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Abstract: We develop an analytical model to predict the collapse conformation for a single semiflexible
polymer chain in solution, given its length, diameter, stiffness, and self-attractiveness. We construct
conformational phase diagrams containing three collapsed states, namely torus, bundle, and globule
over a range of dimensionless ratios of the three energy parameters, namely solvent-water surface
energy (γs), energy of bundle end folds (γe), and bending energy per unit length in a torus (γb).
Our phase diagram captures the general phase behavior of a single long chain (>10 Kuhn lengths) at
moderately high (order unity) dimensionless temperature, which is the ratio of thermal energy to the
attractive interaction between neighboring monomers. We find that the phase behavior approaches
an asymptotic limit when the dimensionless chain length to diameter ratio (L*) exceeds 300.
We successfully validate our analytical results with Brownian Dynamics (BD) simulations, using a
mapping of the simulation parameters to those used in the phase diagram. We evaluate the effect
of three different bending potentials in the range of moderately high dimensionless temperature,
a regime not been previously explored by simulations, and find qualitative agreement between the
model and simulation results. We, thus, demonstrate that a rather simplified analytical model can be
used to qualitatively predict the final collapsed state of a given polymer chain.

Keywords: semiflexible polymers; Brownian Dynamics simulations; collapsed structures;
phase diagram

1. Introduction

Polymer chains collapse into compact globules when the solvent condition changes from good to
poor. This “coil-globule transition” is relatively well understood for flexible polymers [1,2]. The globule
state minimizes the area of solvent contact of monomers, and makes the collapsed state energetically
more favorable than the extended state. However, many polymers exhibit substantial bending stiffness
and are considered to be semiflexible, as described by the worm-like chain model [3]. For these
chains, a globule state minimizes the surface free energy, but involves substantial bending energy.
Therefore, these chains collapse into states that are less dense than the globule, which are overall more
thermodynamically favorable. In particular, semiflexible polymer chains, such as biopolymers DNA
and (methyl)cellulose, tend to collapse into equilibrium states that balance the bending force that resists
the collapse with the attractive force that promotes it. Both experiments [4–6] and simulations [7–12]
have detailed collapse pathways, as well as the conformations of semiflexible polymers, once collapse
is complete. A typical pathway for the collapse of a semiflexible polymer chain involves long-lived,
partially collapsed, “racquet”-shapes, that are intermediates on the path towards a more compact state,
such as a torus, folded bundle, or globule [7,9,10,12].
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The ability to predict the collapsed state of a given semiflexible polymer chain based on its
structural properties (e.g., diameter, bending stiffness, interaction with solvent, etc.) could be a
powerful tool to understand the formation of specific collapsed polymer structures. For example, it
was recently shown that methylcellulose gel contains fibrillar structures with a uniform diameter [13].
Such structures are likely to be initiated by the collapse of individual methylcellulose chains when the
solution temperature increases [14]. This collapsed state can be qualitatively predicted based on the
structural properties of methylcellulose, as explained in a recent simulation study of methylcellulose
by Huang et al. [11]. In early work, Schnurr et al. [7] simulated single short stiff chains (2–3 Kuhn steps,
Nk) using bead-spring “pearl necklace” chains and observed the chain evolve from an extended state
to various collapsed states. More recently, Seaton et al. [15] reported the phase behavior of simulated
30-mer semiflexible bead-spring “pearl necklace” chains (Nk < 10) with various bending stiffnesses
over a wide range dimensionless temperatures. With increasing chain stiffness, they observed globules
at very small bending stiffness, to bundles of varying aspect ratios at higher bending stiffness, to
tori, and to expanded coils at the highest bending stiffness. However, they considered only a single
chain length and suggested that the phase diagram could change for much longer chains. In a recent
simulation study, Kong et al. [10] detailed various collapsed states and collapse paths exhibited by
semiflexible bead-spring polymers at different chain resolutions (i.e., number of beads per Kuhn
length), self-attractive strengths, and chain diameters. A conformational phase diagram for polymer
chains with a length of five Kuhn steps (Nk = 5) as a function of dimensionless self-attraction strength
and ratio of chain diameter to Kuhn length was produced. In sum, simulation studies currently
available in the literature are limited to bead-spring chains with rather short lengths. However, with
the recent advances in computational power, a single chain of length several hundreds of Kuhn steps
can now be simulated using standard Brownian Dynamics (BD) simulation model [11]. Therefore,
we would like to re-examine the collapsed phase behavior of semiflexible polymer chains over a wider
range of chain lengths.

