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Functional inhibition of acid sphingomyelinase disrupts
infection by intracellular bacterial pathogens
Chelsea L Cockburn1 , Ryan S Green1, Sheela R Damle1, Rebecca K Martin1, Naomi N Ghahrai1, Punsiri M Colonne2,
Marissa S Fullerton2, Daniel H Conrad1, Charles E Chalfant3, Daniel E Voth2, Elizabeth A Rucks4 , Stacey D Gilk5,
Jason A Carlyon1

Intracellular bacteria that live in host cell–derived vacuoles are
significant causes of human disease. Parasitism of low-density
lipoprotein (LDL) cholesterol is essential for many vacuole-
adapted bacteria. Acid sphingomyelinase (ASM) influences LDL
cholesterol egress from the lysosome. Using functional inhibitors
of ASM (FIASMAs), we show that ASM activity is key for infection
cycles of vacuole-adapted bacteria that target cholesterol traf-
ficking—Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia
trachomatis, and Chlamydia pneumoniae. Vacuole maturation,
replication, and infectious progeny generation by A. phag-
ocytophilum, which exclusively hijacks LDL cholesterol, are halted
and C. burnetii, for which lysosomal cholesterol accumulation is
bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae,
which hijack LDL cholesterol and other lipid sources, are sup-
pressed but less so than A. phagocytophilum or C. burnetii. A.
phagocytophilum fails to productively infect ASM2/2 or FIASMA-
treated mice. These findings establish the importance of ASM for
infection by intracellular bacteria and identify FIASMAs as potential
host-directed therapies for diseases caused by pathogens that
manipulate LDL cholesterol.
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Introduction

Intracellular bacteria that reside exclusively within host cell–
derived vacuoles are major causes of disease in terms of both
incidence and severity. If left untreated, the resulting infections can
be severe, even fatal, or can become chronic and lead to extended
periods of debilitation. Although certain antibiotics can effectively
treat many of these diseases, bacterial resistance has been re-
ported and allergy can occur (Jones et al, 1990; Lefevre et al, 1997;
Somani et al, 2000; Spyridaki et al, 2002; Sandoz & Rockey, 2010;

Rouli et al, 2012), signifying the need for effective alternative
therapeutics.

Parasitism of lipids, particularly cholesterol, is essential for in-
tracellular bacterial pathogen infectivity [reviewed in Samanta et al
(2017); Walpole et al (2018)]. Cholesterol is a major lipid component
of eukaryotic membranes that influences membrane rigidity and is
involved in diverse cellular processes including signal trans-
duction, gene transcription, protein function and degradation,
endocytic and Golgi trafficking, and intra-organelle membrane
contact site formation. In mammalian cells, whereas cholesterol
can be synthesized de novo in the endoplasmic reticulum, most is
acquired exogenously via the low-density lipoprotein (LDL) re-
ceptor. After LDL uptake, esterified cholesterol is trafficked by the
endocytic route to lysosomes, where it is hydrolyzed to unesterified
free cholesterol molecules that are delivered to the plasma
membrane, trans-Golgi network (TGN), endoplasmic reticulum, and
ultimately throughout the cell (Urano et al, 2008; Samanta et al,
2017; Walpole et al, 2018). Lysosomes therefore play an essential
role in intracellular cholesterol homeostasis (Kuzu et al, 2017).

Inhibition of lysosomal cholesterol efflux occurs in lipid storage
disorders, such as Niemann–Pick disease (Brady et al, 1966). The
type A and B forms of this condition result from loss of function
mutations in acid sphingomyelinase (ASM), a lysosomal enzyme
that hydrolyzes sphingomyelin to yield phosphorylcholine and
ceramide (Vanier, 2013). ASM deficiency leads to sphingomyelin
accumulation in lysosomes, which, in turn, blocks LDL-derived
cholesterol efflux (Lloyd-Evans et al, 2008). Niemann–Pick dis-
ease severity correlates with decreased ASM activity (Schuchman &
Miranda, 1997). Conversely, ASM activation has also been linked to
the development of multiple human diseases [reviewed in
Schuchman (2010); Kornhuber et al (2015)], and studies using cells
from Niemann–Pick patients or ASM knockout mice indicate that
ASM deficiency might also have beneficial consequences [reviewed
in Kornhuber et al (2010)]. Indeed, functional inhibitors of ASM
(FIASMAs) have emerged as promising drugs with broad therapeutic
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potential (Kornhuber et al, 2010; Kuzu et al, 2017). FIASMAs are
lysosomotropic compounds that indirectly inactivate ASM by pro-
moting its detachment from the inner lysosomal membrane,
rendering it susceptible to proteolysis. FIASMAs are active in cell
culture models and in vivo at concentrations that are therapeu-
tically achieved during pharmacotherapy in humans. Many FIASMAs
are FDA approved for clinical use in humans (Kornhuber et al, 2010).

Some studies have investigated ASM’s relevance to microbial
infections and FIASMAs’ potential therapeutic benefit in this context.
For instance, FIASMA treatment protects mice from superoxide-
mediated lung edema associated with Staphylococcus aureus in-
fection and prevents lethal S. aureus sepsis when administered
together with antibiotics (Peng et al, 2015). Also, paradoxically,
whereas ASM-mediated phagosome maturation is important for
controlling mycobacterial infection, ASM-dependent cell–cell fusion
can provide an innate immunoescape niche for mycobacterial
replication (Utermohlen et al, 2008; Vazquez et al, 2016; Wu et al,
2018). Given thatmultiple intracellular bacterial pathogens hijack LDL
cholesterol trafficking and storage pathways for growth and/or
survival [reviewed in Samanta et al (2017); Walpole et al (2018)],
FIASMAs could represent novel, non-antibiotic means for treating the
diseases that these bacteria cause. Yet, their potential in this capacity
and the importance of ASM in intracellular bacterial infections that
involve cholesterol parasitism have gone largely unexplored.

Here, we demonstrate that ASM activity is essential for optimal
infection cycle progression of four obligate intracellular vacuole-
adapted bacterial pathogens that target host cholesterol trafficking
pathways: Anaplasma phagocytophilum (Xiong et al, 2009; Xiong &
Rikihisa, 2012), Coxiella burnetii (Howe & Heinzen, 2006; Mulye et al,
2018), Chlamydia trachomatis (Carabeo et al, 2003; Beatty, 2006, 2008;
Kumar et al, 2006; Cocchiaro et al, 2008; Cox et al, 2012), and Chla-
mydia pneumoniae (Liu et al, 2010). The degree of FIASMA-mediated
inhibition correlates with pathogen dependency on LDL cholesterol.
ASM-deficientmice are resistant toA. phagocytophilum infection and
FIASMA administration postinfection prevents the bacterium from
productively infecting wild-type (WT) mice. Overall, this study es-
tablishes the importance of ASM to infection bymultiple intracellular
bacteria and distinguishes FIASMAs as potential therapeutics for
diseases caused by pathogens whose growth is influenced by LDL
cholesterol.

Results

Functional inhibition of host cell ASM reduces the
A. phagocytophilum load

A. phagocytophilum infects neutrophils to cause the emerging
disease human granulocytic anaplasmosis, which presents as an
acute nonspecific febrile illness that can progress to severe
complications or death in immunocompromised patients, the el-
derly, and in the absence of antibiotic intervention (Ismail &
McBride, 2017). A. phagocytophilum lacks genes required for lipid
A biosynthesis and most peptidoglycan synthesis genes (Lin &
Rikihisa, 2003; Dunning Hotopp et al, 2006). The bacterium in-
corporates cholesterol into its fragile cell envelope and requires

the lipid for intracellular replication, but is devoid of genes
encoding cholesterol biosynthesis or modification enzymes and
must parasitize the sterol from host cells (Lin & Rikihisa, 2003). A.
phagocytophilum obtains cholesterol exclusively by hijacking the
Niemann–Pick type C protein 1 (NPC1) pathway that mediates ly-
sosomal cholesterol efflux (Xiong et al, 2009; Xiong & Rikihisa, 2012),
which makes it an ideal organism for evaluating the efficacy of
FIASMAs for inhibiting infection by an LDL cholesterol–dependent
pathogen.

