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Abstract: The properties of a composite material depend on its constituent materials such as
natural biopolymers or synthetic biodegradable polymers and inorganic or organic nanomaterials or
nano-scale minerals. The significance of bio-based and synthetic polymers and their drawbacks on
coating film application is currently being discussed in research papers and articles. Properties and
applications vary for each novel synthetic bio-based material, and a number of such materials have
been fabricated in recent years. This review provides an in-depth discussion on the properties and
applications of biopolymer-based nanocomposite coating films. Recent works and articles are cited
in this paper. These citations are ubiquitous in the development of novel bionanocomposites and
their applications.
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1. Introduction

Bionanocomposite coating films are composite materials that consist of natural or synthetic
biodegradable polymers and nano-scale materials. Bionanocomposites are known as a novel class
of advanced materials. In these materials, the polymer matrix, which includes natural or synthetic
polymers or biomolecules, is considered the biological origin, whereas nano-scale materials are
regarded as value-added materials. Composite materials exhibit stronger physical, chemical and
mechanical properties than their constituent materials. However, conventional composite materials
mechanically differ from nanocomposites because of their exceptionally high surface-to-volume
ratio. Nanocomposites are incorporated with a large variety of systems, including organic and/or
inorganic materials as the general class and either one of the phases with one, two, or three
dimensions less than 100 nm. In recent years, researchers and industries have been moving toward
developing bio-based nanocomposites to address environmental issues and to find alternative sources
for petroleum-based chemicals. The results of recent studies show that bionanocomposites are
excellent green technology materials with good biodegradability, biocompatible properties, and the
capability to mimic bio materials. Consequently, bionanocomposites have been ubiquitous in numerous
applications, including coating films, which have been realized via novel and conventional research
and technologies.
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Natural or synthetic biodegradable polymers play a major role in the fabrication of
bionanocomposite coating films incorporated with nano-scale materials. The properties and
applications of a bionanocomposite coating film depends on the characteristic of the nano-scale
materials. Several natural polymers have been categorized in previous studies, and each of these
materials inherently possesses different characteristics, such as molecular arrangement, active
functional groups, bonding nature, thermal behavior, and solubility. Apart from inorganic or synthetic
organic compounds, some minerals and clay minerals are also used as nano-scale materials to fabricate
bionanocomposite coating films. These materials are utilized in various interdisciplinary fields such
as bio-inspired materials, bio-mineralization processes, and biomimetic systems [1]. Furthermore,
the properties of a bionanocomposite coating films depend on the characteristics of the biopolymers,
the stoichiometric ratio of the constituent materials, and the cross-linking among the constituent
materials as well as on the biopolymer macromolecular matrix. The applications of bionanocomposite
coating films have been ubiquitous in different industries, such as aerospace, food, biomedical, tissue
engineering, paint, packaging, and glass coating.

This paper aims to review studies on polymer-based nanocomposite coating films and their
applications. Furthermore, the UV-blocking properties of biopolymers and recently fabricated
bionanocomposite coating films are comprehensively discussed. Film characterizations are presented
as well.

2. Constituent Materials of Bionanocomposite Coating Films

Natural polymers are found in renewable resources such as cellulose, wood fiber, starch, chitosan,
pullulan, alginate, protein, shellac, lignin, and polyhydroxyalkanotes. They are used in many industrial
and biomedical applications such as in preparing implant devices, biomimetic materials, films, coating
materials [2], insulation materials, paints, paint inks, biodegradable packing materials, adhesives,
footwear components, synthetic leathers, lubricants, biodiesel, and plasticizers [3]. In addition,
main class synthetic biodegradable polymers, including polyglycolide, polylactic acid, polybutylene
succinate and poly(vinyl alcohol) (PVOH) and other biodegradable polyurethanes, are reviewed in
this paper. Types of nanoscale materials, their significance and loading level into a polymer matrix
as well as an effect of nanoscale materials on coating application are discussed. Moreover, a range of
applications and properties of film-forming materials are investigated in this review.

2.1. Natural Polymers

Six natural polymers, such as plant cellulose, lignin, chitosan, pullulan, polyhydroxyalkanoate,
and protein are discussed in this review based on their source of origin, chemical structure, functional
group, potential surface modifications, and their applications.

2.1.1. Cellulose

Cellulose is one of the major natural and renewable biopolymer resources. It is extensively
used in fabricating advanced polymer-based nanocomposite materials in the form of cellulose
nanocrystals (CNCs), and is adopted in the sustainable production of materials on an industrial scale [4].
Cellulose exists as a cellular hierarchical biocomposite in all wood and plant materials incorporated
in other materials such as lignin, hemicelluloses, waxes, extracts and trace elements [5]. A graphical
illustration of cellulose is provided in Figure 1. The molecular arrangement and bonding nature of
cellulose in plant cell wall have been clearly presented by Habibi et al. [6]. CNCs are well-ordered
crystalline structures within cellulose fibers which is composed of amorphous and crystalline regions.
CNCs are formed by the breakup of microfibrils into shorter crystalline parts. CNCs have been
mainly referred to as microcrystals, whiskers, microcrystalline, nanofibers, or nanofibrils in recent
years. Different mechanical and chemical treatments have been used to prepare CNCs. Further
individualization of CNCs occur by using cryocrushing, disintegration and defibrillation processes [7].
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Figure 1. Graphical illustration of the hierarchical structure of cellulose extracted from plants.  

Considering the hydrogen bond in their crystalline region, CNCs exhibit good strength and 
insoluble nature in most solvents. The mechanical properties such as the theoretical values of 
Young’s modulus, tensile strength, and elongation at break modulus of the CNCs of cotton and 
tunicate were reviewed by Habibi et al. [6]. The mechanical properties of some plant fibers are listed 
with their values in Table 1. 

Table 1. The mechanical properties of plant fibers with an increasing order of tensile strength [8]. 

Fibers Density 
Elongations at break 

(%) 
Young’s modulus 

(GPa) 
Tensile strength  

(GPa) 
Coconut 1.15 15–40 4–6 131–175 
Bamboo 0.6–1.1 – 11–17 140–230 

Kenaf 1.2 1.6 14–53 240–930 
Cotton 1.5–1.6 7–8 5.5–12.6 287–597 

Flax 1.54 1–4 27.5–85 345–2000 
Sisal 1.45–1.5 2–7 9–22 350–700 

Hemp 1.47 1.6 17–70 386–800 
Jute 1.44 1.5–1.8 10–30 393–773 

Ramie 1.5–1.56 1.2–3.8 27–128 400–1000 
Nettle 1.51 2.1–2.5 24.5–87 560–1600 
E-glass 2.5 2.5 70 2000–3500 

Carbone 1.4 1.4–1.8 230–240 4000 

The cell wall is composed of several complex layered structures with primary and secondary 
walls. The primary wall has three layers which are covered by the secondary wall. Each layer is 
composed of microfibrils, and the thick middle layer of the secondary wall determines the 
mechanical properties of the fibers. The presence of fiber with an optimum quantity determines the 
mechanical strength of advanced polymer-based nanocomposites. Therefore, understanding the 
physical, chemical and mechanical properties of natural fiber is a value-added concept to develop 
improved natural polymer-based nanocomposites. The properties of the natural fibers are not only 
dependent on weather condition, soil, and climate, but are also affected during the processing of the 
fiber, such as during retting, scotching, bleaching, and spinning [9]. 

Cellulose fibers are used as reinforcing materials in several industries because of their high 
thermal stability, high aspect ratio, relatively high strength, low density, excellent tensile strength, 
high durability, good mold capability, and high stiffness [10]. Furthermore, these fibers are 
abundantly available, biodegradable, biocompatible, cheap, renewable, have low abrasive nature, 
and exhibit good mechanical properties. In addition to these inherent properties, surface 
modification treatments also enhance the characteristics of CNCs. Such treatments are possible 
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Considering the hydrogen bond in their crystalline region, CNCs exhibit good strength and
insoluble nature in most solvents. The mechanical properties such as the theoretical values of Young’s
modulus, tensile strength, and elongation at break modulus of the CNCs of cotton and tunicate were
reviewed by Habibi et al. [6]. The mechanical properties of some plant fibers are listed with their
values in Table 1.

Table 1. The mechanical properties of plant fibers with an increasing order of tensile strength [8].

Fibers Density Elongations at break
(%)

Young’s modulus
(GPa)

Tensile strength
(GPa)

Coconut 1.15 15–40 4–6 131–175
Bamboo 0.6–1.1 – 11–17 140–230

Kenaf 1.2 1.6 14–53 240–930
Cotton 1.5–1.6 7–8 5.5–12.6 287–597

Flax 1.54 1–4 27.5–85 345–2000
Sisal 1.45–1.5 2–7 9–22 350–700

Hemp 1.47 1.6 17–70 386–800
Jute 1.44 1.5–1.8 10–30 393–773

Ramie 1.5–1.56 1.2–3.8 27–128 400–1000
Nettle 1.51 2.1–2.5 24.5–87 560–1600
E-glass 2.5 2.5 70 2000–3500

Carbone 1.4 1.4–1.8 230–240 4000

The cell wall is composed of several complex layered structures with primary and secondary
walls. The primary wall has three layers which are covered by the secondary wall. Each layer is
composed of microfibrils, and the thick middle layer of the secondary wall determines the mechanical
properties of the fibers. The presence of fiber with an optimum quantity determines the mechanical
strength of advanced polymer-based nanocomposites. Therefore, understanding the physical, chemical
and mechanical properties of natural fiber is a value-added concept to develop improved natural
polymer-based nanocomposites. The properties of the natural fibers are not only dependent on weather
condition, soil, and climate, but are also affected during the processing of the fiber, such as during
retting, scotching, bleaching, and spinning [9].

