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Abstract: Thiol-ene photo-click hydrogels were prepared via step-growth polymerisation using
thiol-functionalised type-I collagen and 8-arm poly(ethylene glycol) norbornene-terminated
(PEG-NB), as a potential injectable regenerative device. Type-I collagen was thiol-functionalised by
a ring opening reaction with 2-iminothiolane (2IT), whereby up to 80 Abs. % functionalisation and
90 RPN% triple helical preservation were recorded via 2,4,6-Trinitrobenzenesulfonic acid (TNBS)
colorimetric assay and circular dichroism (CD). Type, i.e., either 2-Hydroxy-1-[4-(2-hydroxyethoxy)
phenyl]-2-methyl-1-propanone (I2959) or lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP),
and concentration of photoinitiator were varied to ensure minimal photoinitiator-induced cytotoxicity
and to enable thiol-ene network formation of collagen-PEG mixtures. The viability of G292 cells
following 24 h culture in photoinitiator-supplemented media was largely affected by the photoinitiator
concentration, with I2959-supplemented media observed to induce higher toxic response (0.1→ 0.5%
(w/v) I2959, cell survival: 62 → 2 Abs. %) compared to LAP-supplemented media (cell survival:
86→ 8 Abs. %). In line with the in vitro study, selected photoinitiator concentrations were used to
prepare thiol-ene photo-click hydrogels. Gelation kinetics proved to be largely affected by the specific
photoinitiator, with LAP-containing thiol-ene mixtures leading to significantly reduced complete
gelation time (τ: 187 s) with respect to I2959-containing mixtures (τ: 1683 s). Other than the specific
photoinitiator, the photoinitiator concentration was key to adjusting the hydrogel storage modulus
(G’), whereby 15-fold G’ increase (232→ 3360 Pa) was observed in samples prepared with 0.5% (w/v)
compared to 0.1% (w/v) LAP. Further thiol-ene formulations with 0.5% (w/v) LAP and varied content
of PEG-NB were tested to prepare photo-click hydrogels with porous architecture, as well as tunable
storage modulus (G’: 540–4810 Pa), gelation time (τ: 73–300 s) and swelling ratio (SR: 1530–2840 wt %).
The photoinitiator-gelation-cytotoxicity relationships established in this study will be instrumental to
the design of orthogonal collagen-based niches for regenerative medicine.
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1. Introduction

The design of regenerative devices relies heavily on the use of three-dimensional (3D) scaffolds to
provide the appropriate environment, mechanical support and an initial cell anchorage site for the
regeneration of tissues and organs [1]. As a biomaterial, hydrogels provide a 3D hydrated framework
with tissue-like elasticity for culturing cells. They also possess the ability to encapsulate cells and
molecules prior to gelation, thus affording a minimally invasive avenue to deliver cells and bioactive
factors [2–4].

Collagen type I is a natural polymer and is the most abundant structural building block in
connective tissues such as bone, tendon and cartilage [5,6].

The basic structure of collagen is a triple helix of three left-handed polypeptide chains, which
can self-aggregate to form collagen fibrils, fibres and fascicles in vivo [6–8]. As a scaffold material,
collagen is inherently biocompatible and bioactive, and has a macromolecular organisation similar
to the natural extracellular matrix (ECM); however, its use as a biomaterial building block may be
limited due to batch-to-batch variability, potential antigenicity and difficulty in tuning features such as
stiffness, degradation and bioactivity [9].

Cross-linking methods are necessary to stabilise collagen in aqueous solutions ex vivo and can
be divided into three groups: physical interactions (e.g., ionically cross-linking and hydrogen bonds),
chemical reactions (e.g., with glutaraldehyde [10], diisocyanates [11], carbodiimide-activated diacids [12],
or photochemical polymerisation [13] or enzyme (e.g., glutaminase) catalysed mechanisms [14,15].

Chemical cross-linking can often be performed via covalent modification of lysine and
hydroxylysine residues and amino termini, whose cumulative occurrence counts for ~3× 10−4 mol·g−1

of collagen [16–20]. An advantage of chemical cross-linking is that the mechanical performance of
the resulting hydrogel can be systematically adjusted via variation in cross-linker type and cross-link
density, so that controlled tissue-specific ECM analogues can be successfully obtained [9,21,22].
Limitations include reagent toxicity, side reactions and lack of preservation of collagen triple helical
conformation in resulting cross-linked systems, the latter being key to ensuring high affinity for cells
and mechanical stability in physiological conditions [12,23].