Promyelocytic HL-60 and RF/6A endothelial cells are estab-
lished models for examining A. phagocytophilum–host cell in-
teractions (Klein et al, 1997; Munderloh et al, 2004; Truchan et al,
2016c). Desipramine is an FDA-approved tricyclic antidepressant
that functionally inhibits ASM (Kornhuber et al, 2010). To de-
termine if pharmacologic inhibition of ASM inhibits A. phag-
ocytophilum infection, desipramine-treated HL-60 and RF/6A
cells were incubated with A. phagocytophilum. PCR analyses at 24,
48, and 72 h revealed that, although bacterial DNA levels increased
throughout the time course in control cells, they were pro-
nouncedly reduced and did not increase in desipramine-treated
cells in a dose-dependent manner (Fig 1A–C). Desipramine also
halted A. phagocytophilum infection in human neutrophils (Fig
1D). This experiment was only carried out for 32 h to allow
completion of one bacterial infection cycle because, although A.
phagocytophilum extends the 12-h half-life of neutrophils
(Alberdi et al, 2016), cell death was observed after 32 h. De-
sipramine prevented an increase in A. phagocytophilum load
when administered to HL-60 cells at 24 h postinfection, thereby
indicating its ability to inhibit active infection (Fig 1E). However,
desipramine treatment had no effect on bacterial binding to host
cells (Fig 1F). Although many bacterial sphingomyelinases func-
tion as virulence factors (Flores-Diaz et al, 2016), none are
encoded by the annotated A. phagocytophilum genome (Dunning
Hotopp et al, 2006). Nonetheless, to verify that the inhibitory effect
of desipramine on A. phagocytophilum infection in host cells was
not due to the drug directly acting on the bacterium, host cell–free
A. phagocytophilum organisms were exposed to the drug or ve-
hicle before incubation with HL-60 cells. The bacterial DNA load at
24 h postinfection was equivalent between host cells that had
been pretreated with desipramine or that had not been treated
(Fig 1G).

In addition to functionally inhibiting ASM, desipramine promotes
degradation of acid ceramidase, which acts downstream of ASM to
hydrolyze ceramide to sphingosine (Elojeimy et al, 2006; Kornhuber
et al, 2010). Therefore, to confirm that desipramine’s deleterious
effect on A. phagocytophilum was specific to its action on ASM, HL-
60 cells were pretreated with CA-074 Me, which blocks de-
sipramine’s effect on acid ceramidase (Elojeimy et al, 2006), before
successive incubations with desipramine and A. phagocytophilum.
CA-074 Me failed to abrogate the desipramine-mediated arrest of A.
phagocytophilum infection (Fig 1H). Amitriptyline and nortriptyline,
two other FDA-approved tricyclic antidepressants and confirmed
FIASMAs (Kornhuber et al, 2010), also suppress A. phagocytophilum
infection (Fig 1 I and J). Collectively, these data indicate that
pharmacologic inhibition of host cell–ASM activity prevents an
increase in A. phagocytophilum load at a post-bacterial adhesion
step and in a dose-dependent manner.
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Figure 1. FIASMAs inhibit A. phagocytophilum infection at a post bacterial invasion step through specific targeting of host cell ASM.
(A–E, I, J) FIASMA treatment reduces the A. phagocytophilum DNA load in host cells. HL-60 cells (A, B, I, J), RF/6A cells (C), or human peripheral blood neutrophils (D) were
treated with 10 μM (unless otherwise noted) desipramine (A, B), amitriptyline (I), nortriptyline (J), or DMSO vehicle control followed by incubation with A. phagocytophilum
organisms. Total DNA isolated at the indicated time points was analyzed by qPCR. Relative levels of the A. phagocytophilum 16S rRNA (aph16s) gene were normalized to the
relative levels of β-actin using the 2−ΔΔCT method. (E) Desipramine was added to A. phagocytophilum–infected cells beginning at 24 h followed by qPCR analysis. (F)
Desipramine has no effect on A. phagocytophilum binding to host cells. RF/6A cells were exposed to desipramine or DMSO followed by incubation with A.
phagocytophilum. At 1, 2, and 4 h, the cells were fixed, immunolabeled with antibody against the A. phagocytophilum surface protein, P44, and examined by
immunofluorescence microscopy to determine the percentages of cells having bound A. phagocytophilum organisms. (G) Desipramine treatment of A. phagocytophilum
does not alter infection of host cells. Host cell–free A. phagocytophilum bacteria were exposed to desipramine or DMSO followed by incubation with untreated HL-60 cells.
At 24 h, the bacterial load was determined using qPCR. (H) The inhibitory effect of desipramine on A. phagocytophilum infection is due to its action on ASM, not acid
ceramidase. HL-60 cells were treated with CA-074 Me or not followed by treatment with desipramine or vehicle control. The cells were then infected with A.
phagocytophilum. At 24 and 48 h, the bacterial load was measured using qPCR. Error bars indicate SD. t test was used to test for a significant difference among pairs. One-
way ANOVA with Tukey's post hoc test was used to test for a significant difference among groups. Statistically significant (*P < 0.05; **P < 0.01; ***P < 0.001) values are
indicated. ns, not significant. Data shown in (A) are representative of three experiments conducted in triplicate with similar results. Data in (B, D, F–J) are representative of
two experiments conducted in triplicate with similar results. Data in (C) are representative of five experiments conducted in triplicate with similar results. Data in (E) are
representative of seven experiments conducted in triplicate with similar results.
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ASM inhibition halts A. phagocytophilum vacuole maturation and
expansion

Because FIASMAs arrest A. phagocytophilum infection at a post-
bacterial binding step, we sought to identify the specific life
cycle stage(s) affected. The A. phagocytophilum biphasic de-
velopmental cycle initiates when an infectious dense-core (DC)
organism bound at the host cell surface enters via receptor-
mediated endocytosis (Mott et al, 1999; Troese & Carlyon, 2009).
Within the first four h, the DC transitions to the noninfectious,
replicative reticulate cell (RC) form and actively remodels its
vacuole such that it avoids lysosomal fusion and becomes
wrapped in vimentin intermediate filaments (Webster et al, 1998;
Troese & Carlyon, 2009; Truchan et al, 2016b). Over the next 24 h,
RCs divide within the inclusion as they expand in size, interface
with organelles, and are decorated with secreted bacterial ef-
fector proteins (Troese & Carlyon, 2009; Huang et al, 2010a, 2010b;
Niu et al, 2012; Truchan et al, 2013, 2016b). RC to DC conversion
occurs between 24 and 32 h followed by the release of infectious
DC progeny between 28 and 36 h (Troese & Carlyon, 2009).