Cellulose fibers are used as reinforcing materials in several industries because of their high
thermal stability, high aspect ratio, relatively high strength, low density, excellent tensile strength, high
durability, good mold capability, and high stiffness [10]. Furthermore, these fibers are abundantly
available, biodegradable, biocompatible, cheap, renewable, have low abrasive nature, and exhibit
good mechanical properties. In addition to these inherent properties, surface modification treatments
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also enhance the characteristics of CNCs. Such treatments are possible because of the abundance
of the hydroxyl group on CNC surface. The results showed that various chemical processes such
as silylation [11], esterification, etherification, oxidation, and polymer grafting [6] have successfully
functionalized CNCs in recent years.

The archetypal properties and chemical modification possibilities of CNCs have directed
the considerable academic and industrial interests toward the potential of these materials in
various applications, such as in coating films [12], nanopaper (Figure 2), nanocomposites [13],
high-performance materials, biomedicals, catalysts, sensors, electronics, and energy [14,15]. However,
CNCs have poor water-vapor barrier capacity because of the huge amount of hydroxyl groups on the
nanofibrillated cellulose surface.

Figure 2. (a) Photograph of a 200 mm diameter cellulose nanopaper structure on top of
conventional A4 copy paper; (b) Scanning electron micrograph of hybrid microfibrillated cellulose
nanofibers/montmorillonite nanopaper surface. Reprinted (adapted) with permission from [16],
copyright (2016) American Chemical Society.

2.1.2. Chitosan

Chitosan is an extraordinarily versatile natural polymer. It is known as one of the most promising
biopolymers for fabricating advanced materials [17,18]. Next to cellulose, chitosan is the second
most abundant polysaccharide found in nature [19,20]. Furthermore, over 100 billion tons of chitosan
have been converted annually from living materials through the deacetylation process of chitin.
Chitosan is a polyamino-saccharide that consists of active primary amine, primary hydroxyl, and
secondary hydroxyl groups on its molecular chain known as β-(1-4)-2-amino-2-deoxy-D-glucose.
These unbranched molecular units act as functional monomers, which form the chitosan polymer.

The active primary amine and hydroxyl groups of chitosan allow its structural modification
with suitable cross-linking agents. Accordingly, the physical properties of chitosan are enhanced,
whereas swelling degree in its aqueous system is reduced [18]. Cross-linking agents for chitosan,
such as glyoxal, glutaraldehyde, epichlorohydrin, genipin, ethylene glycol diglycidyl ether,
N,N1-methylenebisacrylamide, and sulfuric acid, have been intensively reviewed by Xu et al. [18].
They also investigated the cross-linking mechanism, preparation methods, toxicity, hydrophobicity,
feasibility, and drawbacks of these agents. Chitosan has been extensively used in several fields,
such as in medicine, protein separation and identification, chiral compound separation, and coating
field as well as the winemaking industry because of its physical robustness, thermal stability [18],
bivalent mineral-chelating capability and antibacterial behavior [21]. However, chitosan has poor
mechanical properties, water resistance limit, and gas-barrier capability. Therefore, its application
is only possible in the presence of water and humidity [22,23]. Cationic polysaccharide of chitosan
are highly sensitive, and thus, heterogeneous materials that exhibit inadequate properties with trace
amounts of anionic substances and nanoparticles in the solution are formed [24]. However, countless
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strategies, such as the addition of plasticizers and salt, the chemical modification of hydroxyl groups,
the cross-linking of polysaccharides, the use of suitable solvents, the change of pH, the addition of
different polysaccharides, and the blending with other polymers, have been studied to improve the
mechanical properties and other properties of chitosan [17,25].

Chitosan is a positively charged polysaccharide used in medical and drug delivery
applications [26,27]. Interestingly, a recent novel approach on electrostatic interaction, in which cationic
polysaccharides are combined with anionic substances and nanoparticles, has turned the drawback
of cationic polysaccharides in an aqueous medium into an advantage to develop bionanocomposites
using chitosan as a building block. The results of an ionic system of chitosan can act as a weak
polyelectrolyte to generate a charged and non-charged state. The charging of the system can also be
manipulated by directly changing the pH value [28].

2.1.3. Lignin

Lignin is the second-most abundant natural renewable biopolymer derived from plant materials.
In addition, over 70 million tons of lignin is derived annually for different purposes. In 2002, 95% of
lignin was used in the form of energy [28] and only 1%–2% was used in industrial products [29].
Lignin exhibits variability in terms of building units and functional groups, including ether and ester
linkages, aliphatic and aromatic hydroxyl groups, and methyl groups [30]. Furthermore, aromaticity
and bonding nature of the lignin with polysaccharides in the plant cell wall have been discussed by
Hambardzumyan et al. [31]. Figure 3 describes the molecular organization, functional groups, and
length of a molecular unit.

Figure 3. (a) The chemical structure of the monomer units found in lignin; (b) AFM image of cellulose
nanocrystals after acid hydrolysis and (c) the average length of the monomer unit found in lignin.
Reprinted (adapted) with permission from [31], copyright (2016) American Chemical Society.

Lignin is not only enhanced by its aromatic nature and functional groups, but also by its
considerable potential adhesive, stabilizing, and suspension-forming properties to present a highly
reactive nature. Consequently, lignin is regarded as a good additive for developing biodegradable
composite materials and also as a stabilizing agent for ceramics and as an effective alumina
suspension for advanced material fabrication. In addition, lignin inherently possesses UV-absorbing
capability [32] and demonstrates good mechanical resistance, recalcitrance to biodegradation, and
hydrophobic properties.

Meanwhile, recently developed chemically modified lignin, such as lignosulfates, kraft lignin, and
acetylated lignin, which contain CNCs or commercial derivatives or nanocellulosic polysaccharides,
further improved the hydrophobicity, mechanical resistance, and oxygen barrier properties of the
materials. Furthermore, a lignin-based nanocomposite incorporated with CNCs improves the surface
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water resistance and wettability properties of the materials in the presence of Fenton’s reagent (H2O2

and FeSO4) as an initiator. Graft copolymerization is a simple and attractive approach to change the
physical and chemical properties of lignin [32]. Several techniques have been used to modify lignin
through the graft copolymerization processes, such as irradiation, chemical, and chemo-enzymatic
initiation [33]. The limitation of the biodegradability of lignin copolymer incorporated with vinyl
monomers is a drawback in most free radical-based graft copolymerization techniques [34].

Consequently, poly-(ε-caprolactone) and L-lactide [35,36] have been invented as alternative
monomers to fabricate biodegradable materials from copolymerized lignin. The ring-opening
polymerization technique is extensively used to prepare lignin-graft polylactic acid (PLA) and
polycaprolactone (PCL) copolymers [37] with a suitable catalyst. The thermal stability and soluble
characteristics of lignin and lignin-based copolymers were reported by Kim et al. [32] and illustrated
in Figure 4.
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2.1.4. Pullulan

Pullulan is another type of natural polymer produced by particular strains of the polymorphic
fungus, Aureobasidium pullulans as an extracellular, water-soluble polysaccharide. Aureobasidium pullulans
is a ubiquitous fungus found in environmental samples such as soil and water, particularly as an
early-colonizing saprophyte on decaying leaf litter, wood, and many other plant materials, in which
they utilize cellobiose but not cellulose [38]. Pullulan is a commercially emerging biopolymer used in
diverse industrial applications such as pharmaceutical, chemical, energy production, agriculture,
and food industries, among others. It is a linear homopoly-saccharide consisting of regularly
repeating maltotriose (or trimer) subunits connected via α-(1Ñ6) glycoside linkage. Maltotriose
is a polysaccharide with α-(1Ñ6) linkage with (1Ñ4)-α-D-triglucosides, illustrated in Figure 5.
Furthermore, out of the total residue, only 1%–7% of maltotetraose (tetramer) subunits can also
be possible in pullulan [39].
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The unique pattern of the α-(1Ñ6) linkages among the maltotriose subunits provides distinctive
physical properties of pullulan including high water solubility and structural flexibility [39,40].
Consequently, these properties endow the pullulan with physical traits, along with adhesive properties,
and enable its capacity for compression, thereby molding strong, oxygen-impermeable films and
forming fibers. Leather [41] reported that pullulan fibers and films similar to certain synthetic
polymers (plastic derivatives from petroleum) possess oxygen impermeability compared with other
polysaccharide films.

Pullulan is highly water soluble, insoluble in organic solvents, non-hydroscopic, and possesses
relatively different viscosity than other polysaccharides, i.e., relatively low as compared to most gums,
particularly the Arabian gum. Arabian gum has an extremely lower viscosity of ~80–120 cP: with that
same concentration, the viscosity of pullulan solution is ~22,000 cP. However, pullulan is significantly
less viscous than other gums [42].

Yeast, similar to the form of strain Aureobasidium pullulans QM 3090, is the primary producer of
pullulan and the production is controlled by the culture medium (pH value) as well as the temperature
(optimal temperature ranging from 24 to 32 ˝C) [43]. Several substrates exist, such as sucrose, glucose,
fructose, maltose, starch, or oligosaccharides and others can be used as a substrate for pullulan
production. Among them, sucrose is frequently used for this purpose [44].

