799

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pz BP’s ROC (1 – specificity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

Angry AUC = 0.71819
Calm AUC = 0.75247
Joy AUC = 0.63509
Sad AUC = 0.71311

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T3 SVM’s ROC (1 – specificity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

Angry AUC = 0.72412
Calm AUC = 0.7395
Joy AUC = 0.71474
Sad AUC = 0.74489

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T4 SVM’s ROC (1 – specificity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

Angry AUC = 0.71245
Calm AUC = 0.65628
Joy AUC = 0.70608
Sad AUC = 0.68383

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Se
ns

iti
vi

ty

Pz SVM’s ROC (1 – specificity)

Angry AUC = 0.82116
Calm AUC = 0.70756
Joy AUC = 0.73969
Sad AUC = 0.81647

(f )

Figure 6: Continued.
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Table 6: .e unrelated numbers of 12 electrodes of different emotions using paired t-test (p> 0.05).

Electrode FP1 FP2 F3 F4 F7 F8 Fz C3 C4 T3 T4 Pz
Anger-calm 146 135 139 144 136 112 138 130 125 94 168 152
Anger-joy 132 116 107 130 109 105 115 126 76 92 157 142
Anger-sad 99 126 83 99 100 97 100 117 66 67 120 127
Calm-joy 126 124 101 116 97 119 121 109 99 80 124 129
Calm-sad 161 151 127 138 151 133 137 149 126 107 179 164
Joy-sad 112 127 94 111 116 110 103 127 89 103 162 145
Total 776 779 651 738 709 676 714 758 581 543 910 859
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Figure 6: .e ROC curves of SVM, C4.5, BP, and LDA classifiers.
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Figure 7: Continued.
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Figure 8: Frequency histograms of features from electrodes T3, T4, and Pz.

Table 7: Accuracies for different dimension features subset across different electrode.

Feature number 2 5 10 15 20 25
SVM (%)
T3 25.35 40.96 42.95 37.63 38.64 38.99
T4 24.75 30.67 41.66 42.86 43.52 46.23
Pz 40.67 61.53 60.97 41.63 39.94 38.01

C4.5 (%)
T3 37.56 40.82 50.67 56.32 55.77 56.18
T4 36.64 57.63 73.05 74.57 74.69 76.77
Pz 57.81 67.74 75.19 78.63 77.88 78.90

BP (%)
T3 20.23 32.74 40.12 45.64 47.57 48.92
T4 19.27 38.69 62.45 63.74 62.29 64.67
Pz 27.54 58.78 73.13 71.62 70.87 71.33

LDA (%)
T3 25.63 59.67 64.78 65.14 64.97 65.34
T4 21.78 32.71 45.91 50.83 47.63 46.92
Pz 20.79 38.98 58.67 62.38 63.00 62.47
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Figure 7: Recognition accuracies of different feature subset from electrodes T3, T4, and Pz verified by different classifiers. (a) Recognition
accuracy of different feature subsets of T3, T4, and Pz verified by SVM. (b) Recognition accuracy of different feature subset of T3, T4, and Pz
verified by C4.5. (c) Recognition accuracy of different feature subset of T3, T4, and Pz verified by BP. (d) Recognition accuracy of different
feature subset of T3, T4, and Pz verified by LDA.
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that the alpha band is more active when listening to emo-
tionally evocative music.

4.2. Nonlinear Features. To analyse the nonlinear charac-
teristics of the selected feature set, as shown in Figure 10, we
constructed a frequency histogram of the selected features
and studied the relationships between different emotions
and nonlinear characteristics.

For the Pz electrode, from the distribution histogram of
the 6 features in Figure 10, we can find some relationships
between it and the emotion classifications. .e value of
“angry” was mostly distributed in the lower numerical
segment in the histogram of maximum Lyapunov expo-
nent. It is the same as the histogram of spectral entropy. But
for “calm”, numerical distribution differences were not so
obvious except in complexity of C0 histogram. .e value of
“joy” was mostly distributed in the higher numerical
segment in the histogram of complexity of C0, entropy of
K, and spectral entropy compared with “angry”. .e value
of “sad” was mostly distributed in the higher numerical
segment in the histogram of approximate entropy and
spectral entropy.