We first examined whether functionally inhibiting ASM impedes
A. phagocytophilum vacuole (ApV) maturation. Bacterial in-
clusions in infected RF/6A cells were assessed using confocal
microscopy for the accumulation of vimentin, which is recruited
early and remains irreversibly associated with the ApV for the
entire infection cycle (Truchan et al, 2016b), and for the presence
of APH0032, an A. phagocytophilum effector that is expressed and
localizes to the ApV membrane during late-stage infection, be-
tween 20 and 32 h (Huang et al, 2010a; Oki et al, 2016). RF/6A cells
were selected for this purpose because they are large and flat,
enabling optimal imaging of the ApV (Munderloh et al, 2004;
Sukumaran et al, 2011; Truchan et al, 2016c). In control cells,
APH0032 was detected on an increasing percentage of ApVs at 20,
24, 28, and 32 h (Fig 2 A and B), suggesting that ApV maturation
progressed normally. In desipramine-treated cells, however, pro-
nouncedly fewer APH0032-positive ApVs were detected. Vimentin is
associated with ApVs observed under both conditions (Fig 2A),
indicating that this early ApV biogenesis event is not dependent on
ASM activity. Indeed, a separate experiment verified that vimentin
filaments wrap 100% of ApVs in RF/6A cells irrespective of whether
they are treated with DMSO or desipramine (Fig S1A and B). Con-
sistent with desipramine being a reversible ASM inhibitor
(Kornhuber et al, 2010), after the removal of the drug at 20 h, the
numbers of APH0032-positive ApVs began to significantly increase
by 28 h compared with cultures that contained desipramine (Fig 2B).
The inverse phenomenonwas observed when desipramine was first
added at 20 h postinfection, as the percentage of APH0032-positive
ApVs did not increase and was significantly less than that for
control cells beginning at 28 h (Fig 2C). ApV area increased
throughout the time course in control cells, but not in desipramine-
treated cells (Fig 2D). Similar to APH0032 ApV membrane locali-
zation (Fig 2A–C), desipramine’s effect on ApV size was bacterio-
static, as removal or addition at 20 h enabled restoration or
stagnation of ApV expansion by 24 h, respectively (Fig 2E and F).
Overall, these data demonstrate that functional inhibition of ASM
inhibits late-stage expansion and maturation of the ApV in a re-
versible manner.

Desipramine inhibits A. phagocytophilum infectious progeny
generation

ApV maturation, in terms of APH0032 localization to the ApV
membrane, precedes A. phagocytophilum RC to DC conversion
(Truchan et al, 2016c). FIASMA treatment reduces bacterial load and
inhibits ApV maturation and expansion. Accordingly, we rational-
ized that desipramine impedes the production of infectious DC
progeny. To test this hypothesis, HL-60 cells were exposed to
desipramine or vehicle followed by infection with A. phag-
ocytophilum. qRT-PCR was performed using the total RNA isolated
at 24, 28, and 32 h, the period during which RC to DC conversion
occurs (Troese & Carlyon, 2009), to measure transcript levels of
aph1235, a DC-specific protein that contributes to A. phag-
ocytophilum infectivity (Troese et al, 2011; Mastronunzio et al, 2012).
An RC-unique marker has yet to be identified. A similar experiment
was performed in parallel in which RF/6A cells treated with de-
sipramine and incubated with A. phagocytophilum were screened
for ApVs harboring APH1235-positive bacteria. As previously ob-
served (Troese et al, 2011; Truchan et al, 2016c), both aph1235 ex-
pression and the number of ApVs harboring APH1235-positive
bacteria increased throughout the time course for control cells (Fig
3A–C). In desipramine-treated cells, aph1235 levels and ApVs
containing APH1235-immunolabeled bacteria were pronouncedly
reduced. To resolve whether the overall reduction in A. phag-
ocytophilum load in desipramine-treated cells is specifically due to
impairment of conversion to the infectious form and not due to a
blockade in release of infectious progeny, infected desipramine-
treated or control RF/6A cells were mechanically disrupted at 48 h.
Released bacteria were incubated with naı̈ve cells followed by
immunofluorescence microscopic examination of infection 24 h
later. The percentage of infected cells after incubation with A.
phagocytophilum organisms recovered from desipramine-treated
cells was eightfold lower than cells incubated with bacteria re-
covered from control cells (Fig 3D). These data confirm that
functional inhibition of ASM inhibits A. phagocytophilum conver-
sion to the infectious form.

Desipramine halts the A. phagocytophilum infection cycle by
inhibiting NPC1-mediated trafficking of cholesterol to the ApV

Two lysosomal proteins, NPC1 and Niemann–Pick type C protein 2
(NPC2), cooperate to export cholesterol from lysosomes. NPC2
extracts and transfers cholesterol from the lysosomal internal
membrane to NPC1, which aids in moving cholesterol from the
limiting membrane to subcellular destinations via vesicular
transport (Kuzu et al, 2017). Lysosomal accumulation of sphingo-
myelin resulting from deficiency or inhibition of ASM interferes with
the ability of NPC2 to transfer cholesterol to NPC1, which, in turn,
prevents NPC1-mediated transport of LDL cholesterol and its ac-
cumulation within lysosomes (Abdul-Hammed et al, 2010; Oninla et
al, 2014; Kuzu et al, 2017). Given that A. phagocytophilum is de-
pendent on the NPC1 pathway (Xiong & Rikihisa, 2012), we directly
assessed whether desipramine inhibits NPC1-mediated cholesterol
trafficking to the ApV. Immunolabeled NPC1 was detected in
close proximity to the ApV membrane and within the vacuole
lumen associated with A. phagocytophilum organisms in vehicle
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Figure 2. Functional inhibition of ASM halts ApV maturation and expansion.
(A, B, D, E) Desipramine was added to RF/6A cells before infection with A. phagocytophilum and treatment was either maintained throughout the time course (A, B, D) or
removed at 20 h (B, E). (C, F) Desipramine was added to A. phagocytophilum–infected RF/6A cells beginning at 20 h (C, F). DMSO served as vehicle control. At 20, 24, 28, and 32
h, the cells were fixed and examined by confocal microscopy for ApV maturation (A–C) and expansion (D–F). (A–C) Desipramine reversibly inhibits APH0032 expression and
localization to the ApV. A. phagocytophilum–infected RF/6A cells were screened with antibodies targeting vimentin and APH0032 to demarcate and assess maturation of
the ApV, respectively. DAPI was used to stain host cell nuclei and bacterial DNA. (A) Representative confocal micrographs of desipramine or DMSO-treated cells at the
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control–treated RF/6A cells, but not in desipramine-treated cells
(Fig 4A and B). A. phagocytophilum intracellular parasitism also
involves hijacking Beclin-1 to induce autophagosome formation
and rerouting ceramide-rich TGN46-positive trans-Golgi–derived
vesicles to the ApV (Niu et al, 2012; Truchan et al, 2016c). Yet, de-
sipramine had no effect on either of these phenomena (Fig S1C and
D). Live cell imaging revealed that desipramine drastically reduced
the percentage of ApVs with which BODIPY cholesterol–positive, but
not BODIPY ceramide–positive vesicles associated (Fig 4C–E).
Consistent with blocking cholesterol egress from lysosomes, de-
sipramine induced the formation of numerous large BODIPY
cholesterol–filled vesicles (Fig 4C) that were confirmed to be

LysoTracker Red positive (Fig S1E). Thus, functional inhibition of ASM
blocks A. phagocytophilum infection cycle progression by specifi-
cally interfering with bacterial acquisition of LDL cholesterol via the
NPC1 pathway.

ASM is essential for A. phagocytophilum to productively infect
mice

Because ASM activity is critical for A. phagocytophilum infection to
progress in tissue culture cells, the relevance of ASM to infection in
vivo was determined. Groups of WT or ASM−/− mice were inoculated
with DC organisms followed by qPCR analyses of bacterial DNA load

indicated postinfection time points. (B, C) Percentages of APH0032-positive ApVs determined for 100 cells for each of three biological replicates per condition. (D–F)
Desipramine reversibly inhibits ApV expansion. Themean ApV pixel area was determined for 50 ApVs per time point per condition. Error bars indicate SD. t test was used to
test for a significant difference among pairs. Statistically significant (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001) values are indicated. ns, not significant. Data shown are
representative of three experiments conducted in triplicate with similar results. Scale bar = 10 μm.

