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Birds are an important source of fecal contamination in environment. Many of diseases are spread through water contamination
caused by poultry droppings. A study was conducted to compare the intestinal microbial structure of Shaoxing ducks with and
without water. Thirty 1-day-old Shaoxing ducks (Qingke No. 3) were randomly divided into two groups; one group had free access
to water (CC), while the other one was restricted fromwater (CT). After 8 months of breeding, caecal samples of 10 birds from each
group were obtained on ice for high-throughput sequencing. A total of 1507978 valid sequences were examined and clustered
into 1815 operational taxonomic units (OTUs). At phylum level, Firmicutes (41.37%), Bacteroidetes (33.26%), Proteobacteria
(13.67%), and Actinobacteria (8.26%) were found to dominate the microbial community in CC birds, while Firmicutes (53.62%),
Bacteroidetes (33.06%), and Actinobacteria (11.13%) were uncovered to be the prime phyla in CT ducks. At genus level,
Bacteroides (25.02%), Escherichia-Shigella (11.02%), Peptococcus (7.73%) and Parabacteroides (5.86%) were revealed to be the
mainly genera in the CC group ducks, while Bacteroides (18.11%), Erysipelatoclostridium (10.94%), Ruminococcaceae unclassified
(10.43%), Lachnospiraceae unclassified (5.26%), Coriobacteriales unclassified (5.89%), and Faecalibacterium (4.2%) were detected
to staple the microbial flora in the CT birds. One phylum and 13 genera were found to have the significant difference
between the two bird groups (p<0.05). At phylum level, Proteobacteria in CT ducks were found to be obviously lower than
ducks in CC birds (p<0.05). At genus level, Escherichia-Shigella (p<0.05) and Peptococcus (p<0.05) were found to be notably
lower in CT birds, while Erysipelatoclostridium (p<0.05), Ruminococcaceae unclassified (p<0.01), Coriobacteriales unclassified
(p<0.05), Faecalibacterium (p<0.01), Atopobiaceae unclassified (p<0.01), Alistipes (p<0.05), Eggerthellaceae unclassified (p<0.05),
Prevotella 7 (<0.05), Rikenellaceae RC9 gut group (p<0.05), Prevotellaceae uncultured (p<0.05), and Shuttleworthia (p<0.05)
were observed to be prominently higher in CT ducks. In conclusion, the present study revealed the effects of keeping ducks
away from swimming with obvious changes in the microbial community. Though higher microbial richness was found in the
ducks without swimming, more pathogenic genera including Eggerthella, Erysipelatoclostridium, Alistipes, Prevotella 7, and
Shuttleworthia; zoonotic genera including Eggerthella and Shuttleworthia; inflammatory genus Alistipes; anti-inflammatory
Faecalibacterium genus; and tumor genus Rikenellaceae were examined in these ducks. The CT ducks also showed significant
changes at genera level regarding the metabolism (Peptococcus, Ruminococcaceae, and Coriobacteriales).

1. Introduction

Poultry is of great importance for economic and human
nutrition accommodation. The poultry in China accounts
for about 25% of the world population and approximately
40% of fowl in Asia [1]. Four common types of ducks are

reared in China: Gaoyou duck, Peking duck, Shaoxing duck,
and Weishan sheldrakes. These ducks contribute greatly to
the Chinese poultry industry. Shaoxing ducks are commonly
bred in more than 10 provinces of the country. However,
an unavoidable water contamination caused by these ducks
has always been causing trouble to local population [2].
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Figure 1: Flow diagram of the current research design. The ducks in CC and CT groups were bred differently as the ducks of CC group had
free access to water.

Keeping the birds away fromwater for swimming seems to be
indeed an effective and undemanding method to drop water
contamination.