“Click” chemistry is a cross-linking method which invokes high reactivity and selectivity [24–27].
Other attributes of click chemistry include insensitivity to oxygen and water, high yields, mild reaction
conditions and no generation of potentially harmful by-products, thus reducing the toxicity of the
resulting product [27–29]. As such, click chemistry is an appealing approach for the formation of
collagen hydrogels.

Among click reactions, thiol-click chemistry has been shown to be a powerful tool for the
efficient formation of thioether linkages (i.e., C–S–C) [30]. Examples of two thiol-click reactions
include: Michael-addition, which requires an electron-deficient carbon-carbon double bond (vinyl) and
a base [31]; and the thiol-ene reaction, which proceeds via a radical mediated, step-growth mechanism
between a thiol and a vinyl group that can be initiated using a light source and a photoinitiator [32,33].
Here, the vinyl group should be incapable of homo-polymerisation to ensure that the only reaction
taking place is the thiol-ene click reaction, such being the case for vinyl ether or norbornene-based
mono-/macromers [34].

As a result of the reaction selectivity and oxygen insensitivity, an interesting feature of thiol-ene
mixtures is their potential to be delivered as injectable liquid promptly leading to the formation of
a tissue cavity-conformable hydrogel following application of a suitable external stimulus. As a result
of the quick gelation capability, thiol-ene mixtures can also be formulated with cells and molecules
prior to gel formation and implantation in vivo [27,35]. However, to achieve collagen gelation in
situ, a major hurdle for the thiol-ene photo-click reaction is the necessary use of a non-toxic and
water-soluble photoinitiator [1,36]. Upon light exposure, the photoinitiator generates free radicals
that may cause cellular damage to a varying extent, depending on the gelation kinetics of the reacting
mixture [37]. Additionally, most of the commercially-available photoinitiators are intended for use in
organic solvents or dental resins and are therefore mostly insoluble in aqueous solutions of collagen.
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2-Hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (Irgacure™ 2959 (I2959)) and
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) are two water-soluble photoinitiators capable
of producing radicals when exposed to ultraviolet (UV) light (365 nm). I2959 is a commonly used
photoinitiator for encapsulation of cells within hydrogels due to its well-established cytocompatibility at
low concentrations [38].

In this work, we explored the challenge associated with the formation of an injectable, regenerative
device via a thiol-ene photo-click reaction in the presence of 2-iminothiolane (2IT)-functionalised
collagen and 8-arm norbornene-terminated poly(ethylene glycol) (PEG-NB). 2IT was selected as
a flexible thiol-forming compound and was covalently-coupled to type I rat tail collagen via
ring-opening reaction using the amino group from (hydroxy-)lysine terminations. PEG-NB was
employed as the synthetic hydrogel building block with the NB function providing the carbon-carbon
double bond incapable of homo-polymerisation required for the thiol-ene reaction. The presence
of NB-terminated multi-arms was expected to minimise reaction-hindering steric effects, thereby
promoting faster gelation compared to linear PEG-NB variants.We hypothesised that the orthogonality
offered by the thiol-ene reaction could result in the rapid formation of a defined collagen based
hydrogel network (~seconds) and therefore minimal toxic response [39]. Although thiol-ene hydrogels
have been reported, none have been prepared using collagen as the precursor material [27,34,35,40,41].
The introduction of a PEG phase in the collagen-based hydrogel provided improved user control of gel
formation and mechanical properties [39,42]. Two water-soluble photoinitiators were employed to
establish the photoinitiator-gelation-cytotoxicity relationship involved in the formation of thiol-ene
photo-click collagen-PEG hydrogels.

2. Materials and Methods

2.1. Materials

2-iminothiolane hydrochloride (2IT), Dulbecco’s modified eagle medium (DMEM) and penicillin
streptomycin (Pen Strep) were purchased from Fischer Scientific Ltd. (Loughborough, UK).
2-Hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methylpropan-1-one (I2959) was purchased from
Fluorochem Limited, (Glossop, UK). 1,4-Dithiothreitol (DTT) and Foetal bovine serum (FBS) were
purchased from Sigma (Poole, UK). Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) was
purchased from Tokyo chemicals industry (Oxford, UK). 8-arm PEG Norbornene (Mw: 20,000 g·mol−1)
was purchased from JenKem Technology, (Plano, TX, USA). ATPlite luminescence assay was purchased
from PerkinElmer (Seer Green, UK).