A few analytical models have been developed to characterize the energy of both metastable
intermediates during the collapse and the equilibrated conformations of collapsed semiflexible
polymers. Schnurr et al. [16] calculated the conformational energy of intermediate “racquet” states
and showed that this shape is metastable and that semiflexible self-attractive chains will indeed
eventually collapse into energetically more favorable bundles and tori. Their model was derived
for low dimensionless temperature (T*, which is the thermal energy kBT divided by the bead-bead
attraction energy) where the tori and bundles with “racquet” heads have crystalline packings of
the monomer beads used to model the chain. Thus, the model incorporates the packing order of
monomers within the filaments, the completeness of the torus, and number of “racquet” heads in
a bundle. Moreover, the shape of an ideal “racquet” head is resolved by introducing additional
parameters such as total contour length of the chain within the racquet head and the curvature of the
racquet. Stukan et al. [17] analyzed the stability of a bundle and a torus formed by single chain using a
detailed analytical model, including bead packing energies generated by the number of bead-bead
contacts. Their model was derived for collapsed structures of bead spring “pearl necklace” chains
at low dimensionless temperature, where the packing order (number of bead-bead contacts) of the
filaments in both torus and bundle was considered. For both conformations, they found periodicities
in the minimum energy state as a function of chain length due to the periodic completion of windings
around the torus, or of parallel filaments in the bundle, respectively. They compared the energy of a
torus with perfect hexagonal filament packing to a bundle with ideal tight back folding at the ends,
and concluded the torus is always energetically more favorable than the bundle. This is a somewhat
striking finding, since bundle structures are generally considered to be stable equilibrium collapsed
structures for semiflexible polymer chains and have been observed in both simulations and theoretical
studies [10,15,18]. However, it is worth noting that in addition to the limitation on bead spring “pearl
necklace” model, the chains Stukan et al. modeled were rather stiff. Therefore, it is reasonable that
a bundle with ideal tight back folding at the ends is always energetically more costly to form than a
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torus. Both the analytical models of Schnurr et al. and of Stukan et al. are applicable to long chains
(>100 Kuhn steps).

The parameter spaces covered by these previous simulation studies, summarized in Figure 1,
have mostly focused on high dimensionless temperatures and short chain lengths, and the theoretical
modeling studies have resolved the conformational space at low dimensionless temperatures and a
wide range of chain lengths. While the hexagonal filament packings in collapsed conformations may
be important for short oligomer chains with ideal spherically shaped monomers at low dimensionless
temperatures, we are interested in providing qualitative prediction of the final collapsed chain
conformation at dimensionless temperature value around 1, similar to the condition in Kong et al.’s
work. Therefore, we wish to develop a generic analytical model with less emphasis on the actual
filament packing details to predict the minimum free energy conformation of semiflexible polymer
chains at high dimensionless temperatures with reasonable accuracy, at least for long polymer chains.
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Figure 1. Illustrative phase diagram of the parameter space that has been covered in previous
simulations and theoretical models in the literature, and in this work. The x-axis is the Kuhn length
(Nk) of the polymer chain, and the y-axis is the dimensionless temperature, defined as the kBT divided
by the attractive energy per monomer bead used in each study.

One important consideration in the polymer chain model is the choice of the bending potential.
There are two typical bending potentials, namely the harmonic bending potential (Uangle,h) and the
cosine bending potential (Uangle,c) (Equation (1a,b)). While Schnurr et al. and Kong et al. chose
harmonic potential for their model and Seaton et al. chose cosine potential in their work, Stukan et
al. have compared the effect of these two bending potentials on the stability of the torus and bundle.
They have found that the choice of the bending potential can lead to different stability of the collapsed
structures. For example, for large bending angles, such as the ones in the end fold, the cosine potential
is “softer” than the harmonic potential (see Figure S1 at small angle limit), and therefore decreases the
overall energy of the end fold. Because Stukan et al. only modeled the chains at low dimensionless
temperature with ideal hexagonal packing, we would also like to re-evaluate the effect of the bending
potentials on the conformational behavior at higher dimensionless temperature and over a wider range
of dimensionless chain length range in this work.