The human and animal complicated microbial commu-
nity was made up of over thousands of microbial genera [2].
Those numerous microorganisms are of great importance
for acting the role of gastrointestinal system protection,
synthesizing andmetabolizing parts ofNHVs (nutrients, hor-
mones, and vitamins), eliminating drugs and toxic metabo-
lites, inducting and regulating host responses to various
pathogens, protecting from pathogens, and helping with
the development and maturation of immune cells [3–7].
The changes or disturbances of microbial flora were found
to have relationships with various gastrointestinal diseases,
whichmay cause impaired digestive, diminished weight gain,
being even mortal to animals [5]. Infectious diseases may
cause serious disaster for animal health and productivity in
developing countries [8–10]. However, scarce information
is available regarding taking the ducks out of pool causing
effects on the microbial community of the birds. Therefore,
we performed this study to reveal the microbial community
changes by comparing the microbial structure of Shaoxing
ducks with and without water for swimming through high-
throughput sequencing.

2. Materials and Methods
2.1. Ethics. All animal experiments and procedures were
conducted under the relevant procedures of Proclamation
of the Standing Committee of College of Animal Sciences,
Wenzhou Vocational College of Science and Technology,
Wenzhou, People’s Republic of China.

2.2. BirdsManagement andCaeca Sampling. In current study,
a total of 30 1-day-old Shaoxing ducks (Qingke No. 3) were
reared and bred in a local duck farm in Cangnan County,
Wenzhou, China.The ducks were randomly divided into two
groups (CC and CT) (Figure 1).The ducks in CC group (CC1-
CC10) and CT group (CT1-CT10) were bred with commercial

diets and normal drinking water as previously reported [11].
Birds in CC group had free access to water for swimming,
while ducks in CT groupwere confinedwithout water. After 8
months of breeding, 10 caecal samples from each group were
obtained and frozen in liquid nitrogen immediately. All the
samples were stored at −80∘C for further analysis.

2.3. DNA Isolation and Gene Amplification. The microbial
genomic DNA from each duck sample was isolated by
employing the commercial QIAamp� Fast DNA Mini Kits
(Qiagen Ltd., Germany) in accordance with manufacturer’s
specification, as described in previous study [4]. The gene of
16S rRNA (V3-V4 variable region)was amplifiedwith primers
(F: ACTCCTACGGGAGGCAGCAG and R: GGACTACHV-
GGGTWTCTAAT) [12]. The PCR mixture including 18 ul
autoclaved distilledwater, 10 ul PCRBuffer (5×), 4.5 ul dNTPs
(2.5mM), 10 ul GCBuffer (5×), 4 ul DNATemplate, 0.5 ul Taq
E, and 1.5 ul of each forward and reverse primer (working
concentration: 10 uM) in a 50 ul reaction volume was pre-
pared. Each of 35 PCR cycles consisted of 98∘C for 15s, 55∘C
for 30s, and 72∘C for 27s after an initial hot start at 98∘C for
3min and ending with 72∘C for 10min. All current DNA am-
plification productswere examined by 1.5% agarose gel stained
with ethidium bromide; DNA bands were recovered using
AxyPrep DNAGel Recovery Kit (Axygen Biosciences, USA).

2.4. Library Preparation and Sequencing. Libraries were con-
structed by utilizing NEB Next Ultra DNA Library Prep
Kit for Illumina (NEB, USA) following the explanatory
memorandum, and index codes were added as described in
previous study [6, 13]. All the library products were quantified
utilizing Qubit 2.0 Fluorometer (Thermo Fisher Scientific,
US). Then all the amplification libraries were sequenced via
high-throughput sequencing on an Illumina MiSeq platform
(Illumina, San Diego, US).