2.2. Preparation of Photo-Click Collagen-PEG Hydrogels

2.2.1. Extraction of Collagen Type I

Collagen type I was isolated in-house via acidic treatment of rat-tail tendons. Briefly, rat-tails
were defrosted in ethanol before the skin was removed using a scalpel. The tails were left to dry before
the exposed tendons (approx. four per tail) were removed, sliced and placed in acetic acid (17.4 mM)
and stirred for 48 h. The solution was centrifuged and the pellet removed to leave the soluble collagen
type I dissolved in the acetic acid, which was hereafter freeze-dried to produce the white, acid-soluble
collagen type I.

2.2.2. Synthesis of Collagen-SH

Collagen type I was stirred in acetic acid (17.4 mM, 1 wt %) until dissolution. The pH of the
solution was adjusted to pH 7.4 and then 2-iminothiolane (2IT) (5–20:1 [2IT]:[Lys]) was added
with 1,4-dithiothreitol (DTT) (1:1 [DTT]:[2IT]). The solution was stirred for 24 h before it was
precipitated in ethanol (20-fold volume excess), centrifuged and the residue was air dried (Scheme 1).
Functionalisation was confirmed using a (2,4,6)-Trinitrobenzenesulfonic acid (TNBS) colorimetric assay.
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Scheme 2. Illustration of the thiol-ene photo-click reaction mechanism between collagen-2IT (1) and 
PEG-NB (2). Radical-mediated step-growth thiol-ene network formation was initiated via UV 
activation of aqueous solutions containing 2IT-functionalised collagen precursor and 8-arm (f = 8) 
norbornene-terminated PEG in presence of either LAP or I2959 photoinitiator. 
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Functionalised collagen (0.011 g) and a reference sample were placed in a vial. Sodium hydrogen 
carbonate (NaHCO3) (4%, 1 mL) and TNBS (0.5%, 1 mL) were added. Hydrochloric acid (HCl) (6 N, 
3 mL) was added to the reference sample. These were stirred at 40 °C for 3 h. HCl (6 N, 3 mL) was 
added to the non-reference sample and stirred at 60 °C for 1 h to complete the reaction. Dilution in 
water (5 mL) was carried out, followed by extraction in diethyl ether (3 × 15 mL). An aliquot (5 mL) 
was removed and diluted in water (15 mL). Absorbance was measured at 346 nm. The molar content 
of (hydroxy-)lysine primary amino groups in either native or functionalised collagen was calculated 
using Equation (1). ݈ܯ	(ݏݕܮ) = 	 2 · 346)ݏܾܣ nm) · 0.02L1.46 × 10ସ (Mିଵ · cmିଵ) · ܾ · ݔ  (1) 

where Abs. (346 nm) is the absorbance value at 346 nm, 0.02 is the volume of sample solution (in 
litres), 1.46 × 104 is the molar absorption coefficient for 2,4,6-trinitrophenyl lysine (in M−1·cm−1), b is 
the cell path length (1 cm) and x is the sample weight. Accordingly, the degree of collagen 
functionalisation, F, was determined by TNBS colorimetric assay from the following equation: 

Scheme 1. Functionalisation of the available amine group in collagen with 2-iminothiolane (2IT).

2.2.3. Thiol-Ene Reaction

Collagen-SH (1 wt %) was dissolved in a PBS solution containing either LAP or I2959 (0.1% (w/v)
or 0.5% (w/v)). PEG-NB (2–4% (w/v)) was added to the collagen solution. Exposure to UV light
(Spectroline, Westbury, NY, USA, 365 nm) resulted in complete gelation by a thiol-ene step-growth
reaction mechanism (Scheme 2).
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Scheme 2. Illustration of the thiol-ene photo-click reaction mechanism between collagen-2IT (1)
and PEG-NB (2). Radical-mediated step-growth thiol-ene network formation was initiated via UV
activation of aqueous solutions containing 2IT-functionalised collagen precursor and 8-arm (f = 8)
norbornene-terminated PEG in presence of either LAP or I2959 photoinitiator.