Figure 3. Desipramine inhibits A. phagocytophilum conversion to the infectious form.
(A) Desipramine inhibits aph1235 transcription. Desipramine-treated HL-60 cells were infected with A. phagocytophilum. Total RNA isolated at 24, 28, and 32 h was
subjected to qRT-PCR. The 2−ΔΔCT method was used to determine the relative aph1235 expression level normalized to that of A. phagocytophilum 16S rRNA. (B, C)
Desipramine inhibits APH1235 protein expression. Desipramine-treated RF/6A cells were infected with A. phagocytophilum. At 24, 28, and 32 h, the cells were fixed,
immunolabeled with APH1235 and vimentin antibodies, stained with DAPI, and visualized using confocal microscopy. (B) Representative confocal micrographs. Scale bar =
10 μM. (C) Percentage of APH1235-positive ApVs determined by counting 100 cells for each of triplicate samples per time point. (D) Desipramine inhibits A.
phagocytophilum–infectious progeny production. RF/6A cells were treated with desipramine or DMSO followed by infection with A. phagocytophilum. At 48 h, the cells
were mechanically disrupted followed by isolation and subsequent incubation of host cell–free bacteria with naı̈ve untreated cells. At 24 h, the recipient cells were fixed
and examined by immunofluorescence microscopy to determine the percentage that had become infected. Error bars indicate SD. t test was used to test for a significant
difference among pairs. Statistically significant (**P < 0.01; ***P < 0.001; ****P < 0.0001) values are indicated. Data shown in (A–C) are representative of three experiments
conducted in triplicate that yielded similar results. Data shown in (D) are representative of two experiments conducted in triplicate with similar results.
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in the peripheral blood. The A. phagocytophilum load in WT mice
peaked by day 16 and gradually subsided to an undetectable level
by day 28 (Fig 5A). In ASM−/−mice, however, bacterial DNA was barely
detectable at any time point. To assess desipramine’s ability to
reduce bacterial burden in an active infection, WT mice were in-
oculated with A. phagocytophilum followed by injection with either
desipramine or vehicle on days 7 through 12 at a dosage confirmed
to inhibit ASM activity in vivo and within the range approved for use
in humans (Teichgraber et al, 2008; Hayasaka et al, 2015). Strikingly,
although infection proceeded normally in vehicle-treated mice, the
A. phagocytophilum burden was drastically reduced on days 8 and
12 and no longer detectable beginning on day 16 in desipramine-
treated mice (Fig 5B). These data confirm that ASM is critical for and
demonstrate the ability of desipramine to eliminate A. phag-
ocytophilum infection in vivo.

Desipramine-induced cholesterol accumulation in the C. burnetii
parasitophorous vacuole is bactericidal

To investigate whether desipramine’s efficacy in inhibiting infection
could be extended to other intracellular bacteria that interface with

LDL cholesterol trafficking pathways, we next focused on C. burnetii,
which causes Q fever. Whereas acute Q fever is typically self-
limiting, chronic disease requires at least 18 mo of antibiotic
therapy. C. burnetii first infects alveolar macrophages during
natural infection, but can be found in a wide range of cell types.
Inside the host cell, C. burnetii directs formation of a large,
lysosome-like vacuole called the Coxiella-containing vacuole (CCV)
(Kohler & Roy, 2015). Although cholesterol, including LDL-derived
cholesterol, readily traffics to the CCV, C. burnetii is sensitive to
cholesterol levels in the CCV membrane, with elevated cholesterol
leading to increased acidification and bacterial degradation (Mulye
et al, 2017). Furthermore, C. burnetii is sensitive to drugs that perturb
host cholesterol homeostasis and grows poorly in NPC1-deficient
cells (Czyz et al, 2014; Howe & Heinzen, 2006). Given the sensitivity of
C. burnetii to cholesterol, we tested the effect of desipramine on C.
burnetii growth in THP-1 macrophage-like cells. Desipramine-
treated or untreated control cells were incubated with trans-
genic C. burnetii constitutively expressing mCherry. Cells were
cultivated in the continued presence of drug or vehicle and fluo-
rescence levels measured daily as an indication of bacterial growth.
Beginning on day 3, the first day on which there was any detectable

Figure 4. Desipramine alters NPC1-mediated cholesterol trafficking to the ApV.
Desipramine treatment inhibits NPC1 localization to the ApV. Desipramine- or DMSO-treated RF/6A cells were infected A. phagocytophilum. (A–E) At 24 h, the cells were
either fixed, immunolabeled with vimentin and NPC1 antibodies, stained with DAPI, and examined by confocal microscopy (A, B); or incubated with BODIPY ceramide (cer)
or BODIPY cholesterol (chol), stained with Hoechst 33342, and visualized by live cell imaging (C–E). (A) Representative confocal micrographs of infected cells
immunolabeled for vimentin and NPC1. Regions that are demarcated by hatched-line boxes are magnified in the inset panels. (B) Percentage of vimentin-positive ApVs to
which NPC1 immunosignal localizes in DMSO- and desipramine-treated cells determined by counting 100 cells for each of triplicate samples per condition. (C)
Representative live cell images of infected cells incubated with BODIPY-cer and BODIPY-chol. (D, E) Percentages of ApVs to which BODIPY-cer–positive (D) or BODIPY-
chol–positive (E) vesicles localize. Error bars indicate SD. t test was used to test for a significant difference among pairs. Statistically significant (****P < 0.001) values are
indicated. ns, not significant. Data shown are representative of three experiments conducted in triplicate that yielded similar results. Scale bar = 10 μm.
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increase in fluorescence signal, mCherry–C. burnetii proliferation
was significantly inhibited in desipramine-treated cells (Fig 6A).
Importantly, desipramine failed to alter mCherry–C. burnetii growth
in axenic medium (Fig 6B), indicating that its inhibitory effect is
restricted to the intracellular niche. To determine whether de-
sipramine’s action on the pathogen was bacteriostatic or bacte-
ricidal, C. burnetiiwas allowed to infect HeLa cells and MH-Smurine
alveolar macrophages treated with desipramine or DMSO. Cells
were harvested every 48 h to determine the number of viable
bacteria using a colony-forming unit (CFU) assay (Clemente et al,
2018). In control HeLa cells, a fourfold increase in bacterial load was
observed, whereas the number of viable C. burnetii decreased over

time in desipramine-treated cells (Fig 6C). Comparable results were
observed in MH-S macrophages (Fig 6D), suggesting that de-
sipramine is bactericidal to C. burnetii.

Similar to A. phagocytophilum, C. burnetii undergoes a biphasic
developmental cycle. The environmentally stable but non-
replicative small-cell variant infects cells through phagocytosis,
and the bacteria-containing phagosome matures through the
default endocytic pathway to a phagolysosome. Over the next 24–48
h, bacteria reside in the tight-fitting phagolysosome and transition
to the replicative large-cell variant. Around 48 h, the CCV expands
through fusion with host endosomal compartments and auto-
phagosomes, allowing bacterial replication (Kohler & Roy, 2015). To
define the stage of the C. burnetii intracellular life cycle that is
desipramine sensitive, we added the drug at 24-h intervals after
infection and determined bacterial numbers after 6 d. C. burnetii
was sensitive to desipramine only in the first 48 h after infection (Fig
6E), suggesting that inhibiting ASM affects an early stage of C.
burnetii infection before CCV expansion. This result is further
supported by the observation that CCVs in desipramine-treated
cells did not expand, based on CCV size at 6 d postinfection (Fig 6F).

Previous experiments demonstrated that blocking cholesterol
export from late endosomes/lysosomes with U18666A increased
cholesterol in the CCV, leading to acidification and bacterial death
(Mulye et al, 2017). To determine if functionally inhibiting ASM in-
creases CCV cholesterol levels, we labeled infected cells with filipin,
a fluorescent cholesterol-binding compound. As observed pre-
viously (Howe & Heinzen, 2006; Mulye et al, 2017), filipin labeled the
CCV membrane in control cells (Fig 6G), indicating the CCV contains
cholesterol or other sterols. However, upon desipramine treatment,
the intensity of filipin labeling in the CCV increased, confirming that
ASM inhibition elevates CCV cholesterol levels. Together, these data
suggest that blocking ASM activity kills C. burnetii by increasing CCV
cholesterol levels.