Uangle,h “
1
2

Kθ pθ ´ θ0q
2 (1a)

Uangle,c “
1
2

Kθ r1´ cos pθ ´ θ0qs (1b)
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Uangle,s “ 8Uangle,h ´ 14Uangle,c (1c)

In this work, we develop a much simpler analytical model to predict the formation of torus or
bundle states by representing these collapsed states as ideal geometries with specified dimensions,
and corresponding surface areas, such as the areas of the folded bundle ends and sides. We then
subsume the properties of the chain, namely the number of monomers, monomer diameter, and chain
stiffness into surface free energies of both ends and sides, as well as the bending energy per unit
length for a chain with a radius of curvature set by the radii of the torus. We then find the geometry of
minimum free energy of both torus and bundle for a given set of parameters, and find whether the
torus or the bundle has the lower minimum free energy. A phase diagram is produced by recording
these minimum free energy conformations. To validate the theoretical derived phase diagram, we also
simulate bead-spring “pearl-necklace” chains using Brownian Dynamics (BD) simulations with three
different bending potentials. Specifically, in addition to the harmonic and cosine bending potential,
we adopt a “stiff” potential (Uangle,s) using a linear combination of the two aforementioned potentials
(Equation (1c)) to study the effect of bending potential systematically. We show that the predicted
phase diagram agrees with the BD simulation results qualitatively.

The paper is organized as follows. We first discuss the development of the analytical model for
the collapsed conformations, and the model we use for the BD simulations. We also discuss how to
map the parameters used in the analytical model onto the input parameters for the simulations. We
then show the calculated phase diagrams for various dimensionless chain lengths, and compare these
phase diagrams with the simulation results.

2. Methods

2.1. Analytical Model

We consider three possible collapsed conformations for a single polymer chain, namely torus (T),
bundle (B), and globule (G). The “pearl-necklace” polymer chain is modeled using beads connected by
short stiff springs; each chain contains N beads of diameter σ, and the contour length of the chain is L.
We introduce energy penalty parameters for exposed monomer surface (γs), end folds in the bundle
(γe), and chain bending in the torus (γb), respectively. The former two parameters have units of free
energy per unit area, while the latter has units of free energy per unit curvature squared per unit
chain length. This yields three dimensionless ratios, namely γb{γeσ

3, γe{γs, and L˚ ” L{σ. The other
quantities with units of length are also scaled by σ to make them dimensionless. We approximate the
stretched chain as a long and thin tube, with the volume of the chain Vc is made dimensionless as
Vc{σ

3 ” πL˚{4. We focus on the two collapsed conformations, namely the torus and the bundle. For
each of these, we estimate the free energy by summing up the contributions from the lateral surface
(for the bundle and the torus), and from the areas of the two end caps (for the bundle), and from
chain bending (for the torus). We then differentiate with respect to radius r* (” r{σ) for each structure
(Figure 2) to obtain the lowest free energy state.
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Figure 2. Schematics of torus (a) and bundle (b); (c) Schematic of a generic end fold we consider in
this work, which has three exposed monomers (colored in gray). The angles in the end fold, ϑ1´3, are
formed among three consecutive monomer beads. For simplicity, these angles are taken to be 120˝.
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In the torus model, there are two dimensionless lengths, namely rt
˚ (” r{σ) and R* (” R{σ).