2.3. Chemical Characterisation

2.3.1. (2,4,6)-Trinitrobenzenesulfonic Acid (TNBS) Colorimetric Assay

Functionalised collagen (0.011 g) and a reference sample were placed in a vial. Sodium hydrogen
carbonate (NaHCO3) (4%, 1 mL) and TNBS (0.5%, 1 mL) were added. Hydrochloric acid (HCl) (6 N,
3 mL) was added to the reference sample. These were stirred at 40 ◦C for 3 h. HCl (6 N, 3 mL) was
added to the non-reference sample and stirred at 60 ◦C for 1 h to complete the reaction. Dilution in
water (5 mL) was carried out, followed by extraction in diethyl ether (3 × 15 mL). An aliquot (5 mL)
was removed and diluted in water (15 mL). Absorbance was measured at 346 nm. The molar content
of (hydroxy-)lysine primary amino groups in either native or functionalised collagen was calculated
using Equation (1).

Mol (Lys) =
2 ·Abs.(346 nm)·0.02L

1.46 × 104
(

M−1·cm−1
)
·b·x

(1)

where Abs. (346 nm) is the absorbance value at 346 nm, 0.02 is the volume of sample solution (in litres),
1.46 × 104 is the molar absorption coefficient for 2,4,6-trinitrophenyl lysine (in M−1·cm−1), b is the cell
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path length (1 cm) and x is the sample weight. Accordingly, the degree of collagen functionalisation, F,
was determined by TNBS colorimetric assay from the following equation:

F = 100−
Mol (Lys)2IT
Mol (Lys)coll

× 100 (2)

where Mol (Lys)coll and Mol (Lys)2IT represent the total molar content of free amino groups in native
(Lys ~3 × 10−4 mol·g−1) and 2IT-reacted collagen respectively [16,17].

2.3.2. Circular Dichroism

Circular dichroism (CD) spectra of functionalised samples were acquired with a ChirascanCD
spectrometer (Applied Photophysics Ltd., Leatherhead, UK). Solutions of functionalised collagen
(0.2 mg·mL−1) dissolved in acetic acid (17.4 mM) were collected in quartz cells of 1.0 mm path length.
CD spectra were obtained using 4.3 nm band width and 20 nm·min−1 scanning speed. In addition,
a spectrum of the acetic acid (17.4 mM) control solution was recorded and subtracted from each sample.
Molar ellipticity (θmrw,λ) was calculated from Equation (3).

θmrw, λ =
MRW·θ λ

10·d·c (3)

where θλ is the observed molar ellipticity (degrees) at wavelength λ, d is path length (1 cm) and c is
the concentration (0.2 mg·mL−1) [43].

The ratio of the magnitude of the positive to negative peaks (RPN) in the CD spectra was used as
an indication of the triple helix architecture. For collagen functionalised samples, the quantification of
the triple helix preservation (Xc) was calculated by normalisation of the RPN value with respect to the
RPN value of native collagen (Literature value of collagen type I RPN 0.117) [44].

2.3.3. Ultraviolet/Visible (UV/Vis) Light Spectroscopy

UV/Vis spectroscopy was carried out using both a Thermo Scientific NanoDrop Lite
spectrophotometer and a JENWAY 6305 spectrophotometer (Jenway, Stone, UK). The solution
concentration of either photoinitiators or collagen was adjusted to achieve absorbance values equal
to or less than 1.

2.4. In Vitro Cytotoxicity Assay

G292 cells (1 × 104 cells in 100 µL) were cultured in basal medium (GibcoTM DMEM, 10%
FBS, 1% Pen Strep) in 96-well plates (n = 7). For the test groups, the cells were exposed to basal
media with increasing concentrations of either I2959 or LAP (0.005–0.5% (w/v)) and cultured for 24 h.
Basal medium alone was used as the control and cell viability was assessed via an ATPlite assay.
The absorbance of the experimental groups was normalised with respect to the corresponding basal
medium control group to provide relative survival rates [45,46].

2.5. Rheology Studies

Rheology curing measurements were performed on the thiol-ene reacting mixtures.
The measurements were carried out on an Anton Paar MCR 301 rheometer using a CP50-2 tool
with a diameter of 49.97 mm and a cone angle of 1.996◦. UV light (365 nm) curing was initiated after
60 s with a light intensity of 4450 µW·cm−2 at 25 ◦C. The time point at which the reaction was complete
and a full chemical gel that formed was measured at the maximum recorded value of storage modulus
(G’max). The gelation time (τ) was quantified as the temporal interval between UV activation and
complete chemical gel formation. Amplitude sweep tests were performed on photo-cured hydrogels
using the PP15 parallel plate tool at an angular frequency of 100 rad s−1 and a normal force of 1 N.
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2.6. Network Architecture

2.6.1. Swelling Ratio and Gel Content

Dehydrated samples (2–5 mg) were individually placed in 1 mL of distilled water at 25 ◦C under
mild shaking. At specific time points, the swelling ratio (SR) was calculated using the following equation:

SR =
Ms −Md

Md
× 100 (4)

where Ms and Md are the swollen and dried weight. Swollen samples were paper blotted prior to
weight measurement to consider the contribution from bound water only.