Several studies have reported on surface modification of pullulan, with the main focus on
etherification [45], hydrogenation [46], carboxylation [47], esterification [48], chloroformate activation
and succinoylation [49]. Shibata et al. [50] reported a peaceful surface modification of pullulan via
phenyl isocyanate (PIC) and hexyl isocyanate (HIC) with clear glass transition temperature (Tg).
Hasuda et al. [51] synthesized photo-reactive pullulan using the photo-immobilization technique, and
they concluded that photo-reactive pullulan is covalently immobilized on various surfaces; furthermore,
pullulan significantly reduces the interaction with protein and cells. Hydrophobically modified pullulan
was synthesized by Kuroda et al. [52] using a cholesteryl-bearing pullulan (CHP) and hexadecyl
group-bearing pullulan (C16P) via hierarchical self-assembly techniques. Viscosity of the semi-dilute
solution (approximately above 2 wt %) of CHP and C16P drastically increased but they formed
macroscopic gels at a high concentration [52]. Another study used 3-amminopropyltrimethoxysilane to
modify the surface of pullulan via graft-polymerization technology [53].

Pullulan polymer-based nanomaterial and nanocomposite materials have been fabricated in
recent years, and they are applied in highly specific fields. In particular, adriamycin-loaded pullulan
acetate (PA) and sulfonamide conjugate nanoparticles, as well as PA and oligo-sulfadimethoxine
conjugate self-assembled pH-sensitive hydrogel nanoparticles, are used for treating breast tumor cell
line (MCF-7), tumor, ischemia and inflammation [54].

Alternatively, pullulan-based bionanocomposite coating materials have been fabricated the first
time, incorporated with montmorillonite via the ultrasound-assisted procedure for the exfoliation of
inorganic tactoids. Consequently, the coating material exhibits a high oxygen barrier [55].

The pullulan-based sustainable nanocomposite films were characterized by Trovatti et al. [56],
with the incorporation of bacterial cellulose. Nonetheless, thermal and mechanical properties of the
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composite films were enhanced by the nanofibrillated cellulose. Pinto et al. [57] fabricated a transparent
nanocomposite thin film based on pullulan polymer incorporated with silver nanoparticles. In addition,
pullulan and 6-carboxy pullulan-mediated silver nanoparticles were fabricated by Coseri et al. [58].

2.1.5. Polyhydroxyalkanoate (PHA)

Polyhydroxyalkanoate (PHA) is a linear bio-polymer synthesized by microorganisms including
many Gram-positive and Gram-negative bacteria under unbalanced growth conditions for energy
storage [59]. Several countries participate in fabricating the PHA worldwide; among them are the USA
and China, leading by nearly 50,000 and 10,000 tons per year, respectively. PHA closely resembles
the synthetic thermoplastic and most promising biopolymer, possessing complete biodegradability
and biocompatibility [60]. Accordingly, PHA is attractive to various applications, such as tissue
engineering, packaging, drug delivery, and medical bio-implants.

Molecular arrangement of PHA is categorized into two major types of PHA, namely, short-chain
length (SCL-PHA) and medium-chain length (MCL-PHA) hydroxyalkonoic acid. These two types
are distinguished based on the carbon chain length. Poly (3-hydroxybutyrate) (PHB), poly
(3-hydroxyvalerate) (PHV), and their copolymer poly (3-hydroxybutyrate-C-hydroxyvalerate) (PHBV)
are in the first category, whereas the second category includes the poly (3-hydroxyoctanoate) (PHO)
and poly (3-hydroxynonate) (PHN). Furthermore, the MCL-PHA typically contain 3-hydroxyhexanote
(HHX), 3-hydroxyheptanoate (HH), and/or 3-hydroxydecanoate (HD) [61,62]. The general formula of
PHA monomer is illustrated in Figure 6.

Polymers 2016, 8, 246 8 of 31 

composite films were enhanced by the nanofibrillated cellulose. Pinto et al. [57] fabricated a 
transparent nanocomposite thin film based on pullulan polymer incorporated with silver 
nanoparticles. In addition, pullulan and 6-carboxy pullulan-mediated silver nanoparticles were 
fabricated by Coseri et al. [58]. 

2.1.5. Polyhydroxyalkanoate (PHA) 

Polyhydroxyalkanoate (PHA) is a linear bio-polymer synthesized by microorganisms including 
many Gram-positive and Gram-negative bacteria under unbalanced growth conditions for energy 
storage [59]. Several countries participate in fabricating the PHA worldwide; among them are the 
USA and China, leading by nearly 50,000 and 10,000 tons per year, respectively. PHA closely 
resembles the synthetic thermoplastic and most promising biopolymer, possessing complete 
biodegradability and biocompatibility [60]. Accordingly, PHA is attractive to various applications, 
such as tissue engineering, packaging, drug delivery, and medical bio-implants. 

Molecular arrangement of PHA is categorized into two major types of PHA, namely, 
short-chain length (SCL-PHA) and medium-chain length (MCL-PHA) hydroxyalkonoic acid. These 
two types are distinguished based on the carbon chain length. Poly (3-hydroxybutyrate) (PHB), poly 
(3-hydroxyvalerate) (PHV), and their copolymer poly (3-hydroxybutyrate-C-hydroxyvalerate) 
(PHBV) are in the first category, whereas the second category includes the poly 
(3-hydroxyoctanoate) (PHO) and poly (3-hydroxynonate) (PHN). Furthermore, the MCL-PHA 
typically contain 3-hydroxyhexanote (HHX), 3-hydroxyheptanoate (HH), and/or 
3-hydroxydecanoate (HD) [61,62]. The general formula of PHA monomer is illustrated in Figure 6. 

 
Figure 6. A common chemical structure of polyhydroxyalkanoate monomer, where p = 1 to 3; yet p = 
1 is the most common monomer, 3-hydroxybutyrate; q can range from 100 to several thousand [61]. 
Reprinted (adapted) with permission from [61], copyright (2016) American Chemical Society. 

Thermal and mechanical properties of the PHA are commonly expressed in terms of glass to 
rubber transition (Tg) of the amorphous phase, and this rubbery state of the amorphous phase is 
generally observed between 19 and 35 °C [63]. However, PHA is a partially crystalline polymer and 
its melting temperature belongs to the crystalline phase. Moreover, PHB commonly exhibits a 
degree of crystallinity in the range of 60% to 80%; however, the degree of crystallinity decreases to 
30% to 40% as the copolymerization (PHBV) increases (up to 30%). Furthermore, the 
copolymerization poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHBHB) exhibits desirable 
properties in the field of biomedical and agricultural applications [63]. 

Nonetheless, during the nanocomposite film fabrication, the crystallinity of the PHB was 
decreased by increasing the amount of nanoparticles. The crystalline size of PHB substantially 
decreases in PHB-based nanocomposite films compared with that of the neat PHB film incorporated 
with 1 wt % of the single-wall carbon nanotubes [64]. 

Some organisms are capable of producing different functionalized PHAs, such as hydroxylated, 
methylated, brominated, and phenyl derivatives [65]. However, further chemical modification of 
these functional group-containing polyesters (listed in Table 2) expands the application of PHA in 
the biomedical field [61]. Furthermore, a step-by-step homogeneity of the chemical reaction allows 
the tailoring of more useful functional monomers on the PHA surface via graft or block 
copolymerization technique. 

 

Figure 6. A common chemical structure of polyhydroxyalkanoate monomer, where p = 1 to 3; yet
p = 1 is the most common monomer, 3-hydroxybutyrate; q can range from 100 to several thousand [61].
Reprinted (adapted) with permission from [61], copyright (2016) American Chemical Society.

Thermal and mechanical properties of the PHA are commonly expressed in terms of glass to
rubber transition (Tg) of the amorphous phase, and this rubbery state of the amorphous phase is
generally observed between 19 and 35 ˝C [63]. However, PHA is a partially crystalline polymer and its
melting temperature belongs to the crystalline phase. Moreover, PHB commonly exhibits a degree
of crystallinity in the range of 60% to 80%; however, the degree of crystallinity decreases to 30%
to 40% as the copolymerization (PHBV) increases (up to 30%). Furthermore, the copolymerization
poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (PHBHB) exhibits desirable properties in the field of
biomedical and agricultural applications [63].

Nonetheless, during the nanocomposite film fabrication, the crystallinity of the PHB was
decreased by increasing the amount of nanoparticles. The crystalline size of PHB substantially
decreases in PHB-based nanocomposite films compared with that of the neat PHB film incorporated
with 1 wt % of the single-wall carbon nanotubes [64].

Some organisms are capable of producing different functionalized PHAs, such as hydroxylated,
methylated, brominated, and phenyl derivatives [65]. However, further chemical modification of
these functional group-containing polyesters (listed in Table 2) expands the application of PHA
in the biomedical field [61]. Furthermore, a step-by-step homogeneity of the chemical reaction
allows the tailoring of more useful functional monomers on the PHA surface via graft or block
copolymerization technique.



Polymers 2016, 8, 246 9 of 33

Table 2. Chemical modification of polyhydroxyalkanoate surface via different synthetic routes.

Functional groups Synthetic rout Reaction condzition Chemically modified PHA Ref.