As shown in Figure 2a, r is the radius of the cross section of the torus, and R is the distance from the
center of the torus to the center of the cross section. We start by equating the volume of the free chain
(Vc) to the volume of the torus (Vt) (Equation (2a)). We then express the free energy of the torus (Gt) as
the sum of surface energy and bending energy, and derive the expression for dimensionless free energy
Gt
˚. This free energy is made dimensionless with γsσ

2, which is comparable to the free energy of
exposure of a single bead to solvent. We perform an analytical differentiation and obtain the value for
rt
˚ at which the free energy is minimized (note: the second derivative d2G˚t {drt˚

2 is always positive)
(Equation (2b)). We do not allow R* to be smaller than 2rt

˚, or the torus will self-intersect and the
“donut hole” of the torus will disappear.

1
4

πL˚ “ πrt
˚22πR˚ (2a)

Gt “ γs As ` γb
L

R2 ñ rt
˚ “

˜

L˚2

512π γb
γsσ

3

¸
1
5

(2b)

In the bundle model, we define the dimensionless radius r˚b (” r{σ) and bundle length l* (” l{σ),
as shown in Figure 2b, where r is the radius of the bundle end cap. Again, we equate the volume of
the free chain (Vc) to the volume of the bundle (Vb) (Equation (3a)). We then express the free energy of
the bundle (Gb) as the sum of lateral surface energy and the end cap energy, and derive the expression
for dimensionless Gb

˚. Note that the surface energy due to the exposed monomers in the end caps is
included in the first term. We differentiate the expression and obtain the value of r* at which the free
energy is minimized (note: the second derivative d2G˚b {drb˚

2 is always positive) (Equation (3b)). We
do not allow l* to be smaller than 2rb

˚ to maintain the ratio of the bundle diameter to its length below
unity (2rb

˚{l˚ ď 1), so that it is truly a “bundle” and not a condensed globule or disk. If, on the other
hand, the ratio 2rb

˚{l˚ is greater or equal to 0.5, we consider the structure to be a globule. A detailed
derivation for both torus and bundle models are given in the Supplementary Materials.

1
4

πL˚ “ πrb ˚
2 l˚ (3a)

Gb “ γs As ` γe Ae ñ rb
˚ “

1
2

˜

L˚

1` γe
γs

¸
1
3

(3b)

Defining k1 ” γe{γs, and k2 ” γb{γeσ
3, we derive the exact solutions for the boundaries between

globule and bundle, and between bundle and torus in the asymptotic limit of large L*. A bundle can be
considered to be a globule when the ratio 2r˚b{l

˚ is greater or equal to 0.5 (Equation (4a)). Because the
shape of the globule, like that of a bundle, is solely determined by the ratio γe{γs, the exact solution
to the boundary between globule and bundle is simply the horizontal line at which γe{γs equals 1
(Equation (4c)).

To derive the boundary between the bundle and the globule, we consider the constraint for
globule geometry:

0.5 “
2r˚b
l˚

(4a)

Inserting l˚ from Equation (3a), r˚b from Equation (3d), and k1 ” γe{γs gives:

0.5 “

´

L˚

1`k1

¯
1
3

L˚

4r˚
b

2

(4b)
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Inserting r˚b from Equation (3d) again and Equation (4b) reduces to Equation (4c), which leads to
a trivial solution for k1:

0.5 “
1

1` k1
; thus k1 “ 1 (4c)

Next, we derive the exact solution to the boundary between the torus and bundle phase,
obtained by equating their free energies yields a relationship between k2 and k1 (Equation (5c)).
At the limit of large k1, Equation (5c) reduces to a simple power law relationship k2 „ k1

2{3

(Equation (6)). We take the two constraints on the torus into consideration, namely a torus has to be
non-self-intersecting, and the thickness of the cross section has to be more than one bead, which gives
an upper and a lower bound on the k1 value in the expression for phase boundary (Equation (5c)),
shown in Equation (7a). As a result, k1 must exceed 2.63, given by Equation (7c). The upper bound on
k1, in Equation (7c), is a function of the dimensionless chain length (L˚).