In addition to the swelling ratio, the gel content was determined to investigate the overall portion
of the covalent hydrogel network insoluble in 10 mM HCl solution. Dried hydrogel networks of known
mass (Md) were equilibrated in 10 mM HCl solution for 24 h. Resulting hydrogels were air dried and
weighed (Md1). The gel content (G) was calculated using Equation (5).

G =
Md1
Md

× 100 (5)

2.6.2. Morphology Study

Hydrated gels were investigated in a cool-stage chamber of a Hitachi S-3400N VP-SEM (Hitachi,
Maidenhead, UK). SEM images were captured via backscattered electron detection at 5 kV and
12–13 mm working distance.

2.7. Statistical Analysis

A one-way ANOVA (Minitab, Coventry, UK), followed by post-hoc Tukey test on data when
Levene’s test showed p > 0.05 and equal variances could be assumed and a Welch’s ANOVA followed
by a post-hoc Games-Howell on data when Levene’s test p < 0.05 and equal variances couldn’t be
assumed. Statistical significance was determined by p < 0.05.

3. Results and Discussion

The design of the thiol-ene photo-click collagen-PEG hydrogel system is presented, with the aim
to identify key reaction parameters to enable fast gelation (~seconds), minimal photo-initiator-induced
toxic response and tunable hydrogel elasticity. Sample nomenclature used in this work is as follows:
thiol-ene hydrogels are coded as “CollPEGX”, where “Coll” and “PEG” refer to 2IT-functionalised
collagen and 8-arm norbornene-terminated PEG, respectively, and “X” identifies the PEG content
(2–4% (w/v)) in the thiol-ene mixture.

3.1. Synthesis and Evaluation of Collagen-SH

Thiolated collagen was prepared via a base-free (hydroxyl-)lysine mediated ring-opening reaction
using 2IT, which provided minimal impact on the charge properties of the original amino groups
(Scheme 1). The occurrence of the reaction was confirmed via TNBS assay. This assay provides
information on the molar content of the remaining free primary amino groups in the reacted group,
compared to native proteins (Figure 1). The reaction could be easily and systematically controlled so
that increasing the molar ratio of 2IT with respect to collagen primary amino functions ([2IT]:[Lys])
directly affected the degree of functionalisation in the resulting products (F: 55→ 80 Abs. %).

The degree of triple helix preservation (Xc) of the collagen after functionalisation was determined
using CD with normalisation against the RPN value of native collagen. The functionalised collagen
displayed high preservation of triple helices (Xc > 80 RPN %) regardless of the degree of F (Abs. %),
with almost quantitative yield (Xc: 90 RPN%) in 2IT-reacted products with a degree of functionalisation
of up to 72 Abs. % (Figure 1); this is beneficial to preserve the native protein organisation and high
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natural affinity for cells [23]. For further experiments, collagen-SH was prepared using 15 times excess
(F: 72 Abs. %, Xc: 90 RPN%).
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Figure 1. Degree of functionalisation (F) and triple helix preservation (Xc) in collagen products reacted
with 2IT at varied [2IT]:[Lys]−1 molar ratios. Data presented as mean ± SEM.

3.2. Photoinitiator Analysis

Following the formation of thiolated collagen, the effect of the water-soluble photoinitiators on
cell viability was investigated. Minimal photoinitiator-induced cytotoxic response is key to enabling
radical-mediated thiol-ene gelation in situ in the presence of cells.