Chlamydiae do not demonstrate the same degree of sensitivity to
desipramine as A. phagocytophilum and C. burnetii

Given that the exquisite sensitivities of A. phagocytophilum and C.
burnetti to desipramine are linked to interactions with LDL cho-
lesterol in the NPC1 pathway, we examined whether the drug could
effectively target obligate intracellular bacteria whose growth is not
exclusively dependent on LDL cholesterol. C. trachomatis, a leading
cause of sexually transmitted disease and infectious blindness,
obtains LDL-derived and de novo–synthesized cholesterol by
intercepting exocytic traffic from the Golgi (Carabeo et al, 2003). C.
trachomatis also recruits cholesterol-rich multivesicular bodies
(MVBs) and high-density lipoprotein biogenesis proteins involved
in cholesterol efflux to its inclusion for growth (Beatty, 2006, 2008;
Cox et al, 2012). To determine if desipramine alters C. trachomatis
infection, desipramine-treated and control HeLa cells were in-
fected with C. trachomatis serovar L2 for 28–30 h. Infected cells were
either fixed to verify equal infection across conditions or lysed. The
lysates were serially diluted and plated onto fresh monolayers,
which were assessed for inclusion-forming units at 24 h post-
infection. Desipramine treatment throughout the chlamydial
developmental cycle resulted in biologically irrelevant, albeit

Figure 5. ASM is essential for A. phagocytophilum to productively infect mice.
(A) A. phagocytophilum fails to productively infect ASM−/−mice. (A) ASMase−/−mice
orWTmice were infected with A. phagocytophilum DC organisms. Peripheral blood
drawn on days 4, 8, 12, 16, 21, and 28 d postinfection was analyzed by qPCR. Relative
levels of the A. phagocytophilum 16S rRNA gene were normalized to those of
β-actin using the 2−ΔΔCT method. (B) Desipramine reduces the A. phagocytophilum
DNA load in the peripheral blood when administered to infected mice. A.
phagocytophilum–infected WT mice were administered desipramine or PBS on
days 7 through 12 postinfection, and the bacterial DNA load in the peripheral blood
was determined using qPCR. Error bars indicate SD. t test was used to test for a
significant difference among pairs. Statistically significant (**P < 0.01) values are
indicated. Data shown in (A) are representative of eight experiments each of which
were conducted with 5–7 mice per group. Data shown in (B) are representative of
three experiments each of which were conducted with 5–7 mice per group.

FIASMAs inhibit intracellular bacterial infections Cockburn et al. https://doi.org/10.26508/lsa.201800292 vol 2 | no 2 | e201800292 8 of 17

https://doi.org/10.26508/lsa.201800292


statistically significant declines in infectious progeny production
and inclusion size (Fig 7A and B).

As the C. trachomatis serovar L2 growth rate is relatively fast, with
the developmental cycle completedby 48 h (Abdelrahman&Belland,
2005), it can outgrow and/or compensate for certain nutritional
stresses (Ouellette et al, 2018). Accordingly, desipramine sensitivity
was tested on the slower growing species C. pneumoniae, a re-
spiratory pathogen and cause of atherosclerosis that produces

infectious progeny by 84 h (Wolf et al, 2000). Laboratory culture of C.
pneumoniae is fastidious, which can render assessing alterations in
drug treatment and infectivity of primary infection difficult. To
eliminate the possibility of desipramine pretreatment inhibiting C.
pneumoniae entry, HeLa cells were first infected with C. pneumoniae,
and then desipramine or vehicle was added 2–3 h postinfection.
Infectious progeny production was measured at 53 and 73 h post-
infection. C. pneumoniae progeny production was highest late in the

Figure 6. Desipramine-induced cholesterol
accumulation in the C. burnetii vacuole is bactericidal.
(A, B) mCherry-C. burnetii (Cb)–infected THP-1
macrophage-like cells (A) or mCherry-C. burnetii grown
in axenic medium (B) were treated with desipramine or
not treated with. The bacterial load was measured as
relative fluorescent units. (C–E) C. burnetii was added to
HeLa cells (C, E) or MH-S cells (D) that had been
pretreated with desipramine or DMSO, or C.
burnetii–infected cells were treated at the indicated
days postinfection (E). Bacterial load was measured
using a CFU assay. (F) CCV area was determined for
desipramine and DMSO-treated C. burnetii–infected
HeLa cells. (G) HeLa cells that had been treated with
desipramine and infected withmCherry-C. burnetiiwere
labeled with filipin and CD63 antibody. Error bars
indicate SD. t test was used to test for a significant
difference among pairs. Statistically significant (**P <
0.01; ***P < 0.001; ****P < 0.0001) values are indicated. ns,
not significant. Data in panels A and B are
representative of three experiments conducted in
triplicate with similar results. Data in panels C through F
are the means ± SD of three independent experiments.
Scale bar = 50 μm.
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Figure 7. C. trachomatis and C.
pneumoniae exhibit reduced FIASMA
sensitivity.
(A–D) Desipramine or DMSO-treated
HeLa cells infected with C. trachomatis
(Ctr; A, B) or C. pneumoniae (Cpn; C, D)
were either lysed to recover infectious
progeny that were incubated with naı̈ve
HeLa cells to determine inclusion-
forming units (A, C) or were fixed and
assessed by immunofluorescence
microscopy to determine inclusion area
(B, D). (E–J) Desipramine-treated or
control cells were infected with Ctr (E, G,
I) or Cpn (F, H, J). The cells were either
incubated with filipin (E, F) or screened
with antibodies specific for LBPA (G, H) or
CERT (I, J) together with antisera against
C. trachomatis (E, G, I) or C. pneumoniae
(F, H, J). DAPI or DRAQ5 was used to stain
DNA. Regions that are demarcated by
hatched-line boxes are magnified in the
inset panels. Error bars indicate SD. t test
was used to test for a significant
difference among pairs. Statistically
significant (*P < 0.05; ***P < 0.001) values
are indicated. Data shown are
representative of three experiments
conducted in triplicate with similar
results. Scale bar = 10 μm.
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developmental cycle, as illustrated by an almost two-log increase in
inclusion-forming units recovered from control cells at 72 h versus 53
h (Fig 7C). In contrast, desipramine significantly reduced infectious
progeny production by 1.5 log. Moreover, there was only a 15% in-
crease in progeny production between 53 and 72 h in desipramine-
treated cells compared with a 56% increase between these time
points in control cells. These data correlate with decreases of ap-
proximately 35% in the inclusion area for desipramine-treated versus
control cells (Fig 7D). Thus, desipramine effectively inhibits C.
pneumoniae, but not C. trachomatis, infection.

Because the negative impact of desipramine on C. pneumoniae
was not as severe as for A. phagocytophilum and C. burnetii, and the
drug had no biologically significant effect on C. trachomatis, we
evaluated the hypothesis that desipramine does not interfere with
chlamydial inclusion interactions with the Golgi andMVBs, which, in
turn, allows cholesterol delivery to inclusions even when its egress
from lysosomes is blocked. Hence, these phenomena were
assessed in desipramine-treated and control cells infected with C.
trachomatis for 24 h or C. pneumoniae for 53 h. In accordance with
ASM inhibition causing cholesterol to accumulate in lysosomes,
desipramine-treated cells displayed vesicle-like structures heavily
labeled with filipin (Fig 7E and F). No difference in filipin labeling of
chlamydial inclusions was observed. Similar results were noted for
lysobisphosphatidic acid (LPBA), an MVB marker that localizes to C.
trachomatis inclusions (Beatty, 2006, 2008). In desipramine-treated
cells, LPBA immunolabeling increased in a similar manner to that
observed for cholesterol (Fig 7G and H). LPBA pooled around the
inclusions harboring C. trachomatis, as previously reported (Beatty,
2006, 2008), and C. pneumoniae, observed here for the first time,
and did so whether or not the cells were exposed to desipramine.
ASM inhibition also had no effect on chlamydial recruitment
of VAMP4 and syntaxin 6 (Fig S2), two Golgi-derived soluble
N-ethylmalemide–sensitive factor attachment protein receptors
that localize to C. trachomatis and C. pneumoniae inclusions (Moore
et al, 2011; Kabeiseman et al, 2013).