2.5. Bioinformatics and Statistical Analysis. Quantitative
Insights Into Microbial Ecology (QIIME, v1.8.0) was used
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Figure 2: (a) Length distribution of trimmed sequences and (b) OTUs Venn analysis. (a) Length distribution of trimmed sequences. Almost
all the sequences from CC and CT groups were about of 381-400 bp. (b) Venn analysis of OTUs from CC and CT groups. Most OTUs were
shared by both groups, with 144 and 175 OTUs owned by CC or CT groups. Ducks in CC groups had free access to swimming, while the birds
in CT group were confined to land.

to remove error or question sequences in the current study
[14]. Operational taxonomic units (OTUs) were obtained
by using USEARCH (Version 7.1 http://drive5.com/uparse/)
via 97% similarity and removing the divergence sequences
clustering (<3%) [6, 15]. OTUs were taxonomically analyzed
via BLASTn tool against a curated UNITE database [16]. The
analysis of Alpha and Beta diversity was done according to
previously reported studies [4, 6]. The microflora of birds at
phylumand genus levels were identified by employingQIIME
[6]. Heat maps were designed based on R package “gplots”
[4]. PCA (Principal Component Analysis), PCoA (Principal
Coordinate Analysis), NMDS (Nonmetric Multidimensional
Scaling), LEfSe (Linear Discriminant Analysis Effect Size),
and LDA (Linear Discrimination Analysis) were carried out
according to previous research reports [17–19]. To discover
the duck group difference at different levels, one-way analysis
of variance was used followed by Tukey’s honest test for
continuous variables, and the differences were considered
statistically significant when p < 0.05 through the IBM SPSS
Statistics 24.0 (SPSS Somers, NY).

3. Results

3.1.
eMicrobial Community Diversities of Ducks in Different
Groups. A total of 1507978 valid sequences were examined
with 99.92% sequences in the length of 381-400 bp (Fig-
ure 2(a)). All those sequences were clustered into 892 and
923 OTUs, respectively, in CC and CT group. A total of
748 OTUs were shared into two groups (Figure 2(b)). The
species accumulation curve was found extremely horizontal

when samples reached 20, which showed that the selected
samples in the current study were reasonable (Figure 3(a)).
All the values of coverage were extremely close to 1.00,
which demonstrated a considerable high number of libraries
detected out in each duck (Table 1). The rank abundance
curves of different birds indicated were long and smooth
broken line indicating high abundance and uniform distribu-
tion of species of the birds (Figure 3(b)) [6]. The low values
of Simpson and horizontal broken Shannon curves revealed
high diversities of those ducks (Table 1; Figure 3(c)). The
community richness index of Chao and ACE different duck
samples showed a high richness of microbial flora in each
duck, with the gradual rarefaction curves of the birds (Table 1;
Figure 3(d)).

3.2. 
e Microbial Community Structure in Different Levels in
Different DuckGroups. At phylum level, Firmicutes (41.37%),
Bacteroidetes (33.26%), Proteobacteria (13.67%), and
Actinobacteria (8.26%)were found to dominate themicrobial
community in all the CC birds, while Firmicutes (53.62%),
Bacteroidetes (33.06%), and Actinobacteria (11.13%) were
uncovered to be the prime phyla in CT ducks (Figure 5). At
genus level, Bacteroides (25.02%), Escherichia-Shigella
(11.02%), Peptococcus (7.73%), and Parabacteroides (5.86%)
were revealed to be the main genera in CC group ducks,
while Bacteroides (18.11%), Erysipelatoclostridium (10.94%),
Ruminococcaceae unclassified (10.43%), Lachnospiraceae
unclassified (5.26%), Coriobacteriales unclassified (5.89%),
and Faecalibacterium (4.2%) were detected to staple the
microbial flora in the CT birds (Figure 6).
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Figure 3: Species richness and diversity analysis of different groups. (a) Species accumulation curves of the current study. (b) The rank
abundance curve of all birds in two groups. (c) The Shannon diversity index rarefaction curve of different duck samples in two groups.
(d) The rarefaction curve of all the birds in two groups. Ducks in CC (CC1-CC10) groups had free access to swimming, while birds in CT
(CT1-CT10) group were limited to land only.