To derive the boundary between the torus and the bundle, we equate their optimized free energies:

G˚t “ G˚b (5a)

Using the expression for G˚t from Equation (2b) and G˚b from Equation (3b) gives:

1
2

πL˚r˚t
´1
` k1k2

64π2

L˚
r˚t

4
“

1
2

πL˚r˚b
´1
` 2πr˚b

2
` k12πr˚b

2 (5b)

Inserting r˚t from Equation (2d) and r˚b from Equation (3d), then gives:

k2 “ α
5L˚

1
3 p8` 8k1q

3
5 k1

´1

where:

α “
6
5

p512πq
1
5

(5c)

Equation (5c) is thus the boundary between torus and bundle phase. For large k1, Equation (5c)
reduces to:

k2 “ 32α5L˚
1
3 k1

2
3 (6)

Next, we consider the constraints on the torus geometry:

1
2
ď rt

˚ ď
R˚

2
(7a)

Inserting r˚t from Equation (2d) and R˚ from Equation (2a) gives:

1
2
ď

L˚
2
5

p512πq
1
5 pk1k2q

1
5
ď

L˚
1
3

p16πq
1
3

(7b)

Inserting k2 from Equation (5c), we obtain the upper and lower limit for the k1 value in
Equation (5c), due to the constraints on the torus geometry:

2.63 ď k1 ď 0.58L˚ ´ 1 (7c)

Because our theory does not consider fluctuations on the scale of the structure (torus, bundle,
or globule), and also neglects local bead ordering, the range of temperatures for which our model is
valid must be such that the temperature is high relative to the energy of interactions of individual
beads, which is of order ε, but must be very low relative to the total interaction energy of the entire
molecule, which is of order N ε. For both of these conditions to hold, our model is restricted to long
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chains (i.e., L˚ > 100). Because we set the dimensionless temperature (T* = kBT{ε) to be unity, our
theory is expected to hold at dimensionless temperatures between 1 and << N.

2.2. Simulation Details

The Brownian Dynamics (BD) simulations in this study were performed using the LAMMPS
simulation package [19] (ver. May 2015) in an NVE ensemble. Dimensionless LJ (Lennard-Jones)
units were used in the simulations, where the Boltzmann constant (kB) and the three fundamental
units, namely mass (m), distance (σ), and energy (ε), were set to be unity. A Langevin thermostat [20]
was used in all simulations, with the damping coefficient set to 10, which leads to an overdamped
simulation, and reduced temperature (T*) to be unity (kBT* = 1). The time scale τ was defined to be
a

mσ2{ε , and a typical time step of 0.005τ was used. Simulations were carried out for at least 108 steps.
We tracked the radius of gyration (Rg) to monitor the collapse behavior of the chain. The polymer
chain was modeled using beads and stiff springs, with each bead representing a generic monomer
in the polymer chain. The CG interaction potential (Equation (1a–c), Equation (8a–c)) included both
bonded and non-bonded interactions. Harmonic bond and interactions were used to model the bonded
interactions, while the Lennard-Jones 12-6 potential was used to model the non-bonded interaction.

UCG “ Ubond `Uangle `Unon´bonded (8a)

Ubond “
1
2

Kb pl ´ l0q
2 (8b)

Unon´bonded prq “ 4ε
„

´σ

r

¯12
´

´σ

r

¯6


(8c)

We considered three bending potentials in the simulations, namely harmonic, cosine, and stiff
bending potential (Equation (1a–c)); we have plotted these in Figure S1. By design, the stiff bending
potential produces a progressively higher energy penalty than the harmonic bending potential as
the bending angle increases. Therefore, given the same generic end fold, such as the one shown in
Figure 2c, the cosine potential gives the smallest energy penalty, followed by harmonic and the stiff
potential. The bead diameter (σ) in simulation is the same as the bead diameter (σ) in our theory.
In the simulations, we hold the interaction strength (ε) and bead diameter (σ) constant at 1.0, and vary
the bending potential coefficient (Kθ) from 1.5 to 150. The value of persistence length (lP) scaled by
length unit (σ), when using harmonic potential, is slightly larger than the value of Kθ scaled by energy
unit (ε). (i.e., Kθ{ε of 1.5 gives lP{σ roughly 2).