Mono-hydroxyl Transesterification via
acid catalyst H2SO4, MeOH CH2Cl2, 100 ˝C
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Transesterification is another useful method to modify the PHA surface, in which base or acid
catalyst reaction is involved in the modification. Due to the pH sensitivity of the ester group in PHA,
the acid-catalyst reaction is more efficient in producing mono-hydroxylated poly(3-hydroxyoctanoate)
(PHO) oligomer than the base-catalyst reaction [69]. This finding is explained by the stability of ester
bonds of PHO at pH 10 and 12 and the immediate occurrence of hydrolysis when pH was 14. Thus,
PHO oligomers form with the unsaturated end group, which may be the result of the cis-elimination
reaction elucidated with PHB [66].

The chemical modification of PHA via the 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate
(4HB) content affords P3/4HB polyester-based polymers toward the high crystallinity from soft
elastomers [72]. Conversely, the epoxidation of the unsaturated group in PHA achieves specific
physical properties and are highly reactive under mild conditions.

The epoxidized PHA can be used for a cross-linking attachment with bioactive substances
as an introduction of the ionizable groups. Chen et al. [73] fabricated poly(3-hydroxybutyrate-co-
3-hydroxyvalerate) (PHBHV)-based nanocomposite film, incorporated with nano-hydroxyapatite.
The hindrance of nanofillers to the mobility of polymer segment results in the film tangent of the
loss angle (tanδ). Nonetheless, improved dynamic mechanical properties and activation energy of
the films were observed at the maximum load of nano-hydroxyapatite. Furthermore, the obtained
nanocomposite films exhibit a slight increment on their glass transition temperature.

2.1.6. Protein

Protein is a natural polymer derived from animals and plants. Collagen, whey protein, casein, egg
white, keratin, and fish gelatin are derived from animals, whereas for plant protein, soybean protein,
zein (corn protein), and wheat gluten are mainly used in commercial applications [74]. Film-forming
ability of protein has been utilized in various industrial applications [75]. Protein films (Table 3) have
better oxygen barrier properties and lower water-vapor permeability compared with other nonionic
polysaccharide films because of their more polar nature, and more linear (non-ring) structure, and
lower free volume [76]. The unique specific interaction capability of these materials with protein DNA,
viruses, and other biological structures as well as the accessibility of nanoscale material processing
and characterization technique provide a sound method for nanostructured materials in biomedical
applications [77].

Surface modification of biomaterials for biomedical applications must satisfy two types of
biocompatibility, such that the surface-modified biomaterials elicit the least foreign-body reactions and cell-
and tissue-bonding capabilities [78]. Collagen is regarded as one of the most useful biomaterials, a strong
candidate for the surface modification of various substrates, exhibiting a number of advantages [79].
The outstanding performance and biomedical application of this protein biomaterial have induced
researcher interests toward synthetic fabrication. Jorge et al. [80] reviewed this system in various
aspects, such as synthetic routes, characterization, and self-assembly. Surface modification of protein
is a promising technique to achieve more suitable derivative for biomedical applications. For example,
proteins have been modified with polyethylene glycol (PEG) and monomethoxy polyethylene glycol-based
materials, which are biodegradable. Furthermore, the surface-active nucleophilic sites of the protein
coupled with activated hydroxyl group of PEG and cyanuric chloride are used to activate the hydroxyl
group of PEG. Accordingly, the PEG-based surface modification creates several disadvantages, such as
unsuitability for enzyme-containing reactive-SH group on their active site, toxicity of cyanuric acid and
its degradation products.

Alternatively, with succinyl succinates of PEG, activated PEG has also been reported as not
becoming an inactive-SH group-dependent enzyme. Furthermore, carbonyl dihymidazole active
polymer can also bind with lysine amino groups of protein. Nonetheless, to obtain a highly activated
polymer is difficult, resulting in low yield of protein binding. Veronese et al. [81] reported an efficient
single-step surface modification of protein, via a reaction between monomethoxy polyethylene glycol
and 2,4-richloro-phenylchloroformate or p-nitrophenylcloroformate.
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Table 3. Protein films’ incorporation of nanomaterials with their properties and applications.

Protein type Nano-material Film properties Application Ref.

WPI

TiO2 < 1 wt %
Transparent
Oxygen barrier
Improved antimicrobial properties

Industrial: Edible film
Coating and packaging material [82]

<0.25 wt % Promoted florescent and TS
Industrial: Food and cosmetics [83]

>0.25 wt % Fluorescent quenching
Reduced TS, WVP, Elongation and light transmittance

Soybean Protein

Poor response for moisture
High rigidity Industrial: Packaging material [84]

MMT 5%–15%
Reduce WVP
Improved MP, Tg, DMP
At pH = 9 and 5 wt % of MMT

Industrial: Packaging material [85]

Zein Kaolin WVP decreased by 50 wt % Kaolin
Reduce oil permeability

Industrial: Barrier coating material for
paper and paper board [86]

Collagen HA 10 wt %–30 wt % Lowest contact angle 36.5
High proliferation rate at 20 wt % of HA Medicinal: Implant [87]

Fish gelatin MMT 0 wt %–9 wt % Improved WVP
TS and Elongation maximum at 5 wt % of MMT Industrial: Food [88]

Egg albumen – Improved switching properties Industrial: Nonvolatile memory
application (memristor device) [89]

Keratin Graphene Oxide
0.1 wt %–0.5 wt %

Increased storage modulus up to 200 ˝C at 0.1 wt % of
graphene oxide Material fabrication [90]

WVP: Water-vapor permeability; MP: Mechanical properties; DMP: Dynamic mechanical properties; MMT: Montmorillonite; TS: Tensile strength; HA: hydroxyapatite; WPI: Whey
protein; Tg: Glass transition temperature.
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2.2. Synthetic Biodegradable Polymers

Unlike aromatic polymers, aliphatic polyesters are biodegradable and they lack thermal and
mechanical properties. Among the biodegradable polymers, aliphatic polyester-based polymeric
structure possesses rapid hydrolytic degradation because of the ester functional group in their
main chain. Polycondensation and ring-opening polymerization are the major synthetic routes to
prepare the biodegradable polyesters. The ring-opening polymerization method is more useful in
producing the high molecular weight polymer than the polycondensation of difunctional monomers.
However, aliphatic polyesters are nearly the only high molecular weight biodegradable polymers [91].
In biomedical application, poly(glycolic acid), poly(lactic acid) and their copolymers are the mostly
used synthetic polymers.

2.2.1. Poly(glycolic acid) (PGA)

Polyglycolide can be obtained via ring-opening polymerization starting with different materials
such as cyclic lactone, glycolide (cyclic diester of glycolic acid), and so on. Due to its high degree
of crystallization, PGA is hydrophilic and highly degradable but insoluble in most organic solvents
except hexafluoroisopropanol [92]. PGA exhibits excellent mechanical properties with high stiffness.
Nonetheless, copolymerization of the glycolide with other monomers reduces the stiffness of the
resulting fibers [92]. Extrusion, injection, and compression molding as well as the particulate leaching
and solvent-casting techniques are used to fabricate PGA-based structures and forms for biomedical
application [93].

However, biomedical application of the polyglycolide is limited because of their rapid diacid
product form capability. Interestingly, this ability of polyglycolide induced the researchers toward the
fabrication of polyglycolide-based surgical sutures.

2.2.2. Polylactide (PLA)

Lactide is a cyclic dimer of lactic acid existing in two stereo isomers signified by dexorotary (D) or
levorotary (L). L-Lactide is a natural optical isomer and the DL-lactide is a synthetic blend. Polylactide
(PLA) can be elastic or tough, flavor resistant, transparent and can be synthesized via polycondensation,
the ring-opening polymerization method or melt-solid polycondensation [94]. During PLA fabrication,
D-lactic acid or L-lactic acid can be used as difunctional monomer for polycondensation, whereas
D-lactide or L-lactide contribute to produce the PLA via ring-opening polymerization. However, PLA
has a higher elongation with lower tensile strength. Furthermore, the significantly high degradation
rate of PLA is suitable for drug-delivery systems [92].

The steric-shielding effect of methyl– (–CH3) group in PLA enhances its hydrophobic nature
than PGA. Depending on the isomer, PLA exhibits different physical properties: L-PLA exhibits
a semi-crystalline nature with 37% of crystallinity, whereas DL-PLA is an amorphous polymer.
According to the previous studies, degradation depends on the crystalline nature of the polymer
materials. Consequently, the degradation order of the PGA and PLA is D,L-PLA < L-PLA < PGA [95].
Consequently, some copolymers of lactide and glycolide have been investigated as bioresorbable
implant materials. Moreover, to increase the storage ability of PLA, L-lactide is grafted in the chitosan
surface via the ring-opening polymerization technique in the presence of tin catalyst.