Photoinitiator toxicity was evaluated using an ATPlite assay on G292 cells cultured with
an increased concentration of either LAP or I2959 (0.005–0.5% (w/v)) in basal medium for 24 h.
The relative survival rate of the cells was calculated by normalising the absorbance readings of the
samples against the control, which was G292 cells grown with basal medium on cell culture plastic
using seven repeats (Figure 2A). The results showed that there was no detected cell toxicity after
culturing the cells for 24 h in cell culture media with photoinitiator concentrations below 0.05% (w/v)
for both LAP and I2959. However, the relative survival was observed to significantly decrease (p < 0.05)
when the photoinitiator concentration in cell culture media was increased from 0.1→ 0.5% (w/v) for
both LAP (cell survival: 86→ 8 Abs. %) and I2959 (cell survival: 62→ 2 Abs. %). At the same time,
the results showed a significant difference in cell viability depending on the specific photoinitiator
supplemented in the basal media, with LAP outperforming I2959 (p < 0.05).
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Figure 2. Initiator analysis (A) Relative survival of G292 cells cultured in cell culture medium
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In addition to the impact on cell viability, the radical-generation capability of both photoinitiators
using UV light (365 nm) was evaluated. The UV-Vis spectra of I2959 and LAP photoinitiators
and collagen are presented (Figure 2B). The maximum absorption wavelength of LAP was found
to be 380 nm, with a high absorbance still recorded at 365 nm (molar extinction coefficient (ε):
218 M−1·cm−1) [45]. In comparison, I2959 had a peak maximum at 285 nm, where it also displayed
competing absorbance against the peak from the amino acids in collagen, whilst displaying minimal
absorbance at 365 nm (ε: 4 M−1·cm−1) [45].

Photopolymerisation reactions are driven by chemicals that generate free radicals when exposed
to specific wavelengths of light. The rate of a photopolymerisation reaction is directly proportional
to the photoinitiator concentration, light intensity, the molar extinction coefficient and photoinitiator
efficiency [47]. When carried out in an aqueous environment, these reactions commonly use
photoinitiator concentration above 0.1% (w/v) to ensure efficient generation of radicals for the reaction
to occur; although it has been reported that when incorporated with peptides, I2959 does not initiate
photopolymerisation reactions as effectively at concentrations below 0.3% (w/v) [13,21,31,46,48–50].

The weak absorbance profile of I2959 at 365 nm and its competing absorbance with collagen
severely limits its utility for photopolymerisation reactions performed at this wavelength. This implies
that a higher concentration of I2959 is needed when used at 365 nm compared with LAP to overcome
these issues. On the other hand, the low solubility of I2959 in water together with considerations
on respective photoinitiator-induced cytotoxic effect make this approach unfeasible. Considering
previously observed trends of solubility, absorbance profiles and cell viability, photoinitiator
concentrations in the range of 0.1–0.5% (w/v) were employed to induce radical-mediated gelation of
thiol-ene collagen-PEG mixtures.

3.3. Thiol-Ene Gelation Kinetics via Rheological Studies

Confirmation of thiol-ene hydrogel formation was obtained via rheology curing time sweep
measurements during which storage (G’) and loss (G”) moduli were recorded. The gelation kinetics
profile of thiol-ene mixture, CollPEG4 (LAP/0.5% (w/v)) is displayed in Figure 3. Comparable to the
liquid state, the collagen-PEG mixture was initially found to be predominantly viscous.
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Figure 3. Typical gelation kinetics profile of thiol-ene mixture CollPEG4 (LAP 0.5% (w/v)). Dark
grey: storage modulus (G’); light grey: loss modulus (G”). UV light was activated 60 s after the start
of the time sweep measurement, resulting in complete gelation after nearly 300 s. The inner image
presents a zoomed-in plot of the initial stage of gel formation, indicating a gel point after just 7 s of
UV activation.
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The UV light was turned on 60 s after the start of the time sweep, which promptly induced the
formation of a covalent network, and is clearly indicated by the detection of a gel point (the time at
which the storage and loss moduli equate or crossover) seven seconds after the photo-activation [51,52].

The storage modulus was found to increase with time and UV exposure until a plateau was
reached within 300 s, indicating no further elastic properties (complete chemical gel). The gelation
kinetics of the collagen-PEG thiol-ene mixture prepared with either LAP or I2959 with varied
photoinitiator concentration was also characterised. The results from Table 1 show a significant
difference in gelation time depending on choice of photoinitiator introduced in the thiol-ene solution.
I2959-based hydrogel-forming solutions took approximately eight times as long to reach gel completion
compared to LAP-containing thiol-ene solutions, regardless of photoinitiator concentration. The slower
gelation rate displayed by hydrogel-forming thiol-ene mixtures prepared with I2959 compared to LAP
could be due to competing absorbance at 365 nm with collagen and the specific wavelength used,
as discussed previously. Other than the gelation time, the choice of photoinitiator had no comparable
effect on the storage modulus (Table 1). At 0.5% (w/v), LAP and I2959 presented an average storage
modulus of 3360 and 3029 Pa; whilst at 0.1% (w/v) photoinitiator, LAP and I2959 presented a storage
modulus of 232 Pa and 190 Pa. Despite the photoinitiator-induced variation in gelation kinetics,
this data suggests comparable cross-link density among previously-mentioned hydrogel formulations,
as expected, considering the selectivity and oxygen-insensitivity of the thiol-ene click reaction.