BioMed Research International 5

0

200

400

600

800

Chao ACE

0

200

400

600

800
Simpson

0.0

0.1

0.2

0.3

0

1

2

3

4

5

Shannon

Coverage

0.0

0.5

1.0

1.5

∗ ∗

∗∗

CC CT CC CT CC CT

CC CTCC CT
Figure 4: Comparison of themicrofloralmicrobial diversity index (Chao1, ACE, Simpson Shannon, andCoverage) between two duck groups.
Alpha-diversity analysis of microbiota of the two groups was compared according to the microfloral microbial diversity index (Chao1, ACE,
Simpson Shannon, and Coverage) between two duck groups. Ducks in CC groups had free access to swimming, while birds in CT group were
reserved to land (∗𝜌<0.05; ∗ ∗ 𝜌<0.01 for Student’s t-test).

CC
_1

CC
_2

CC
_3

CC
_4

CC
_5

CC
_6

CC
_7

CC
_8

CC
_9

CC
_1

0

CT
_1

CT
_2

CT
_3

CT
_4

CT
_5

CT
_6

CT
_7

CT
_8

CT
_9

CT
_1

0

Firmicutes
Bacteroidetes
Actinobacteria
Proteobacteria

Bacteria_unclassified
Tenericutes
Spirochaetes
Cyanobacteria

Deferribacteres
Chloroflexi
Others

0

20

40

60

80

100

Re
lat

iv
e a

bu
nd

an
ce

 (%
)

(a)

CC CT
0

20

40

60

80

100

Re
lat

iv
e a

bu
nd

an
ce

 (%
)

Firmicutes
Bacteroidetes
Actinobacteria
Proteobacteria
Bacteria_unclassified
Tenericutes
Spirochaetes
Cyanobacteria
Deferribacteres
Chloroflexi
Others
(b)

Figure 5: The microbial community structure at phylum level: (a) different ducks; (b) different groups. The microbial community structure
difference was compared at phylum level in both groups: (a) comparing themicrobial differences in all the ducks; (b) comparing themicrobial
differences in the two groups.The ducks in CC (CC1-CC10) group had free access to water, and birds in CT (CT1-CT10) group were confined
to land.
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Table 1: The microflora microbial diversity index (Chao, ACE, Simpson, Shannon, and Coverage) of each duck.

Group Sample ID Chao ACE Simpson Shannon Coverage

CC

1 599 606 0.0274 4.53 0.997910
2 493 492 0.0761 3.47 0.997618
3 199 245 0.0748 2.96 0.998882
4 514 473 0.0852 3.32 0.997229
5 480 481 0.2565 2.05 0.997059
6 428 535 0.1108 2.9 0.997424
7 456 448 0.0807 3.69 0.998226
8 619 624 0.0606 3.83 0.997497
9 273 267 0.128 2.61 0.998517
10 516 534 0.0621 3.46 0.997108

CT

1 647 653 0.0242 4.55 0.997594
2 566 554 0.0718 3.56 0.997156
3 678 651 0.0413 4.24 0.997059
4 550 567 0.041 3.98 0.997327
5 461 426 0.0375 4.02 0.998080
6 606 617 0.0196 4.7 0.997715
7 710 705 0.0249 4.55 0.997011
8 451 446 0.0827 3.36 0.997813
9 524 498 0.0246 4.43 0.998056
10 644 640 0.0204 4.65 0.997570
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Figure 6: The microbial community structure at genus level: (a) different ducks; (b) different groups. The microbial community structure
difference was compared at genus level in CC and CT groups: (a) comparing the microbial differences in all the ducks; (b) comparing the
microbial differences in the two groups.
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Figure 7: Microbial community bar plot with cluster tree of the ducks.