2.2.3. Poly(lactide-co-glycolide) (PLG)

Glycolide and lactide monomers are used for synthesis of the PLG copolymer, in which monomer
ratio and stereo isomers of the lactide are affected on the properties and the applications of the
resulting copolymer. The effect includes degradation such that 50 wt % of glycolide and 50 wt %
DL-lactide-containing PLG degrade faster than either homopolymer [96]. Furthermore, the range of
homopolymer properties that extend the base materials (PGA and PLA) and the binding ability with
bioactive ceramics, including bioglass particles and hydroxyapatite, are also attractive for several
biomedical applications, including drug delivery, the implant device-making process, and so on [97].
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2.2.4. Polybutylene Succinate (PBS)

Polybutylene succinate (PBS) is a member of poly(alkene) dicarboxylate, chemically synthesized
via the condensation reaction of succinic acid or adipic acid with ethylene glycol or 1,4-butane
diol. PBS exhibits a relatively high melting temperature (Tm ~90–113 ˝C) and mechanical properties
compared with widely used polyethylene and polypropylene [98]. Furthermore, some other interesting
properties were reviewed by Vroman et al. [95]. The electrical properties of the PBS nanocomposite
incorporating multi-walled carbon nanotubes (MWNTs) were reported by Lin et al. [99], in which they
found the anti-static nature of the nanocomposite material. Viscoelastic behavior and an improved
storage modulus of the PBS nanocomposite were further studied, incorporating organically modified
montmorillonite. Moreover, PBS exhibits excellent processing ability in the field of textile into
melt blown, nonwoven, flat multifilament, monofilament and split yarn fabrics and plastic into
injection-molded products. Nonetheless, inadequate gas barrier, melt viscosity, melt strengths and
softness characteristics control the PBS for diverse applications.

PBS can further be copolymerized by adipate to increase the rate of biodegradation. Consequently,
glycol and aliphatic dicarboxylic acids are used to synthesize the copolymerized poly(butylene
succinate-co-adipate) (PBSA). PBSA exhibits highly similar properties related to low-density polyethylene
and used in various applications, including sheet extrusion, monofilaments, multifilament, laminations,
injection-molded cutlery, blow-molded containers, and foam cushion [100].

2.2.5. Poly(vinyl alcohol) (PVOH)

The biodegradation rate of poly(vinyl alcohol) (PVOH) is much higher than the other vinyl
polymer, closely related to the poly(enol-ketone). Biodegradation mechanisms of PVOH occur via
the oxidation of hydroxyl group followed by hydrolysis and also influenced by the stereo-chemical
configuration of the hydroxyl group of PVOH.

PVOH is a partial or complete hydrolysate derivative of the polyvinyl acetate because vinyl
alcohol monomer nearly exclusively exists as the tautomeric form acetaldehyde [101]. PVOH is
the largest water-soluble polymer synthesized globally because of its higher tensile strength and
elongation apart from the oxygen and aroma barrier properties. Furthermore, the water-soluble and
reactive characteristics make it a potential material for biomedicine and agriculture as well as for the
water-treatment field as flocculants [102] and metal-iron remover [103]. Excellent biodegradable and
mechanical properties have made the PVOH an attractive material for biodegradable and disposable
plastic substitutes.

2.2.6. Polyurethanes (PUs)

Bio-based polyurethanes (PUs) have received considerable attention in the field of
environment-friendly manufacturing processes. The polyol plays a major role in producing urethane
linkage in PUs with suitable coupling agents. Interestingly, the use of different polyol results in PUs
with different properties through producing polyether- and polyester-based PUs. Polyester-based
PUs have been largely applied in coating industries because of their biodegradability, wide range of
mechanical strength, low temperature, flexibility, toughness, excellent adhesive property, and chemical
and corrosion resistance [104].

Inorganic and organic nanoparticles can be used as coating materials for developing PU-based
composites with enhanced properties, and thus, such composites can be applied in coating films [95].
PUs are used in a wide range of industries because of their versatile properties; however, PUs are
classified into two major categories, namely, polyether- and polyester-based PUs. PUs can be prepared
through either cellular or non-cellular products. Non-cellular PUs may be built from a large number
of polyether or polyester polyols by reacting with aliphatic or aromatic diisocyantes. On the one
hand, the reaction between ethylene oxide and hydroxide or amine-containing initiators such as
sucrose, and glycerol, form polyether-based PU monomers. On the other hand, diacid-containing
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initiators produce polyester-based PU monomers. The same results can be obtained by substituting
monoglyceride derivative from vegetable oil to ethylene oxide [104]. The lack of biodegradable
polyether polyol-based PUs has inspired researchers to continue developing bio-based PUs using
polyester polyols. Furthermore, polyester polyol has improved hydrolytic stability, low moisture
content (less than 0.1%), rapid biodegradable capability, lower acidic number, higher viscosity, higher
temperature flexibility, stronger abrasion resistance, and more significant adhesion promotion than
polyether polyols, with their enhanced weather capability and strong solvent resistance [105,106].
Alkoxylation and esterification are the most possible chemical routes to synthesize polyols [107].
Nonetheless, polyester polyol has a few drawbacks, such as reduction in the storage stability
and hydrolytic resistance, and the water evaporation rate of PU dispersions in UV-curable and
adhesive applications.

Chemistry of Bio-Based PUs

Polyester polyol is an alcohol with more than two reactive hydroxyl groups per molecule; among
their several distinguished properties, biodegradable capability of the polyester-based PUs is important
to overcome the environment effect when compared to polyether-based PUs. However, nearly 90% of
polyether polyols are used in the production of PUs worldwide in recent years and are derived from
petrochemical derivatives such as ethylene and propylene oxides [108].

Consequently, researchers and industries are moving towards producing green technology
materials under two aspects: using renewable resources and using biodegradable materials. Numerous
studies have reported the increasing urgent demands to replace petrochemical derivatives with
renewable resources to overcome global warming and the worsening oil crisis [109]. Vegetable oils are
used as renewable resources to synthesize the bio-based polyols through esterification. Epoxidized
or derivatives (monoglyceride, diclycerides, etc.) of vegetable oils and diacid initiators are also
used to synthesize bio-based polyols. However, several chemical routes have been reported to
synthesize polyols from epoxide functional groups using a variety of nucleophiles through the epoxide
ring-opening mechanism. Depending on the type of nucleophiles, one or more alcohol-functional
derivatives can be added to each aliphatic chain.

The chemical synthetic routes of the epoxide ring-opening have been reported based on
the SN1 and SN2 reaction mechanisms. Acid catalyst epoxide ring opening follows the SN1
mechanisms, whereas the reaction between epoxide and strong nucleophiles proceeds through the
SN2 mechanisms [107]. Caillol et al. [107] reviewed several synthetic routes for polyol preparation
through the epoxide ring opening. Ring-opening routes based on carboxylic acids, such as acetic acid,
acrylic acid, fatty acid, hexanoic acid, and octanoic acid, produce polyester polyols with interesting
properties, particularly biodegradability and as anti-wear lubricants [110,111].

Polyol-making initiators contribute to producing PUs with different characteristics; these initiators
are neither aromatic nor aliphatic diacids. Aromatic diacids, such as isophthalic acid (IPA), phthalic
acid, and phthalic anhydride, are used to increase the glass transition temperature (Tg), chemical
resistance, and hardness of PUs. Furthermore, IPA is used as a principal aromatic diacid in coating
applications [112]. However, these acids are petroleum-based chemicals, and thus, cause environmental
degradation. Meanwhile, adipic acid, 1,4-cyclohexanedicarboxylic acid (1,4-CHDA), and succinic acid
are used as aliphatic diacids in biodegradable polyol production. Adipic acid is the principal aliphatic
acid for preparing polyester polyol via ringopening polymerization. However, 1,4-CHDA exhibits
excellent aliphatic and aromatic diacid characteristics. 1,4-CHDA also demonstrate rapid reaction;
maintained hardness and flexibility balance; resistance to chemicals and humidity low resin color,
improved solubility in methyl ethyl ketone, and stable hydrolytic polyol properties.

Meanwhile, bio-succinic acid is a 100% bio-based diacid used to synthesize polyester polyols.
This acid has 90% and 50% carbon footprint with respect to petro-based adipic acid and phthalic
anhydride, respectively. It can provide higher glass transition temperature and slightly higher viscosity
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with saturated polyester resins. Succinic acid-based materials are renewable, biodegradable, and are
also used to synthesize UV-curable acrylates with commercially available bio-based acrylic acid [105].

2.3. Nano-Scale Materials

Nano-scale materials such as nanotubes, nanorods, nanowires and nanoparticles have been
increasingly applied in nanotechnology and contribute as value-added materials in bio-based
composite fabrication. Nano-scale materials have altered the properties and applications of
nanocomposites because of their unique physical and chemical characteristics. The significance
and type of the nano-scale material depend on the purpose of the nanocomposites. There are two
major types such as inorganic and organic materials that have been used as nanoparticles in the field of
bionanocomposite fabrication in recent years. On the one hand there are nano-scaled titanium oxides or
cerium oxide doped with silica, alumina, gold, ZnO, and ZnO/SiO2, TiO2, GeO2, Cu2O, Cr2O3, Fe2O3,
PbO2, CaCO3, CdS, Ag, Pt, and Pd as the inorganic materials used in many applications, especially in
the biomedical and tissue-engineering fields [113]. Not only the amount of nanoparticles but also their
shape influence the properties of the bionanocomposite materials and are thus reviewed briefly in this
paper. Furthermore, there are several nanoparticles such as polystyrene nanosphere, functionalized
polystyrene nanosphere, fluorescent nanosphere, nanoparamagnetic particles, and coated polystyrene
nanoparticles that are commercially available. Organic materials such as natural fibers, organic
liquids, nano-scale cellulose crystals, graphene, and carbon nanotubes are common materials used as
fillers in bionanocomposite coating film fabrication. Several studies have mentioned a few versatile
methods to combine chitosan with various negatively charged hydroxyapatite microparticles, clay
nanoparticles [114] and, most recently, graphene oxide and carbon nanotubes. These versatile methods
can be adopted to fabricate free-standing coating films and hydrogels. Saponite is a natural mineral
that is also used as an nano-scale material in the form of nanoplatelets to fabricate chitosan-based
nanocomposite films [114].