Finally, we examined whether localization of ceramide transfer
protein (CERT) to inclusions is desipramine-sensitive. CERT, which
mediates ER-to-Golgi transfer of ceramide, is recruited to the C.
trachomatis inclusion membrane, where it contributes to the gen-
eration of sphingomyelin, which is important for chlamydial growth
(Derre et al, 2011; Elwell et al, 2011). CERT localization to inclusions of
both chlamydial species was unhindered by desipramine (Fig 7I and
J). This observationmarks the first report of CERT being recruited to C.
pneumoniae inclusions. Altogether, these data demonstrate that the
infection cycles of C. trachomatis and C. pneumoniae are less sus-
ceptible to pharmacologic inhibition of ASM thanA. phagocytophilum
or C. burnetii, which is due, at least in part, to the abilities of these
bacteria to hijack cholesterol from the Golgi and MVBs and to
parasitize other lipids such as sphingomyelin.

Discussion

In this study, we demonstrate that FIASMAs, which are FDA ap-
proved, licensed for medical use, exhibit low toxicity, and are suited
for prolonged treatment (Kornhuber et al, 2010), reduce host cell

infection by four obligate intracellular vacuole-adapted bacteria by
blocking LDL cholesterol trafficking from the lysosome. Intracellular
pathogens are difficult to target with most conventional antibiotics.
Although tetracyclines and fluoroquinolones are usually effective,
the occurrence of intracellular bacterial resistance and the drugs’
use being contraindicated in certain circumstances warrants de-
velopment of novel antimicrobial therapies. Finding new thera-
peutic indications for FDA-approved compounds that disrupt
eukaryotic pathways commonly targeted by intracellular bacteria
can accelerate drug discovery on this front.

ASM inhibition is most effective against two of the model in-
tracellular bacterial pathogens examined herein, A. phagocytophilum
and C. burnetii, through distinct mechanisms. Desipramine prevents
NPC1 trafficking of LDL cholesterol to the ApV, which reversibly blocks
inclusion expansion and maturation as well as A. phagocytophilum
replication and infectious progeny generation. This negative effect was
confirmed for two additional FIASMAs and specifically linked to in-
hibition of ASM, rather than acid ceramidase. Desipramine exerts
bacteriostatic action on A. phagocytophilum not only when added
before, but also when added after bacterial entry, demonstrating the
ability to halt active infection. Importantly, this phenomenon is re-
capitulated in vivo, as the bacterium cannot productively infect ASM-
deficient mice or WT mice treated with desipramine within the range
approved for human use (Hayasaka et al, 2015).

In addition to intercepting the NPC1 pathway to obtain cho-
lesterol, A. phagocytophilum hijacks the Beclin 1-Atg14L autophagy
initiation pathway, likely to obtain autophagy-derived amino acids,
and TGN exocytic vesicles (Niu et al, 2012; Truchan et al, 2016c).
Desipramine inhibits infection, yet Beclin 1, TGN46, and BODIPY
ceramide associated with the ApV in treated cells. Thus, although
the bacterium’s autophagy and TGN parasitism are mutually ex-
clusive from cholesterol acquisition, the latter appears to be most
critical for infection cycle progression. Moreover, we previously
reported that TGN parasitism is essential for A. phagocytophilum
transition from noninfectious RCs to infectious DCs (Truchan et al,
2016c). However, the present study reveals that RC-to-DC transition
only occurs if NPC1-mediated cholesterol trafficking is not blocked.
In the NPC1 pathway, a considerable portion of LDL cholesterol is
transported first to the TGN before arrival at the ER, and the TGN is
depleted of cholesterol in Niemann–Pick disease (Urano et al,
2008). Thus, desipramine could prevent A. phagocytophilum–
infectious progeny generation directly by blocking cholesterol-
laden NPC1 vesicle delivery to the ApV and indirectly by blocking
NPC1 vesicle delivery to the TGN, which, in turn, would culminate in
TGN vesicles that are rerouted to the ApV being devoid of
cholesterol.

C. burnetii is sensitive to cholesterol levels in the CCV, with in-
creased cholesterol further acidifying the vacuole and degrading
bacteria (Mulye et al, 2017). Inhibiting ASM with desipramine raises
CCV cholesterol levels to kill C. burnetii in macrophages and epi-
thelial cells. However, consistent with previous studies using
U18666A (Mulye et al, 2017), C. burnetii is only sensitive during the
first 48 h, which, because the pathogen inhabits a tight-fitting
vacuole during the first 24–48 h (Kohler & Roy, 2015), suggests
that once the CCV is established and C. burnetii is actively growing,
either cholesterol no longer has an antimicrobial impact or the
bacteria combat the negative effects. Regardless, FIASMAs have
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therapeutic potential against Q fever because C. burnetii would
presumably be susceptible during the early stage of each infection
cycle. This potential could extend to other drugs that perturb
cholesterol homeostasis, as a recent screen of FDA-approved
compounds showed that 57 of 62 tested completely inhibited C.
burnetii growth, although their mechanisms of action, whether they
are bacteriostatic or bactericidal, and whether they are effective
during a specific C. burnetii infection stage was not determined
(Czyz et al, 2014). As demonstrated for both A. phagocytophilum and
C. burnetii, desipramine’s antimicrobial efficacy was due exclusively
to its ability to promote lysosomal cholesterol sequestration and
not a direct effect on either bacterium, suggesting that FIASMAs
would likely be invulnerable to the development of pathogen
resistance.

Compared with A. phagocytophilum and C. burnetii, desipramine
was less effective against C. pneumoniae and even less so against C.
trachomatis because of chlamydial utilization of not only LDL-, but
also non–LDL cholesterol sources and sphingomyelin to fuel in-
tracellular growth. C. pneumoniae infections can be persistent, with
symptoms often reappearing after a short or conventional course of
antibiotics (Burillo & Bouza, 2010). The ability of desipramine to
reduce the C. pneumoniae load by 1.5 orders of magnitude in vitro
suggests that combination drug therapy consisting of an antibiotic
plus a FIASMA warrants consideration as an approach to minimize
recalcitrant C. pneumoniae infections.

Because the susceptibilities of the vacuole-adapted bacteria
examined herein to ASM inhibition are linked to sensitivities to
lysosomal sequestration of LDL cholesterol, it is reasonable to posit
that the antimicrobial efficacy of FIASMAs could be extended to
combat other LDL cholesterol–dependent pathogens. Ehrlichia
chaffeensis, like A. phagocytophilum, becomes more infectious
when unesterified cholesterol is incorporated into the bacterial cell
envelope (Lin & Rikihisa, 2003). As LDL cholesterol only becomes
esterified once trafficked to the ER by the NPC1 pathway (Walpole et
al, 2018), E. chaffeensis presumably intercepts this pathway and
would, therefore, be FIASMA sensitive. Similarly, the apicomplexan
parasite, Toxoplasma gondii, actively intercepts LDL cholesterol,
cannot grow in NPC-deficient fibroblasts, and exhibits stunted
development in U18666A-treated cells (Coppens et al, 2000). Bru-
cella abortus intracellular replication is fairly insensitive to drugs
that alter cholesterol homeostasis, but the pathogen requires
plasma membrane cholesterol to invade macrophages and cannot
infect NPC1 knockout mice (Watarai et al, 2002; Czyz et al, 2014). It is
tempting to question whether individuals who are heterozygous for
ASM mutations that negatively affect enzymatic activity exhibit
resistance to infection by intracellular pathogens that require LDL
cholesterol.