3.3. Comparison of the Microbial Community Structure in
Different Bird Groups. A clear difference between CC and
CT duck was revealed by the microbial community bar plot
with cluster tree calculated by employing Bray-Curtis (Bray-
Curtis Distance Coefficient Bray-Curtis) (Figure 7) [20]. The
results of PCA, PCoA, and NMDS all showed a distinct shift
of microbial structure between two groups (Figure 8). By
employing the Metastats analysis, 1 phylum and 13 genera
were found to have significant difference between the two
bird groups. At phylum level, Proteobacteria in CT ducks
were found to be obviously lower than ducks in CC birds (p=
0.0167<0.05) (Figure 9). At genus level, Escherichia-Shigella
(p=0.0364) and Peptococcus (p=0.0429) were found to be
notably lower in CT birds (p<0.05), while Erysipelatoclostr-
idium (P=0.0407<0.05), Ruminococcaceae unclassified (p=
0.0027<0.01), Coriobacteriales unclassified (p=0.0235<0.05),
Faecalibacterium (p=0.0014<0.01), Atopobiaceae unclassi-
fied (p=0.0093<0.01), Alistipes (p=0.014<0.05), Eggerthella-
ceae unclassified (p=0.0128<0.05), Prevotella 7 (p=0.0155<

0.05), Rikenellaceae RC9 gut group (p=0.0385<0.05), Pre-
votellaceae uncultured (p=0.0345<0.05), and Shuttleworthia
(p=0.0124<0.05) were observed to be prominently higher in
the CT ducks (Figure 10). The heat map in the present results
indicated that there was an obvious difference of phylum
of Proteobacteria in different groups (Figure 11). Significant
differencewas also discovered among the genera ofKlebsiella,
Brevibacterium, Bacillus, Lactococcus, Anaerofustis,
Bacteroidales unclassified, Rikenellaceae RC9 gut group,
Rikenellaceae unclassified, Ruminococcus torques group,
Negativibacillus, Blautia, Ruminococcaceae UCG−005,
Ruminococcaceae UCG−014, Shuttleworthia, Prevotellaceae
uncultured, and Faecalibacterium in two duck groups
(Figure 12). By employing the utilization of LEfSe (http://
huttenhower.sph.harvard.edu/galaxy/root?tool id=lefse upload)
and LDA (linear discriminant analysis), the important
microbiome of CC ducks was shown in red color, while that
of CT birds was shown in green color (Figure 13). Obvious
difference of important microorganism was uncovered

http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload
http://huttenhower.sph.harvard.edu/galaxy/root?tool_id=lefse_upload
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Figure 8: Multiple samples analysis of microbial community of the ducks: (a) PCA; (b) PCoA; (c) NMDS. Multiple samples of microbial
community of the ducks were analyzed in CC and CT groups of ducks: (a) Principal Component Analysis (PCA) of microbial community of
the ducks in CC and CT groups; (b) Principal Coordinates Analysis (PCoA) of microbial community of the ducks in CC and CT groups; (c)
Nonmetric Multidimensional Scaling (NMDS) of microbial community of the ducks in CC and CT groups.
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Figure 10: Comparison of the microbial community structure in genus level in different duck groups.
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with misalignment in red and green color between the two
groups.

4. Discussion

In China, over 10 billion of poultry each year (National
Bureau of Statistics of China, (http://data.stats.gov.cn/adv
.htm?m=advquery&cn=C01)mark a great contribution to the
economic and food supply of the country. Such an amazing
number of birds raise a question mark towards the quality of
water for human consumption.

Previously, a study was conducted in Shaoxing ducks, the
same ducks used in our study, which described the changes
in gut microbiota reared on litter and plastic mesh floor [21].
In the current study, we employed 16S rRNA gene Illumina
HiSeq sequencing to compare the intestinalmicrobiota in CC
and CT ducks for the first time. High diversities and richness
of microbial flora were found in each duck which was in line
with previous studies [4, 6]. The index of Shannon in CT
ducks was significantly higher, while Simpson was obviously
at higher level (Figure 4), which might be due to the two
different statistical techniques, as both methods concern the
diversities of microbial community [6]. The Chao index was
shown to be conspicuously higher in CT ducks (Figure 8),

which was in accordance with previously found decreased
richness of microbial community in diarrheal dogs and
deer [22, 23]. The present results possibly mean that taking
the birds out of water increased the richness of microbial
community.