3. Bionanocomposite Coating Films

A nanocomposite is characterized by one or more discontinuous phases distributed in one
continuous phase. The continuous phase is called the matrix, whereas the discontinuous phase is
called the reinforcement or reinforcing material. In the discontinuous phases, one of the phases
with components has at least one dimension that is approximately 10´9 m. Nano-scaled materials,
biopolymers, and cross-linkers act as legitimate members in bionanocomposite fabrications. Moreover,
the synthetic routes of bionanocomposites are exploited in three fields: chemical functionalities,
self-assembly of copolymer monomer control synthesis, and nanoparticles. Several conventional and
novel methods have been reported recently for preparing bionanocomposite coating films, such as
suspension-casting, water evaporation, hot pressing, and pressure extrusion [113]. Excessive water
evaporation is difficult to manipulate using the suspension-casting and water-evaporation methods.
These methods are also typically time consuming, and may take several hours or even a few days [115].
Alternatively, a recent study suggested that the pressure extrusion method could be used to overcome
this issue under ambient temperature.

Monolayer and multilayer films are the two major categories of coating films. A monolayer film
can be used in coating technology to improve unique properties by modifying the surface of the other
materials. On the other hand, multilayer films are composed layer-by-layer formation technology.
In this technology, hydrogen bonds and electronic interactions act as driving forces between two layers,
which are deposited via solution-dipping or spin-coating. However, as driving forces, non-electrostatic
interactions exert an influence when layer-by-layer is assembled for two bio-based materials.
De Mesquita et al. [116] also used the layer-by-layer technique to prepare chitosan and CNC-based
nanocomposite films as alternative bio-based materials. Poly-(diallyldimethylammonium chloride)
and poly-(allylamine hydrochloride) (PAH) have also been used as layer materials incorporated with
CNC in the layer-by-layer assembling technique [117], as shown in Figure 7.
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Cellulose-Based Nanocomposite Coating Films

Cellulose is used in many applications because of its outstanding properties, including stiffness,
strong reinforcement in composite, excellent dimensional stability [118], water-absorption capability
in the food industry, [119] and mechanical properties. Cellulose coatings have received widespread
attention in the laboratory because of their use in high-performance nanocomposite films with low
environmental impact [120]. These coating films may be used in optical [121], biomedical [122,123],
medical sensor [124,125], or electronic applications [126]. The elastic property of cellulose-based
materials has been reported. These materials exhibit different values with respect to their composition
nature in plant materials. The elastic modules of bulk natural fiber such as wood present 10 GPa.
Chemical modification has been considered an essential method to endow materials with several
unique features [125,127].

Given the large surface area and enhanced hydrogen-bonding capability of fibrils, pre-chemical
treatment is typically conducted to destroy the hydrogen bond and to easily conduct chemical
modification [128]. Chemically modified cellulose is widely used in various applications, particularly
in coating film applications. Cellulose acetate is the first chemically modified cellulose used for
filter membranes in water purification [129]. Cellulose acetate has several reliable properties such
as high biocompatibility, good desalting properties, moderated hydrophilicity, and high potential
flux [130]. However, cellulose acetate has poor fouling resistance caused by the accumulation of
biological foulants, such as bacteria and protein cells, on the membrane surface [131]. Nitrocellulose
is another form of chemically modified cellulose and is used in the paint industry as an alternative
derivative for traditional lacquer and coatings because of the abundance of their raw materials,
industrial maturity, and biodegradation. These alternative derivatives overcome increasing indoor
and interior environmental [132] and volatile organic compound emission issues [133].

Other chemically modified cellulose derivatives, such as hydroxypropylmethyl cellulose,
carboxymethyl cellulose, and methyl cellulose, are obtained by deriving the hydroxymethyl groups at
positions 2, 3, or 6 of the hydro-glucose residues. These derivatives exhibit improved solubility and are
used in fibers, films, and gel-based materials [134]. Carboxymethyl cellulose can irreversibly bind with
positively charged chitosan via complex formation [26]. Cellulose derivative-based films function as
effective barriers against O2/CO2 and demonstrate good tensile resistance [135,136]. However, given
the hydrophilic nature of cellulose, the prepared cellulose-based edible films do not function as an
efficient water-vapor barrier [136,137]. Furthermore, adding the prepared CNCs from microcrystalline
cellulose via sulfuric acid hydrolysis to PLA or PLA-polyhydroxybutyrate films improve their thermal
stability and water permeability [138].

Cellulose sulfate is another type of chemically modified cellulose that is prepared by partial
or complete substitution of the 6-hydroxyl groups with sulfate groups. The cellulose sulfate-based
films exhibit poor water-vapor barrier capability because of their excellent solubility behavior [139].
However, given the 40% usage of the petroleum-based chemicals in the packaging industry,
this alternative cellulose sulfate is considered a renewable alternative source to conventional
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petroleum-based materials [140]. Cellulose sulfate-based nanocomposite films that incorporate with
other molecules such as lipids, glycerols, and oleic acid have extended their application in the field
of packaging films. Cellulose sulfate-based hydrocolloid films combined with lipids exhibit better
functionality than pure cellulose sulfate films. Glycerol is one of the most popular plasticizers used in
cellulose sulfate films to ensure its stability and compatibility with hydrophilic bio-polymers [141].

In cellulose sulfate-oleic acid composite film, oleic acid decreases water content in the emulsion
as the intermolecular distance of cellulose sulfate increases. Alkyd resin modified by coconut oil
or soybean oil can significantly improve the mechanical properties of coating films; in particular,
it reduces the brittleness of carboxymethyl cellulose nitrate films [142]. This type of resin is typically
used as an auxiliary film-forming material. Alkyd resins also exhibit good consistency with water.

4. Application of Bionancomposite Coating Films

In general, the applications of bionanocomposite coating are ubiquitous in various applications
such as in tissue engineering, biomedical, glass coating, food packaging, wood coating, steel coating,
drug coating, and fruit coating. However, each coating application has several purposes depending on
the demands of the final outcome.

4.1. Biomedical Application

Collagen is a biopolymer widely used in medical application, particularly in the fermentation
of tissue and organs. Collagen coatings on Ti hard-tissue implants are widely reported in recent
works, for their stimulating cellular response [143], increasing remolding [144] that improves bone
growth, and bone-implant contact [145]. Collagen is used as film, disk, sheet, shield, sponges, gel,
hydrogel and pellet in the drug-delivery system. In biomedical applications, reviews only consider the
films’ characteristic of the collagen biopolymers. Collagen films have been used for the treatment of
tissue infections, specifically infected corneal tissues or liver tissues. Collagen is mainly applied as a
membrane with 0.01–0.5 mm film thickness [146]. As the composite matrix, collagen can be combined
with a recombinant human morphogenetic protein-2 (rhBMP-2) for implant-bone formation [147].
Nakagawa et al. [148] reported that a collagen-based drug-delivery system (BMP-2 loaded collagen
matrix) is highly efficient as a biological onlay implant.

Alternatively, collagen films and disks as gene-delivery systems have many advantages, including
isolation of transplanted cells from the host immune system [149] and long-term delivery of therapeutic
transgenic product. Collagen sheets are evaluated as a local delivery carrier for cancer treatment; the
etoposide (VP-16)-loaded collagen sheets as anti-cancer agents have been revealed to maintain the
drug at the target site for a long period [150]. The biodegradable collagen films are not only severed as
scaffolds for the survival of transfected fibroblasts, but the composite of collagen and elastin are also
suitable for many potential medical applications in reconstructive and plastic surgery [151].

Composite collagen films incorporated with elastin have been reported with various monomer
ratios; accordingly, almost consistent tensile values were observed [152]. Tensile strength can be
used to evaluate the mechanical strength, resilience activity, endurance, and biocompatibility of the
biomaterials. Collagen sponges have been fabricated via isolated pure collagen from bovine skin,
followed by swelling at pH 3.0, which are extremely useful for many types of wounds, mostly severe
burns. Furthermore, collagen sponges are a highly efficient material for the recovery of skin and
various types of artificial skin incorporation of gelatin [153].
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4.2. Tissue-Engineering Application

A number of natural and synthetic biodegradable polymers are studied in tissue engineering.
Pullulan, collagen, chitosan, PHA, PGA, and PLA are used in several tissue-engineering applications,
including tissue replacement, bone substitutes, membrane, engineered tissue, scaffolds, guided tissue
regeneration, reinforcement and support for weak tissues [154,155]. Carboxymethyl pullulan and its
conjugation with heparin can inhibit the proliferation of smooth muscle cells in vitro [156]. A cellular
bilayer artificial skin was fabricated by Suzuki et al. [157], in which they used silicon as the outer layer
and inner collagen sponges. Results showed good long-term postoperative appearance of the split
thickness skin graft site. Liu et al. [158] studied chitosan-based bionanocomposite films incorporated
with halloysite nanotubes as scaffold materials in tissue engineering. The resultant nanocomposite films
exhibit a cytocompatible nature with maximum loading of 10% halloysite nanotubes. Furthermore,
Kim et al. [159] studied the multi-tissue-engineering applications of chitosan-based bionanocomposite.
Hajiali et al. [160] used salt-leaching technology to prepare PHA-based nanocomposite scaffold for
bone tissue engineering, in which 10% bioglass nanoparticles were incorporated. Results showed
84% porosity of the scaffold structure. Moreover, the contribution of synthetic biopolymers and their
nanocomposites in tissue-engineering applications have been reviewed by Okamoto et al. [161].