For the T3 electrode, as shown in Figure 11, we can find
some differences between the histograms of “angry” and
“sad” according to approximate entropy, entropy of K, and
spectral entropy. But, the relationships between features
and emotions were less obvious than for electrodes Pz and
T4.

For the T4 electrode, from the distribution histogram of
the 6 features in Figure 12, we can also find some relationships
between it and the emotion classifications. .e value of
“angry” was mostly distributed in the lower numerical seg-
ment in the histogram of complexity of C0, maximum
Lyapunov exponent, complexity of LZ, and spectral entropy.
But for “calm”, numerical distribution differences were also
not so obvious except in complexity of LZ histogram. .e
value of “joy” was mostly distributed in the higher numerical
segment in the histogram of complexity of C0, maximum
Lyapunov exponent, complexity of LZ, and spectral entropy.
.e value distribution of “sad” was very similar to the dis-
tribution of “joy”, except some s small differences in ap-
proximate entropy and entropy of K.

By the comparison of nonlinear features’ value distri-
bution histogram, some differences could be found between
the four emotion states. Some differences were obvious such
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Figure 9: .ree distinct frequency-band topographic maps distinguishing the emotions calmness, happiness, sadness, and anger evoked by
music.
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Figure 10: Nonlinear characteristic frequency distribution of the Pz electrode.
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Figure 11: Continued.
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as “angry,” “joy,” and “sad”. But for “calm,” the differences
were not so obvious.

4.3. Examination and Repeatability. We then compared
emotion recognition accuracy among the 6-dimensional
linear features, 6-dimensional nonlinear features, the

selected 12-dimensional features, and the 27-dimensional
features using different algorithms. .e recognition rate
was higher for nonlinear features than linear features for
all algorithms, possibly because differences in nonlinear
EEG features are larger than the deviations of frequency
features within the same frequency band, such as the mean
values of centre frequency and maximum frequency.
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Figure 12: Nonlinear characteristic frequency distribution of the T4 electrode.
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Figure 11: Nonlinear characteristic frequency distribution of the T3 electrode.
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.erefore, nonlinear features may be more suitable for
classification of mood evoked by music. .e selected
features were then compared with the original 27-di-
mensional features. Accuracy was not significantly higher
than that with the original set, possibly because these
features were selected based on a comparison of all datasets
across subjects and were not the best set for any individual.
However, the smaller number of dimensions with equiv-
alent accuracy indicates that redundant features were
removed. .erefore, the 12-dimensional features selected
can be regarded as the main EEG features distinguishing
the emotions calm, anger, joy, and sadness evoked by

music. So, we selected the nonlinear features of Pz elec-
trodes as the best feature set for emotion recognition. .e
results are shown in Figure 13.

To test the repeatability of the classification effectiveness of
the selected feature set, we used the EEG signal of the 15
volunteers as the repeatability examination data source. .e
classification procedures were repeated for 10 times for each
volunteer. For every one, the EEG data was selected in four
emotion statures including joy, sad, calm, and angry..at was,
for every emotion of every volunteer, 8 randomly selected EEG
data were employed as testing data, and the other 72 EEG data
were used as the training data. .e classification results are
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Figure 13: Recognition accuracy comparison among feature subsets. (a) Feature reduction recognition rate verified by SVM. (b) Feature
reduction recognition rate verified by C4.5. (c) Feature reduction recognition rate verified by BP. (d) Feature reduction recognition rate
verified by LDA.

Computational Intelligence and Neuroscience 15



listed in Table 8. It showed that the average recognition rates
were all higher than 85% and the nonlinear features of Pz
electrode were effective for emotion recognition.

.e DEAP database has also been tested in this paper. We
used the same data label as the article [1]..e score of valence
and arousal dimension 1–3 is regarded as low group and 7–9
is high group, and finally, more than 20 EEG data evoked by
videos were selected for every volunteer. .e 12-dimension
features mentioned in this paper were employed as the feature
set. .e result is that classification accuracy is higher than the
statistical characteristics mentioned in the article. And as
shown in Table 9, for C4.5 classifier, the correct classification
rate is 84.91% and 89.65% for valence and arousal.