Overall, this study identifies FIASMAs as host cell–directed
therapeutics for treating infections caused by A. phagocytophilum,
C. burnetii, C. pneumoniae, and potentially other pathogens whose
infectivity, intracellular growth, and/or survival are strongly
influenced by NPC1-trafficked LDL cholesterol. FIASMAs have a
high likelihood for preventing resistance development, could be
administered as an alternative to antibiotics when necessary or in
conjunction with antimicrobial drugs to augment their efficacy,
and therefore should be considered for evaluation in clinical
settings.

Materials and Methods

Cultivation of uninfected and infected cell lines

Uninfected and A. phagocytophilum NCH-1 strain–infected human
promyelocytic HL-60 cells (CCL-240; American Type Culture Collec-
tions [ATCC]) and RF/6A rhesus monkey choroidal endothelial cells
(CRL-1780; ATCC) were cultured as previously described (Huang et al,
2010a). HeLa human cervical epithelial cells (CCL-2; ATCC) were
maintained as described (Justis et al, 2017). C. burnetii Nine Mile
Phase II (NMII; clone 4, RSA439) and mCherry-C. burnetii NMII were
purified from Vero cells (African greenmonkey kidney epithelial cells;
CCL-81; ATCC) or acidified citrate cysteine medium-2 (ACCM-2) and
stored as described (Cockrell et al, 2008; Beare et al, 2009). Mouse
alveolar macrophages (MH-S; CRL-2019; ATCC) and THP-1 human
monocytic cells (TIB-202; ATCC) were maintained as described (Mulye
et al, 2018). THP-1 cells were differentiated intomacrophage-like cells
by overnight treatment with 200 nM phorbol 12-myrisate 13-acetate
(MilliporeSigma). C. trachomatis serovar L2 (LGV 434) was maintained
in HeLa cells at 37°C as described (Rucks et al, 2017). C. pneumoniae
AR39 was maintained in HeLa cells at 35°C as described (Ouellette et
al, 2016). Mammalian cell cultures were low passage and confirmed
to bemycoplasma free using the Universal Mycoplasma Detection kit
(ATCC) or Mycoplasma PCR Detection kit (MilliporeSigma).

Antibodies and reagents

Commercial antibodies targeted vimentin (product number ab8069;
Abcam), CERT (product number GW22128B; MilliporeSigma), NPC1
(product number ab224268; Abcam), Beclin-1 (product number 207612;
Abcam), TGN46 (product number 50595; Abcam), CD63 (product
number 556019; BD Biosciences), VAMP4 (product number V4514;
MilliporeSigma), syntaxin 6 (product number 610636; BD Biosciences),
and LBPA (product numberMABT837; MilliporeSigma). Antisera specific
for APH0032, APH1235, and P44 were described previously (Huang et al,
2010a; Troese et al, 2011). Antibodies against C. pneumoniae were gifts
from Ted Hackstadt (National Institute of Allergy and Infectious Dis-
eases [NIAID]; Rocky Mountain Laboratories) or Harlan Caldwell (NIAID;
Laboratory of Clinical Immunology and Microbiology). Antibodies
against C. trachomatis were either a gift from Ted Hackstadt or anti-
MOMP (product number C01363; Meridian Life Science). Alexa
fluorochrome-conjugated secondary antibodies were obtained from
Invitrogen or Jackson ImmunoResearch Laboratories. Filipin (Cayman
Chemical) was used to label endogenous cholesterol. LysoTracker Red
(Invitrogen), TopFluor (BODIPY) Cholesterol (Avanti Polar Lipids), and
BODIPY-TR ceramide (Invitrogen) were used for live cell experiments.
DNA stains used were 1,5-bis{[2-(di-methylamino) ethyl]amino}-4, 8-
dihydroxyanthracene-9,10-dione (DRAQ5; Thermo Fisher Scientific),
DAPI (Thermo Fisher Scientific), and Hoechst 33342 (Thermo Fisher
Scientific). Chemical inhibitors used included desipramine (Mil-
liporeSigma), amitriptyline (MilliporeSigma), nortriptyline (Milli-
poreSigma), and CA-074 Me (MilliporeSigma).

Isolation of human neutrophils

Human neutrophils were isolated from peripheral blood of healthy
donors by centrifugation through an equal volume of Polymorph

FIASMAs inhibit intracellular bacterial infections Cockburn et al. https://doi.org/10.26508/lsa.201800292 vol 2 | no 2 | e201800292 12 of 17

https://doi.org/10.26508/lsa.201800292


Prep (Axis-Shield) at 470 g for 30 min. The resulting neutrophil band
was removed via aspiration and mixed with equal volumes of 0.45%
(vol/vol) NaCl in PBS and RPMI 1640 (Thermo Fisher Scientific)-0.5
mM EDTA (MilliporeSigma). The cells were centrifuged at 210 g for 10
min and resuspended in Red Blood Cell Lysis Buffer (Thermo Fisher
Scientific) for 5 min, washed twice with RPMI 1640-0.5 mM EDTA, and
resuspended in RPMI 1640. All investigations using neutrophils
obtained from human donor blood were conducted according to
the principles expressed in the Helsinki Declaration, and informed
consent was obtained from all subjects. The protocol (HM11407) for
obtaining donor blood for the purpose of isolating neutrophils has
been reviewed and approved by the Virginia Commonwealth
University Institutional Review Board with respect to scientific
content and compliance with applicable research and human
subject regulations.

Infection assays

For A. phagocytophilum infections, HL-60 cells, RF/6A cells, or
human neutrophils were treated for 1 h with 1–10 μM desipramine,
10 μM amitriptyline, 10 μM nortriptyline, or DMSO before incubation
with A. phagocytophilum DC organisms as described (Troese &
Carlyon, 2009; Truchan et al, 2016a, 2016c) in the continued pres-
ence of FIAMSA unless otherwise noted. In some instances, HL-60
cells were infected before desipramine treatment or A. phag-
ocytophilum DC organisms were treated with desipramine before
incubation with host cells, whereas in others desipramine was
either added to or removed from A. phagocytophilum–infected HL-
60 cells at 20 h. To confirm that desipramine’s inhibitory effect on A.
phagocytophilum was specific to its action on ASM and not acid
ceramidase, HL-60 cells were pretreated with 5 μM CA-074 Me
before desipramine treatment and A. phagocytophilum infection.

For C. burnetii infections, MH-S or HeLa cells were treated for 1 h
with desipramine or DMSO and infected as previously described
withmCherry-expressing small cell variants for 1 h (Mulye et al, 2017;
Clemente et al, 2018). Infection conditions were optimized for both
cell type and vessel for less than one internalized bacterium per
cell. THP-1 macrophage-like cells were infected with mCherry-
expressing C. burnetii at a multiplicity of infection (MOI) of 10 in
the presence of 10 μM desipramine or DMSO.

For C. trachomatis infections, HeLa cells were treated for 1 h with
10 μM desipramine or DMSO, then infected at an MOI of 0.5 by
adding inoculum to tissue culture wells and centrifuging the tissue
culture plates at 400 g for 15 min at room temperature, followed by
incubation at 37°C, 5% CO2, for the indicated time points. For C.
pneumoniae infections, HeLa cells were inoculated at anMOI of 2 as
described for C. trachomatis infections with the exception that
infected monolayers were incubated at 35°C, 5% CO2. At 2–3 h
postinfection, the medium was changed and 10 μM desipramine or
DMSO was added. To assess chlamydial-infectious progeny pro-
duction, infected monolayers were scraped and centrifuged at
17,000 g for 30 min at 4°C. The pellets were resuspended in sucrose
phosphate buffer and vortexed in the presence of glass beads.
Resulting lysates were serially diluted and plated onto fresh HeLa
cells in the absence of desipramine. Monolayers were centrifuged
at 400 g for 15 min at room temperature. C. trachomatis–infected
cells were placed at 37°C, 5% CO2, and incubated for an additional

24 h. C. pneumoniae–infected cells were placed at 35°C, 5% CO2, and
incubated for an additional 64 h. For A. phagocytophilum, C. bur-
netii, and chlamydial infection experiments in which desipramine
treatment extended beyond 24 h, fresh medium containing de-
sipramine or DMSO was added to the cultures every 24 h.