4.3. UV Protection

UV radiation is harmful to all living things. Researchers and industries have fabricated various
UV ray-protecting products such as sunblock cream and lotions, sunglasses, hats, window protectors
and arm protectors and clothes, including rash guards and swimming T-shirts. UVB, which is defined
within the range of 315–280 nm, is absorbed by the ozone layer; however, a range of rays generated
by UVB reaches the surface of the Earth. UVA has a longer wavelength of 315–400 nm, and its rays
reach the surface of the Earth without any deterrent [162]. UV rays can damage the skin through
short- and long-term effects. Sunburn, tanning, and photosensitivity (a disease called porphyria caused
by UV rays) are considered short-terms effects, whereas long-term effects are highlighted by skin
and eye cancer, freckles, solar brown spots (lentiginous), and melanocytic nevi (moles). However,
materials used in sun-protection products for specific purposes have commercially high costs and
contain non-biodegradable substances.

The sun protection factor (SPF) is one of the important parameters used to measure the
UV-blocking capability of materials. This factor, which was introduced by Franz Greiter in 1962, has a
unit of mg/cm2 [163]. On the basis of UV-blocking research on plant materials, high SPF values have
been given to Menta piperita leaf and Lycopersicom esculantum fruit that are 8.184 and 5.998, respectively.
These plant extracts have significant capability to absorb the UVA (400–315 nm) and UVB (315–280 nm)
regions of the UV rays [164]. UV absorbers play a major role in the UV-protecting property of materials.
In such materials, the absorbers act as scavengers or singlet oxygen quenchers, and convert the
electronic excitation energy into thermal energy. That is, absorbers are excited when they are hit by
high-energy short-wave UV radiation and move to a higher energy state. Consequently, the absorbed
energy may be dissipated as longer-wave radiation [165]. Several inorganic and organic colorless
compounds have been used as UV absorbers in textiles and sunblock lotion. These compounds include
2-ethylhexyl-4-methoxy-cinnamate with high refractive index [166], o-hydroxyl benzophenones,
o-hydroxyphenyl triazine, and o-hydroxy phenyl hydrazine. Furthermore, benzotriazole, hydro
benzophenone, and phenyl triazine are primarily used as UV absorbers for coating applications [165].

Inorganic composite materials and compounds also exhibit UV-blocking capability and have been
studied in recent years. UV absorbers have been developed for coatings based on the composition
of inorganic particles such as titanium oxides or cerium oxide-doped with silica, alumina, organic
liquids, iron, ZnO, and ZnO–SiO2. Their nano-scale shapes also influenced the UV-blocking process.
Dumbbell-shaped ZnO nanorods improve coating application in the textile industry and exhibit wider
UV-blocking range (400–280 nm), whereas the UV-blocking range of ZnO nanosols and ZnO nanorods
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are within the range of 352–280 nm and 375–280 nm, respectively. However, a decreasing trend of UV
transmittance is observed in cotton textiles coated with ZnO–SiO2 nanorods [167].

Ching et al. [168] developed the PU/nanosilica composite as a surface protective coating layer for
polyethylene greenhouse films. They observed excellent thermal stability with decreasing photo
degradation of the composite coating compared with polyethylene that uses 6 wt % nanosilica.
Cotton-based cellulosic fibers and lignins have certain levels of UV-absorbing capability and are
used in natural organic coatings [31]. Several studies have reported UV-absorption capability in textile
with respect to their nano-scale shape. For example, needle-shaped ZnO nanorods have the capability
to block the UV-transmission of a part of the UVA region (370–315 nm) and the entire UVB region
(315–250 nm) [169]. Flower-like ZnO fabricated on cotton cellulose has high absorption capability at a
wavelength of 350 nm [169]. Anatase is one of the three mineral forms of titanium dioxide; it provides
UV-blocking capability within the range of 332–280 nm. Textile industries use these materials to
enhance the quality of their products with UV-blocking capability.

In the last few decades, researchers have focused on extracting nanocellulose from natural
sources, such as cotton, wood, algae, bamboo, sisal, and bacteria because of its high strength,
large surface area, and unique optical properties [170]. Nanocellulose-based films exhibit excellent
optical transparency, which decreases light scattering within a large portion of light transmittance.
Furthermore, the properties of functionalized nanocellulose-based films exhibit improved suitability
in their applications such as UV-sensitive polymers, clean windows, contact lens, car windshields,
and special biological test containers. These films also have an extraordinarily low thermal expansion
coefficient with a range of 12–28.5 ppm¨K´1. Nanocellulose-based films are easier to process at
high temperatures than plastic substances and possess high transparency, as well as outstanding
UV-blocking and biodegradable properties [113]. UV-blocking capability has also been studied on
several plants with respect to their parts, including the leaves of Menta piperita, Azadiracha indica,
Oscimum sanctum and Aloe vera; the fruits of Lycopersicom esculantum and Carica papaya; and the
flowers of Rosa damascene, Crossandra infundibuliformis, Tagetus patula, and Tagetus erecta. A recent
study has found that untreated bamboo viscos fiber possesses inherent UV protective properties and
demonstrates minimal antimicrobial activity [171].

The nanocomposite nanocellulose films with ZnO nanomaterials exhibit better UV-protectiong,
transparency, and sensitivity capabilities. However, given the high water-binding capacity of
nanocellulose, dewatering difficulties and nanocellulose hybrid heterogeneous architectural issues
remain during the production process of nanocellulose-based films [113]. Meanwhile, the excessive
use of UV-absorbing nanoparticles in textiles is causing ecological problems as a result of the existence
of these materials in effluent solutions.

Lignin-based bionanocomposites have significant adhesive [172] and biodegradable properties,
and are used as stabilizing agents in aqueous alumina and ceramic suspensions [173]. Lignin acts as
a source of aromatic chemicals [174] in PU. Lignin-based nanocomposite coating films are prepared
using CNCs and are used in various applications such as medical, biological, optical and sensors,
and electronic.

Lignin inherently possesses UV-absorbing capacity [31] and thus, lignin has been used in coating
applications with suitable cellulose-to-lignin ratio. The results of UV absorption, transparency, and
colorlessness coating have been obtained without the chemical modification of cellulose and lignin
fractions. However, novel chemically modified lignins (industrial lignin) [175] such as lignosulfates,
kraft lignin, and acetylated lignin have been recently developed [176]. These types of lignins are used
for coating applications incorporated with cellulose fiber, commercial derivatives, or nanocellulosic
polysaccharides to improve the mechanical resistance, hydrophobicity, and oxygen barrier properties
of the fabrication materials.
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CNC-lignin composite coating films are more homogeneous than pure synthetic lignin coating or
microcrystalline-lignin coating. These films exhibit various spectroscopic properties in the UV/Visible
spectrum. Given the covalently bonded phenolic acid moieties in lignin, CNC-lignin coating films
exhibit anti-UV properties that extend up to 340 nm, as illustrated in Figure 8. The properties of
these coating films are reported as natural, organic UV absorbent, and visible transparent coating.
Furthermore, the mechanical resistance of CNC and the antibacterial properties of lignin are opened
for investigation [31].

Figure 8. Illustration of the structural arrangement of CNC/lignin nanocomposite coatings and
UV-transmittance. Reprinted (adapted) with permission from [31], copyright (2016) American
Chemical Society.

4.4. Antifouling Application

Cellulose acetate-based membrane surface incorporating with polysaccharides has been fabricated
using the layer-by-layer (LBL) technique to study antifouling application. The positive and negative
charge functionalities of polysaccharides [177] have been utilized in this type of coating given their
diverse chemical compositions [178].

Chitosan and carboxymethyl cellulose on cellulose acetate membrane have also been reported
and applied to reduce bovine serum albumin fouling on the membrane [179,180]. The layers can be
detached by high ionic strength and low pH. This phenomenon demonstrates the reliability of these
substances as removable hydrophilic functional coatings for cellulose acetate. However, the protein
rejection behavior of this membrane has not been studied extensively.

4.5. Food Preservation Applications

Synthetic polymers are used in ubiquitous food packaging applications where they provide
permeability to microbial, chemical, organic vapor and oxygen from the environment and allow
product display while biopolymers are notorious for their higher water-vapor permeability [181].
An exfoliation of nanoclay (montmorillonite) into polymers creates a maze structure that presents a
tortuous path to moving gases, greatly slowing their permeation rate.

Hydroxyl propyl methyl cellulose (HPMC) has been found to be a promising material for edible
coatings or films for packaging by Burdock et al. 2007 [182]. Incorporation of chitosan nanofiller
into the HPMC matrix improves the mechanical properties and water-vapor permeability while
significantly reducing oxygen permeability. Consequently, HPMC-chitosan nanofiller composite films
provide potential properties and thus become promising materials for food packaging with better
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shelf-life [183]. Soybean protein nanocomposite films provide an improved elastic modulus and
tensile strength with reduced water permeability under ultrasonic treatment with the incorporation of
MMT [184].