5. Conclusions

.is study analyzed the linear and nonlinear characteristics
of EEG signals recorded during music evoking distinct
emotional responses (calm, joy, sadness, and anger) and
identified those features most effective for accurate EEG-
based recognition of emotion. .e EEG characteristics of 12
EEG electrodes yielded 27 dimensions each. Statistical
analysis revealed that electrodes T3, T4, and Pz were most
likely to be associated with the music stimulus. .e CFS
method was used to identify those features most effective for
EEG-based emotion recognition without redundancy. We
then used different classifiers to test whether the selected
feature set was more accurate than the original feature data.
.e results can be summarised as follows:

(1) .e algorithms C4.5 are more effective for emotion
classification of EEG signals than LDA, BP neural
network, and SVM.

(2) We used brain topographic maps and frequency
distribution histograms to identify the optimal subset
of linear and nonlinear features of the three electrodes
and identified six-dimensional linear features (centre
frequency of the alpha band, mean theta band, centre
frequency of the theta wave, mean delta band, centre
frequency of the delta band, and maximum power of
the delta wave) plus six-dimensional nonlinear fea-
tures (entropy of K, approximate entropy, maximum
Lyapunov exponent, C0 complexity, spectral entropy,
and LZ complexity). .ese dimensions may be the
most representative features for the classification of
music-evoked emotions.

(3) We compared discrimination accuracy among the
different combinations of linear and nonlinear fea-
tures and found that the nonlinear features were
more effective. Finally, the 12 selected dimensional
features were as accurate as the original 27 di-
mensions, indicating that redundant features were
eliminated. .en the classification results of 10 times
randomly examinations, it could be concluded that
the selected 6 nonlinear features of Pz are more
effective than other features when used as the key
feature set to classify human emotion statues.
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freemusicarchive.org/).

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

References

[1] K. Xie, 5e EEG Recognition Algorithms of to Music Inter-
ferenceemotional Music, University of Electronic Science and
Technology of China, Chengdu, China, 2013.

[2] J. Jeong, “EEG dynamics in patients with Alzheimer’s disease,”
Clinical Neurophysiology, vol. 115, no. 7, pp. 1490–1505, 2004.

[3] N. .ammasan, K. Moriyama, K.-I. Fukui, and M. Numao,
“Familiarity effects in EEG-based emotion recognition,” Brain
Informatics, vol. 4, no. 1, pp. 39–50, 2016.

[4] Y. Kumagai, M. Arvaneh, and T. Tanaka, “Familiarity affects
entrainment of EEG in music listening,” Frontiers in Human
Neuroscience, vol. 11, p. 384, 2017.

[5] H. Santosa, M. J. Hong, and K.-S. Hong, “Lateralization of
music processing with noises in the auditory cortex: an fNIRS
study,” Frontiers in Behavioral Neuroscience, vol. 8, p. 418,
2014.

[6] K.-S. Hong and H. Santosa, “Decoding four different sound-
categories in the auditory cortex using functional near-
infrared spectroscopy,” Hearing Research, vol. 333, pp. 157–
166, 2016.

[7] M. Bigliassi, C. I. Karageorghis, A. V. Nowicky, M. J. Wright,
and G. Orgs, “Effects of auditory distraction on voluntary
movements: exploring the underlying mechanisms associated

Table 8: Repeatability of the classification effectiveness.

1 2 3 4 5 6 7 8 9 10 Ave
100 87.5 87.5 87.5 87.5 87.5 100 87.5 100 75 90
100 100 100 100 87.5 100 87.5 87.5 87.5 75 92.5
100 87.5 87.5 100 87.5 100 100 100 100 87.5 95
87.5 87.5 75 87.5 87.5 87.5 87.5 87.5 87.5 100 87.5
87.5 87.5 87.5 100 100 100 100 87.5 87.5 100 93.75
100 87.5 87.5 100 87.5 75 87.5 100 87.5 100 91.25
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Table 9: Recognition accuracy rate of the DEAP database.

Method Valence (%) Arousal (%)
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C4.5 84.91 89.65
LDA 72.33 76.68
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