One phylum and 13 genera in CT birds were observed
significantly in CC ducks (Figures 9 and 10). Among 13
genera, 2 genera (Escherichia-Shigella andPeptococcus)were
discovered at much lower level in CT group, while 11 genera
(Erysipelatoclostridium,Ruminococcaceae unclassified, Cor-
iobacteriales unclassified, Faecalibacterium, Atopobiaceae
unclassified, Alistipes, Eggerthellaceae unclassified, Pre-
votella 7, Rikenellaceae RC9 gut group, Prevotellaceae
uncultured, and Shuttleworthia) were shown to be obviously
higher in CT ducks (Figure 9). The commonly known
Escherichia-Shigella was found to be associated with a
proinflammatory status [24] leading to the inflammation of
the colon mucosa [22]. These bacterial pathogens are mostly
transmitted through feces, food, and water [23, 24]. The
genera of Eggerthella, Erysipelatoclostridium, Alistipes, and
Prevotella 7 were considered as opportunistic pathogens
[25–27] with Eggerthella having the potential of zoonosis
[26]. The genus Shuttleworthia has one known species,
Robinsoniella peoriensis, which was originally isolated

http://data.stats.gov.cn/adv.htm?m=advquery&cn=C01)
http://data.stats.gov.cn/adv.htm?m=advquery&cn=C01)
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Figure 12: Heat map of 50 most abundant genera of each ducks.

from swine and could infect immune-competent humans
[28, 29]. From the results, it is deduced that taking the
ducks away from swimming decreased the pathogenetic
genus of Escherichia-Shigella; however, more pathogens
(Eggerthella, Erysipelatoclostridium, Alistipes, Prevotella 7,
and Shuttleworthia) obviously grew in the microbial

community. Peptococcus genus was reported to have
relationship with respiratory glucose metabolism [30, 31].
Ruminococcaceae is connected to cellulose-degrading
capacity [32]. Coriobacteriales are able to metabolize
wide variety of carbohydrates and other metabolites [33].
Coriobacteriaceae genus has been observed to increase
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significantly in the ceca of mice in response to stress [34].
These results are suggestive that keeping the ducks away
from swimming can possibly affect the metabolism of birds.
Faecalibacterium is involved in anti-inflammatory activity
within the gut [34, 35] and Alistipes have been shown to be
associated with gut inflammation [36]. Rikenellaceae were
found to be higher in tumor syndrome cancer patients [37].
From the changes, we may reveal that swimming can bring
about the changes in inflammatory and anti-inflammatory
processes and even tumor mechanisms due to changes
in microbial flora. Because of the lack of information
regarding Atopobiaceae and Rikenellaceae, the relevance
of its relationship with two different groups cannot be
speculated [38].

In conclusion, the present study for the first time revealed
the effects of keeping ducks away from swimming with
obvious changes in the microbial community of birds.
Although higher microbial richness was found in the ducks
without swimming, more pathogenetic genera (Eggerthella,
Erysipelatoclostridium, Alistipes, Prevotella 7, and Shuttle-
worthia), even zoonotic genera (Eggerthella and Shuttlewor-
thia), inflammatory genera (Alistipes), anti-inflammatory
genera (Faecalibacterium), and tumor (Rikenellaceae) related
genera were examined in the ducks. Also CT ducks showed
significant changes in genera regarding the metabolism
(Peptococcus, Ruminococcaceae, and Coriobacteriales). The
research performed herein may contribute to and highlight
the strategic process concerning thewater pollution in animal
husbandry industry.
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