Table 1. Effect of photoinitiator type and concentration on both gelation kinetics and storage modulus
obtained of thiol-ene mixture CollPEG3.5 as investigated via time and amplitude sweeps, respectively.
Data presented as means ± SEM.

Photoinitiator (% w/v) G’ (Pa) τ (s)

I2959 (0.1) 190 ± 22 1496 ± 43
I2959 (0.5) 3029 ± 100 1683 ± 33
LAP (0.1) 232 ± 39 279 ± 11
LAP (0.5) 3360 ± 91 187 ± 6

Table 1 showed that increasing the photoinitiator concentration from 0.1% to 0.5% (w/v) in the
thiol-ene mixture resulted in a 15-fold increase in the storage modulus, for both photoinitiators.
Compared to 0.5% (w/v), the photoinitiator efficiency at 0.1% (w/v) appears to be too low to
efficiently release enough radicals to complete the click chemistry reaction, thus resulting in fewer
thiol-norbornene cross-links and a hydrogel with reduced storage modulus.

Due to the enhanced gelation kinetics and hydrogel storage modulus, the remaining rheological
studies were carried out on thiol-ene solutions containing LAP 0.5% (w/v), aiming to induce further
control on gelation kinetics, as well as hydrogel mechanical and physical properties.

Table 2 shows that five thiol-ene photo-click samples displayed an increased storage and loss
modulus with the increased concentration of PEG in the thiol-ene solution (p < 0.05). The photo-click
gels displayed a G’ in the range of 500–4800 Pa depending on the thiol-ene formulation, thus indicating
a significant degree of tunability in the mechanical properties of the gels. Tanδ is a representation
of the ratio of the viscous (loss) and elastic (storage) moduli (G”/G’). This parameter identified how
tacky/sticky the hydrogel was [53]. Interestingly, Tanδ was observed to decrease with increasing PEG
content, ultimately leading to increased hydrogel stiffness and reduced tackiness of the resulting gel.
This data provides further evidence that PEG is integrated into a covalent network rather than acting
as a secondary plasticising phase, as also supported by respective gelation kinetics profiles (Figure 4).
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Table 2. Mechanical and physical properties of four thiol-ene collagen-PEG hydrogels using LAP (0.5%
(w/v)) Data presented as means ± SEM.

Sampled ID G’ (Pa) G” (Pa) τ (s) Tanδ (×10−3)

CollPEG2 540 ± 23 5.1 ± 1.0 73 ± 3 5.3 ± 0.2
CollPEG2.5 1150 ± 46 5.8 ± 0.1 110 ± 6 6.3 ± 0.1
CollPEG3 2040 ± 50 8.6 ± 0.3 133 ± 6 5.7 ± 0.1

CollPEG3.5 3360 ± 91 11.1 ± 0.6 187 ± 6 5.0 ± 0.1
CollPEG4 4810 ± 41 13.2 ± 0.8 301 ± 13 3.5 ± 0.1
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Figure 4. Curing time sweep measurements of thiol-ene collagen mixtures prepared with 0.5% (w/v)
LAP and varied PEG content. CollPEG2: (—); CollPEG2.5: (···); CollPEG3: (-·-); CollPEG3.5: (- -);
CollPEG4: (-··-).

3.4. Network Architecture

Swelling and gel content were quantified to gain insight into the network architecture of the
photo-click collagen-PEG hydrogels. Other than the swelling ratio providing information on the
cross-link density, the gel content was used to assess the portion of extractable material that was not
involved in the formation of the thiol-ene photo-click covalent network [21]. As observed in Table 3,
high gel content (G > 90 wt %) was found for all the thiol-ene photo-click gels investigated, suggesting
all the material was held together as a covalent network.

Table 3. Swelling ratio and gel content of the thiol-ene collagen-PEG hydrogels. Data represented as
mean ± SEM.