The compatibility of rosemary oil with chitosan/montmorillonite (MMT) nanocomposite has been
confirmed to produce an active bionanocomposite for food packaging. The good interaction between
chitosan and MMT can improve the water-vapor permeability, water sensitiveness, and mechanical
properties of chitosan films. In addition, chitosan nanocomposites containing rosemary essential oil
exhibit antimicrobial properties and high phenol content. These properties make chitosan highly
interesting for food preservation.

4.6. Water-Vapor Barrier

Packaging plays an important role in the production, transportation, and storage of food
or pharmaceutical products. Such products require a material with a high moisture-barrier
capacity and potential biodegradability. The common approach to improve the moisture-barrier
capacity of nanofibrillated cellulose films for packaging applications is to treat the surfaces of
nanofibrillated cellulose substrates with synthetic or bio-based polymers (e.g., whey proteins, PLA,
PCL, beeswax) [185,186], or inorganic impermeable particles such as mica [187] or MMT [188] through
laminating extrusion, vacuum deposition, and multilayer coating technologies [189,190]. Acetylated
epoxidized soybean oil is an interesting polymeric material obtained from renewable natural resources.
This material contains acrylate functional groups to polymerize/copolymerize easily via free-radical
reaction under several initiator systems. Pure acetylated epoxidized soybean oil polymer behaves
similarly to an amorphous cross-linked rubber, which fails to produce suitable shapes and to provide
high mechanical properties [191] by itself. However, this polymer is expected to have a good moisture
barrier-capacity because of its good film-forming and hydrophobic properties.

Several studies have indicated that through controlled polymerization or co-polymerization with
other chemical species, this material is able to provide better polymers with optimized properties.
These polymers can be used extensively as surface coatings and adhesive agents [192]. To date, acetylated
epoxidized soybean oil in cellulose films or fiber networks in packaging production has seldom been
used. The film-forming mechanism is attributed to acetylated epoxidized soybean oil, cellulose, and
3-aminopropyltriethoxysilane as constituent nanocomposite materials. Water-vapor transmission rate
has been studied with varying of 3-aminopropyltriethoxysilane contents. With a low content (10 wt %
of acetylated epoxidized soybean oil), the reduction in water-vapor transmission rate is insignificant.
A continued increase in 3-aminopropyltriethoxysilane content leads to a reduction in water-vapor
transmission rate value and to an increase in film hydrophobicity (high contact angle). The best result
appears at 3-aminopropyltriethoxysilane 30 wt %, and the resulting water-vapor transmission rate is as
low as 1714 g/m2 at 24 h. Furthermore, the increase in 3-aminopropyltriethoxysilane content does not
result in any remarkable reduction.

5. General Properties of Bionanocomposite Coating Films

Several studies have been reported on the improvement of the properties, including mechanical
properties, barrier properties, functional properties, water solubility [193,194], and thermal
stability [1,22] of natural polymer-based bionanocomposite films incorporated with nanoparticles.
Furthermore, the combination of antimicrobial/antioxidant compounds, such as essential oils or any
natural agents and nanoclay in chitosan film results in acceptable structural reliability and barrier
properties. This finding is attributed to the nanocomposite having no combined effect of nanoclay and
antimicrobial/antioxidant compounds. For example, chitosan-based nanocomposite with MMT clay
particle and rosemary essential oils as antimicrobial/antioxidant compounds exhibit good mechanical
properties, water sensitiveness, and improved water vaporization properties [195].
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The inherent properties of fabricated bionanocomposite coating films are significant for its
applications. Mechanical, non-mechanical, and thermal properties are regarded as the major properties
of bionanocomposite coating films. However, the physical and chemical characteristics of the
constituent materials of bionanocomposite coating films can significantly alter these properties.
Mechanical properties do not only depend on the morphology and dimension of the constituent
materials, such as nanoparticles and polymer matrix, but also on the formation of the percolating
whisker network [196]. The percolation of the whiskers depends on the aspect ratio of the filler,
such as sisal nanowhiskers with high aspect ratio. In particular, a filler in polyvinyl acetate-based
nanocomposite films can improve mechanical and thermal properties at low fiber loading [196].

Tunicin whiskers with a high aspect ratio as filler constituents of amorphous
poly(β-hydroxyoctanote) (PHO) lead to high mechanical properties of the composite [197]. Similarly,
carbon nanotubes with a high aspect ratio as filler exhibit high mechanical properties of the
nanocomposite films [198]. Mechanical properties such as tensile strength, elongation at break, and
Young’s modulus of novel nanocomposite films and the applications of these films are presented in
Table 4. Young’s modulus linearly increased with microfibrillated cellulose loading by up to 40 wt %
using a phenolic resin [199]. The different types of polymer matrix with the same microfibrillated
cellulose loading have shown different values of tensile strength and Young’s modulus. For example, the
tensile strengths for microfibrillated cellulose with phenol formaldehyde and starch matrix are 370 and
160 MPa, whereas their Young’s modulus values are 19 and 6.2 GPa, respectively [200].

Non-mechanical properties are also key players in bionanocomposite coating films. These properties
mainly include transparency, optical property, flexibility, a light weight, resistance to moisture, adhesion
to the substrate, thickness, water-vapor permeability, surface hydrophobicity, oil-holding capacity,
chiral nematic and conductivity, antimicrobial activity, UV-blocking properties, and barrier properties.
Transparency and optical properties are value-added properties of the bionanocomposite coating films
when they are considered to be applied as coating films for auto mobiles and aerospace vehicles as well
as for UV-protective window applications. Microfibrillated cellulose has been used with resins in a recent
study to fabricate coating films with high transparency; this process can be conducted by eliminating
surface scattering. Wood-cellulose-based nanocomposite has also been used as an optically transparent
substrate for flexible organic light-emitting displays [201]. Furthermore, an optical transparency analysis
has been performed by Ching et al. [202] for a PVA/nanocellulose composite incorporated with nanosilica
as a reinforced material. They found a decreasing trend of visible light transmission with an increasing
wt % of nanosilica.
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Table 4. Comparison of mechanical properties of various bionanocomposite films at maximum load. (*) indicating the unavailability of the relevant data.

Constituent
materials of
composites

Properties
Applications ReferenceCAL/(˝) a WVP/

(10´10 g/ms¨ Pa) b Elongation (%) Young’s
modulus/(MPa)

Tensile
strength/(MPa)

SPI/EDGE/CNC 53–54 a 86–87 48–50 4–6 Preliminary [11]
SPI/EDGE/MCNC 56–57 a 78–80 65–70 5–7 Preliminary [11]

CH/MAC-CNC * 8–11 3500–3700 105–108 Preliminary [203]
CH/CNC-Gly 44–45 a 5–6 351–500 8–11 Special [204]
CH/Gly-OO 59–60 a 11–12 239–420 10–13 Special [204]

PVA/GR-CNC * 79–85 1432–1550 36–38 Reinforcement [205]
CH/C-AgNPs * * * * Antimicrobial [206]

CNC/ZnO 88–90 a 40–45 6350–7000 55–56 Preliminary [207]
CA/CNC * 16–18 95–1000 30–33 Preliminary [208]

PVA/CNWs/CH * 126–150 * 62–65 Food packaging [209]
AG-CNC/SEO 2–3 b 51–55 46–50 20–22 Packaging [210]
CMC/ST-CNC 4.8–5.2 b 19–20 1650–1670 110–116 Packaging [211]

CH/MMT/REO 0.35–0.50 b 4–5 * 74–79 Preliminary [37]
SM/KA * 28–32 136–139 5–6 Food Packaging [212]

CS/Gly/OA 94–96 a, 15–16 b 6–7 * 34–36 Packaging [213]
Chi/CH-TA * 20–25 1300–1400 50–55 Preliminary [214]

CH/CNC-TA * 15–25 1700–1750 55–60 Preliminary [215]

CAL: Contact angle at (0) time indicating as “a”; WVP: Water vapor permeability indicating as “b”; SPI: Isolated soybean oil; EDGE: Ethylene glycol diglycidyl ether;
CNC: Cellulose nanocrystal; MCNC: Modified CNC; CH: Chitosan; MAC: Methyl adipoly chloride; Gly: Glycerol; OO: Olive oil; PVA: Polyvinyl alcohol; GR: Stabilized graphene;
C: Cellulose; Ag: Silver; NPs: Nanoparticles; ZnO: Zinc oxide; CNWs: Cellulose nanowhiskers; AG: Agar; SEO: Savory essential oil; CMC: Carboxymethyl cellulose; ST: Starch;
MMT: Montmorillonite; REO: Rosemary essential oil; SM: Semolina; KA: Kaolin; CS: Cellulose sulfate; OA: Oleic acid; Chi: Chitin; TA: Tannic acid.
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6. Conclusions

Bio-based nanocomposite coating films have been used in numerous recent applications with
different aspects because of environmental factors and their biodegradability properties. Several recent
studies focused on improvement strategies to enhance the quality of bionanocomposite coating film
materials. Several naturally occurring low-cost bio-based materials have been on the track to fabricate
these coating films through conventional and novel film-producing technologies. These approaches
have improved the field of applications as well as the physico–chemical properties and mechanical
properties of bionanocomposite coating films. In particular, these approaches have also been active in
natural bio-polymer reinforcement, scaffold fabrication, implant device manufacturing, drug delivery
and packaging technology.

The future of these coating films does not only depend on the constituent materials, including
the scalability of nanoparticles and the stoichiometric ratio of biocomposites, but also on the field in
which these films are applied. Furthermore, the future outlook for developing novel coating films with
enhanced quality is promising.
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