We can map the energy terms used in the analytical model, namely γs, γe, and γb, to the
parameters used in the simulations. γs is the free energy penalty a bead pays for being exposed
to the solvent. We approximate this free energy by the LJ potential energy of an exposed bead. Beads
that interact through an LJ potential in the dense state will pack closely together with numbers of
neighbors not too far from 12, that of a face-centered cubic (FCC) with interaction strength of 1ε per
contact, which is the depth of the potential well. The contribution per bead in the pair is 0.5ε per
contact, and the total potential energy for a non-exposed bead is thus 6ε. Here, we consider an exposed
bead loses potential energy contribution from 8 neighboring beads, loosely based on the structure we
observed in the simulations. Therefore, γs is approximated to be the potential energy difference (4ε)
divided by the cross sectional area of the bead (πσ2{4). γb is the product of bending coefficient (Kθ)
and bead diameter (σ) (Equation (5a–b)). We consider a generic end fold with three exposed monomer
beads (Figure 2c). For simplicity, we take all three angles in the end fold to be 120 degrees. Therefore, γe
is the ratio between energy of the fold (Efold), calculated using the three bending potentials respectively,
and the approximated exposed end fold surface area of the three monomer beads (3σ2) (Equation (5c)).
The above parameters for mapping are very rough approximations; in general, the structure of the fold
and beads packing will depend on the parameters of the model and the dimensionless temperature.
However, to maintain the simplicity and generality of the model, we avoid these complexities. The
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more detailed model of Stukan et al. [17] considered in detail the structure of the fold and beads
packing, as reviewed above. Particularly, their model requires re-analysis for each specific end fold
conformation, while our simple model should be quite general, although qualitative. In typical
simulations, including those discussed here, both end fold and bending energies arise from the same
bending potential; the fold is simply an extreme bend, whose energy is set by the same potential, but
with smaller radius of curvature. Therefore, the dimensionless ratio γb{γeσ

3 is a constant for a given
bending potential. The three bending potentials that we considered allow us to access various γb{γeσ

3

ratios and validate the trend predicted by the theory.

γs “
16ε
πσ2 (9a)

γb “ Kθd (9b)

γe “
Efold
Afold

“
Efold

3σ2

Efold “ 3Uangle p120˝q (9c)

3. Results and Discussion

Within our model, the collapsed state of a single polymer chain is controlled by three
dimensionless quantities, namely γb{γeσ

3, γe{γs, and L* “ L{σ. A fourth dimensionless parameter,
the dimensionless temperature, kBT{ε, influences when the chain will remain a random coil, rather
than collapsing, but we consider long chains here at moderate values of kBT{ε, and this parameter
therefore does not enter our theory. On the “phase diagram” shown in Figure 3, the y-axis is the ratio
of the end fold energy to the surface energy, while the x axis is the ratio of the bending energy to the
product of end fold energy and bead diameter cubed. We vary the two dimensionless ratios over a
range of values to determine a “phase diagram” of lowest energy conformation. Specifically, for each
γe{γs and γb{γeσ

3 pair, we compute the resulting minimized free energies for all three conformations,
and record the lowest energy conformation on the phase diagram. The phase diagram for L* = 600 is
shown in Figure 3, which includes regions for each of the three phases that we modeled for a polymer
chain. The globule (G) conformation is observed when surface energy penalty dominates (small γe{γs
values; see inset V in Figure 3). Chains in this region can be regarded as flexible. The chain adopts
either torus or bundle configuration when it has moderate bending and end fold energy penalties.
Specifically, when the end surface energy penalty is high but the bending energy penalty is low, the
polymer chain collapses into a torus (T). The aspect ratio of this torus (R*/r*) increases as the bending
energy increases; the cross section of the torus becomes thinner and its radius increases, which helps
the chain to reduce the high bending energy penalty. This can be seen from the insets I and II in
Figure 3. On the other hand, when the end fold energy penalty is low but bending energy penalty is
high, a bundle (B) is formed. The aspect ratio of the bundle (l*/r*) increases as the end fold energy term
increases; the bundle becomes thinner and longer, which helps the chain to reduce the end fold energy
at an expense of having more beads exposed along its side. Schematics of bundles with different
aspect ratios are in the insets III and IV in Figure 3. We mark the exact solutions to the boundaries
between collapsed phases, derived in the theory section on Figure 3. The boundary between globule
and bundle (Equation (4c)) is a horizontal line at γe{γs “ 1. We note that the upper bound of the
boundary between torus and bundle that we present in Equation (7c), namely γe{γs ď 0.58L˚ ´ 1,
is not visible, because the value of γe{γs at the upper bound exceeds the x-axis range. For a small
γb{γeσ