Sample ID SR (wt %) G (wt %)

CollPEG2 1530 ± 130 90 ± 1
CollPEG2.5 2130 ± 150 86 ± 3
CollPEG3 2340 ± 240 97 ± 1

CollPEG3.5 2640 ± 220 90 ± 2
CollPEG4 2840 ± 71 91 ± 1

This observation provided further confirmation that the presented synthetic thiol-ene approach
successfully enabled the rapid formation of defined covalently-crosslinked collagen-based networks.
A paper by Xu et al. reported the preparation of collagen hydrogels using a Michael-addition
reaction [54]. These hydrogels were recorded to have a gel content of 77 wt %, which is lower
than the one measured on the thiol-ene hydrogels obtained in this study. This results suggest a higher
yield of network formation compared to previously-reported Michael-addition hydrogels, although an
8-arm rather than linear norbornene-derived PEG was employed in this study [54].
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Other than the gel content, the swelling ratio increased from 1530 wt % to 2840 wt % from
collPEG2 to collPEG4, despite the increased storage modulus observed for these samples. This increase
in swelling ratio could be due to the increased content of hydrophilic PEG incorporated into the
hydrogel network. In comparison, collagen hydrogels formed using N-(3-Dimethylaminopropyl)-
N′-ethylcarbodiimide hydrochloride (EDC) (20× excess) have had a reported swelling ratio of
1595 wt % [12]. Swelling ratio is an important feature for the design of regenerative devices since a high
swelling ratio is expected to promote increased diffusion of nutrients and cellular waste into and out of
the collagen hydrogel [55]. To further analyse the swelling behaviour of the photo-click gels, a swelling
kinetic experiment was used to assess the amount of time needed for the gels to reach equilibrium
with water (Figure 5). The stiffer gels, CollPEG4 and CollPEG3.5, were found to reach equilibrium
after 10 min incubation in distilled water, whereas the weakest gel, CollPEG2, needed 360 min to reach
equilibrium with water. These results further confirm the relationship between PEG content in the
thiol-ene reacting mixture, and previously-observed swelling ratio of the resulting hydrogel.
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Figure 5. Swelling kinetics profile of thiol-ene collagen-PEG hydrogels prepared with 0.5% (w/v) LAP
and varied PEG content. CollPEG2: (—); CollPEG2.5: (···); CollPEG3: (-·-); CollPEG3.5: (- -); CollPEG4:
(-··-). Data presented as means ± SEM.

SEM images were taken in the wet state to analyse the morphology of the photo-click hydrogels
in near-physiological conditions (Figure 6). Pore sizes in the range of 30–80 µm were observed.
Pores may likely be formed in the hydrogels following stirring and casting of the thiol-ene mixture.
Pore size is an important feature in regenerative devices to allow sufficient material surface for cell
seeding and cell diffusion. Additionally, pores should be large enough to promote cell diffusion and
vascularisation [56].
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Figure 6. Cool-stage SEM images of sample CollPEG4. Magnifications: (a): 1000×; (b): 100×.
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Work by Chiu et al. (2011) stated that when using PEG hydrogels, cell and vessel invasion was
limited to the external surface of the gels with smaller pore size (25–50 µm), whereas gels with larger
pores (50–150 µm) permitted mature vascularised tissue formation throughout the entire material
volume [57]. The pore size measured in the photo-click hydrogels may therefore be suitable to enable
angiogenesis and wound healing in vivo.

4. Conclusions

Collagen successfully reacted with 2IT without the need for an additional base yielding thiolated
collagen with a triple helical preservation of at least 90 RPN% (CD) and degree of functionalisation up
to above 80 Abs. % (TNBS). A thiol-ene click reaction was performed with PEG-NB in the presence of
a water-soluble photoinitiator to investigate its potential as a rapid, oxygen-insensitive cross-linking
method for in situ gelation.

Photoinitiator-induced cytotoxicity as well as hydrogel gelation kinetics and storage modulus
were examined using two water soluble photoinitiators, i.e., LAP and I2959, at varied photoinitiator
concentrations (0.1–0.5% (w/v)). Photo-curing rheological experiments showed that decreased
photoinitiator concentrations in the thiol-ene mixtures had a detrimental (15 fold) effect on storage
modulus, whilst the lower, less toxic photoinitiator concentration was not feasible for gelation. I2959
photoinitiator was shown to be the least preferable photoinitiator when used at 365 nm, leading to
longer gelation times compared to LAP.

Further work into using LAP 0.5% (w/v) showed that photo-click collagen-PEG hydrogels were
successfully prepared with tunable physical and mechanical properties by altering the PEG content
and thereby the number of thiol-ene crosslinks. Such soft and highly swollen systems offer widespread
application in the context of e.g., muscle regeneration and wound healing devices.
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