Immunofluorescence microscopy

For A. phagocytophilum immunofluorescence assays, infected RF/
6A cells on 12-mm glass coverslips (Electron Microscopy Sciences)
were fixed in 4% (vol/vol) PFA (Electron Microscopy Sciences) in PBS
for 20 min followed by permeabilization with 0.5% (vol/vol) Triton
X-100 in PBS for 15 min. Immunofluorescence labeling was per-
formed as previously described (Huang et al, 2010a) followed by
DAPI staining of DNA and mounting with Prolong Gold antifade
reagent (Thermo Fisher Scientific). Images were obtained at room
temperature using a Zeiss LSM 700 laser-scanning confocal mi-
croscope (Zeiss) and a 63× oil-immersion objective with a 1.4 nu-
merical aperture. Images were acquired using Zeiss Efficient
Navigation Imaging Suite 2.3 Blue Edition. For C. burnetii immu-
nofluorescence assays, infected HeLa cells on 12-mm glass cov-
erslips were fixed with 2.5% (vol/vol) PFA in PBS for 15 min, followed
by permeabilization and blocking in PBS containing 0.1% (vol/vol)
saponin and 1% BSA. Immunofluorescence staining with CD63
antibody was performed as previously described (Justis et al, 2017)
and mounted with Prolong Gold antifade reagent. Images were
obtained at room temperature using a Nikon TiE inverted micro-
scope with 60× oil immersion objective having a 1.4 numerical
aperture and an ORCA-Flash 4.0 LT + sCMOS camera (Hamma-
matsu). Chlamydial infected cells were imaged at room tempera-
ture using a Zeiss LSM 810 laser-scanning confocal microscope with
a 63× oil immersion objective having a 1.4 numerical aperture.
Images were acquired using Zeiss Efficient Navigation Imaging Suite
2.3 Blue Edition. Inclusion-forming units were calculated using an
Olympus CKX53 microscope with a 40× objective. Inclusion-forming
units per mL were determined by calculating the average number of
inclusions per field of view multiplied by the dilution factor and the
number of fields of view per well, divided by the volume of the
original inoculum. The number of fields of view per well was de-
termined by dividing the surface area of the tissue culture well by
the view area of the field.

Fluorescent analogue labeling

For filipin labeling, infected cells were fixed in 2.5% (vol/vol) PFA in
PBS on ice for 15 min and incubated with filipin in 1% (vol/vol) BSA
in PBS for 1 h as previously described (Mulye et al, 2017). The cells
were mounted with Prolong Gold antifade reagent lacking DAPI and
imaged via confocal microscopy. For BODIPY cholesterol labeling,
live A. phagocytophilum–infected RF/6A cells were incubated with 4
mg ml−1 BODIPY cholesterol in cholesterol-free medium for a
minimum of 18 h to allow the cholesterol to accumulate in lyso-
somes and washed with Hepes (Thermo Fisher Scientific) twice. The
cells were then incubated with BODIPY ceramide in Hepes per the
manufacturer’s instructions and stained with Hoechst 33342
(Invitrogen) to label host cell nuclei and bacteria. In some in-
stances, live cells were incubated with LysoTracker Red in media for
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3 h to identify acidic compartments. The live cells were then imaged
at room temperature with a Leica TCS SP8 microscope (Leica)
affixed with an Andor iXon Life 888 EMCCD camera (Oxford In-
struments) and a 63× water-immersion objective with a 1.2 numeric
aperture. Images were acquired using Leica Application Suite X
software. The brightness of post-acquisition images of RF/6A cells
labeled with LysoTracker Red, BODIPY cholesterol, and Hoechst
33342 was increased using PowerPoint version 16.16.3 (Microsoft).

qPCR and qRT-PCR

To analyze the A. phagocytophilum load after inhibitor treatment,
DNA was isolated from the infected cells with the DNeasy Blood and
Tissue kit (QIAGEN). Bacterial load in infected HL-60 and RF/6A cells
was determined using primers specific for A. phagocytophilum 16S
rDNA and β-actin (Oki et al, 2016), the latter of which target con-
served sequences among human, primate, and murine β-actin,
SsoFast EvaGreen Supermix (Bio-Rad), and 100 ng template DNA.
Thermal cycling conditions used were 98°C for 2min, followed by 40
cycles of 98°C for 5 s and 55°C for 10 s. Relative 16S rDNA was
normalized to β-actin using the 2−ΔΔCT (Livak) method (Livak &
Schmittgen, 2001). Total RNA isolated from A. phagocytophilum–
infected HL-60 cells using the RNeasy RNA Isolation kit (QIAGEN)
was treated with DNase I (Invitrogen) and used as template for
cDNA synthesis with the iScript Reverse Transcription Supermix
(Bio-Rad). 1 μl of a 1:10 dilution of the cDNA was used as a template
for qRT-PCR as described (Kahlon et al, 2013) using primers specific
for β-actin, A. phagocytophilum 16S rDNA, and aph1235 (Troese et al,
2011). Thermal cycling conditions used were 98°C for 30 s, followed
by 40 cycles of 98°C for 5 s and 60°C for 5 s. Relative aph1235
transcript levels were normalized to 16S rRNA levels using the 2−ΔΔCT

method.

C. burnetii CFU assay

Viable C. burnetii were assayed using a CFU assay as previously
described (Clemente et al, 2018). Briefly, bacteria were recovered
from infected cells using water lysis as described (Mulye et al, 2017).
The released bacteria were serially diluted in ACCM-2 and spotted
in duplicate onto 0.25% ACCM-2 with tryptophan agarose plates
(Vallejo Esquerra et al, 2017). The plates were incubated for 9–12 d at
37°C, 2.5% O2, and 5% CO2; Colony numbers were determined to
measure viable bacteria. Each experiment was performed in bi-
ological duplicate.

Mouse studies

ASM−/− mice were a gift from Pin-Lan Li (Virginia Commonwealth
University, Richmond, VA). 6–8-wk-old ASM−/− or C57Bl/6 male mice
were injected intraperitoneally with 108 A. phagocytophilum DC
organisms as described (Naimi et al, 2018). Male mice were ex-
clusively used because they are more susceptible to A. phag-
ocytophilum infection than female mice (Naimi et al, 2018). For
desipramine treatment studies, 6–8-wk-old C57Bl/6 male mice
were intraperitoneally injected twice per day with either 10 mg⋅kg−1

desipramine or PBS on days 7–12 post A. phagocytophilum infection
as described (Teichgraber et al, 2008). DNA was isolated from blood

collected via the tail vein on days 4, 8, 12, 16, 21, and 28 postinfection
using the DNeasy Blood and Tissue kit (QIAGEN). The peripheral
blood A. phagocytophilum load was determined by qPCR as de-
scribed above except that 50 ng of DNA was used as template.
Thermal cycling conditions used were 98°C for 2min, followed by 40
cycles of 98°C for 5 s and 60°C for 30 s. Mice were euthanized on
day 28. All animal research was conducted in compliance with
the Health and Human Services Guide for the Care and Use of
Laboratory Animals and performed under the approval of the
Institutional Animal Care and Use Committee at Virginia Com-
monwealth University (Protocol AM10220).

Statistical analyses

Statistical analyses were performed using the Prism 5.0 software
package (GraphPad). One-way ANOVA with Tukey's post hoc test
was used to test for a significant difference among groups. t test
was used to test for a significant difference among pairs. Statistical
significance was set at P values of < 0.05. Vacuole size measure-
ments were done with ImageJ (W. S. Rasband, National Institutes of
Health) (Schindelin et al, 2012).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800292.
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