3 (x-axis value), even though the minimum-free-energy torus is self-intersecting at the given
γe{γs and γb{γeσ

3 pair, a torus with minimum possible R*/r* value of 2 can still form and its free
energy remains lower than that of a bundle. This results in the horizontal boundary between bundle
and torus phase on the phase diagram at small γb{γeσ

3 values. From the simulation trajectories, we
observed conformations that fluctuate between two collapsed states, namely torus and bundle. We
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therefore assume that a chain can fluctuate between two states (i.e., T&B) if the calculated free energy
of one state is less than 5% different from that of the other state, and add a transition phase (T&B) on
the theoretical phase diagram. The resulting phase diagram captures both the predictions based on
theory and the observations from the simulations. Note we expect to see a chain adopting a random
coil (RC) conformation when both end fold energy and bending energy penalties dominate (large γe{γs
and γb{γeσ

3 values), despite its large solvent-exposed surface area. However, because it is challenging
to model the entropic contribution in the free energy of the random coil state to a reasonable accuracy,
we are not presenting an analytical model for this state in the current work.
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Figure 3. Phase diagrams for polymer chain with dimensionless chain length L* = L/σ = 600. Each
symbol on the phase diagram marks the parameter values at which a simulation was conducted.
Specifically, open circles, crosses, and asterisk symbols are the simulation runs using stiff, harmonic,
and cosine bending potentials respectively. A vertical bar connects simulations data producing the
same type of structure. The color of the vertical bars, of the dashed lines, and of the regions of the
diagram producing this structure coded as follows: blue—random coil (RC), pink—fluctuating between
random coil and torus (RC&T), red—torus (T), green—fluctuating between torus and bundle (T&B),
yellow—bundle (B), and black- globule (G). Note the pink and blue regions only occur in simulations
because we do not model random coil phase. We regard the simulated T&RC phase simply as a
torus phase (T) because we do not model the random coil (RC) phase analytically. The dashed lines
connecting the vertical bars mark the upper boundaries of the phases obtained from the simulations
(e.g., simulation results between yellow and grey dashed lines resulted in a bundle as the final collapsed
structure). Exact solutions for the boundaries between the three collapsed phases are shown on the
phase diagram (black dash-dotted lines). We have selected representative conformations in each
phase, pointed by the arrows. We have calculated the theoretical aspect ratios for these conformations,
depicted in the insets I–V. We have also conducted simulations using harmonic bending potential
under the same conditions, and the final snapshots from the simulations are supplied in additional
insets I–V with subscript “sim”.
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We compare the collapsed conformations predicted by the theory with the ones obtained from
the simulations. As we noted earlier, because the bending and the end fold are modeled using the
same energy potential, the ratio γb{γeσ

3 is constant for a given bending potential in our simulations.
We can map the Kθ and ε values onto the phase diagram using Equation (9a–c), given a generic end
fold (Figure 2c). From the simulations that use the harmonic bending potential, we observe various
collapsed states as γe{γs value increases (Figure 3 inset Isim through Vsim). Specifically, for γe{γs
values less than 1.3, we observe a globule, and for γe{γs between 1.3 and 2.7, we observe bundles with
various aspect ratios. For γe{γs greater than 6.5, tori with various aspect ratios form. In between 2.7
and 6.5, we observe fluctuations between bundle and torus. As expected, simulations show random
coils form at large γe{γs, here found to be a value greater than 13.

The theoretical diagram is in agreement with the simulation results, and is insensitive to L* for
L* ě 300. The conformations and their corresponding aspect ratios from both theory and simulation
using harmonic bending potential under various conditions are presented in Table 1. The aspect ratios,
l*/r* and R*/r* of the simulated conformation were measured by both visual inspection and an in-house
analysis code and agree with the theoretically predicted phases for collapsed states, at least at L* = 600.
We indeed observed both torus and bundle formed in our simulations within the region predicted by
the theory. The aspect ratios of the conformations, however, agree only qualitatively. Nevertheless, the
aspect ratios of bundles and tori increase with the bending potential coefficient Kθ, as predicted.

Table 1. Comparison of conformations and their corresponding aspect ratios between simulation using
harmonic bending potential and theory for chain with L* = 600. Each simulation is repeated three times
and the error bar is taken as the standard deviation among the three aspect ratios. The aspect ratios
l*/r* and R*/r* are only shown for the bundle and torus conformations.

Kθ ε γb{γeσ
3 γe{γs Config. (Sim.) Asp. ratio (Sim.) Config. (Theory) Asp. ratio (Theory)

1.5 1 0.65 0.91 G G
3.0 1 0.65 1.30 G G
7.5 1 0.65 3.23 B 4.3 ˘ 1.4 B 6.0
10.0 1 0.65 2.77 T&B T&B
13.0 1 0.65 4.31 T&B T&B
15.0 1 0.65 6.46 T 4.4 ˘ 1.1 T 2.6
30.0 1 0.65 12.92 T 9.2 ˘ 1.2 T 4.2
150.0 1 0.65 44.60 RC T 10.0

We compared the simulation results obtained using different bending potentials. The simulations
show transitions from collapsed states to random coil state for all three bending potentials.
The transitions from bundle (B) to fluctuation between bundle and torus (T&B) occur at very similar
γe{γs values for simulations using stiff and harmonic potentials, and at a higher γe{γs value for
simulations using the cosine potential. This trend is in agreement with theoretical prediction. The
transition from fluctuation between bundle and torus (T&B) to torus (T) occurs at a higher γe{γs value
as γb{γeσ

3 increases. This shows that a chain modeled with a “softer” bending potential that grows
less steeply with increasing bending angle is more likely to form a bundle with large aspect ratio. We
have marked the upper boundaries of the phases obtained from the simulation results in Figure 3 (i.e.,
chain in the simulation with mapped γe{γs value between yellow and grey dashed line will result in a
bundle as the final collapsed structure). Because we do not model the random coil phase analytically,
we simply regard the phase where chain fluctuates between torus and random coil (T&RC) as the torus
phase (T). These boundaries obtained from simulations agree qualitatively with the ones predicted by
the theory. We note that a globule is merely a very short bundle; therefore, it is often hard to distinguish
between a short bundle and a globule from the simulation results, contributing to the deviation on the
boundaries between globule and bundle obtained from simulation and theory.

Figure 4 shows that the phase diagrams for dimensionless chain lengths L˚ = 80. For small
dimensionless chain lengths L* (i.e., 80), the phase diagram is more sensitive to chain length, and the
model becomes less accurate. In Figure 4 we assess the accuracy of our model for L˚ = 80, which
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was chosen to match the value used in the phase behavior reported by Kong et al. [10] for chains with
dimensionless bead diameter σ˚ (defined as the ratio of bead diameter to Kuhn length) of 1/16 and
five Kuhn lengths long. Kong et al. adopted a harmonic bending potential in their study. To match
the conditions reported in Kong et al. we use the harmonic bending potential form, and set the bead
diameter to be 1, the chain length to be 80. Unlike other simulations we report in this work, we keep
the bending potential strength (Kθ) to be 7.5, corresponding to persistence length (which is half the
Kuhn length) to be around 8σ, and then vary the non-bonded interaction strength (ε) to obtain various
final equilibrium conformations. We overlay the simulation results from both Kong’s work and our
simulations results in Figure 4. Note that because the both models use harmonic bending potentials
to model the bending of polymer chains, the two data sets, when mapped onto the phase diagram
(Equation (9a–c)), share the same x-axis value, and are slightly separated along this axis for clarity only.
The two data sets agree well, and the offset along the y-axis is likely caused by the small error in the
persistence length estimation.
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We also conducted simulations using the other two potentials. Chains with L* = 80 are more likely
to form a random coil (RC) when the γb{γeσ

3 ratio increases, as shown by the smaller value of γe{γs
at which the random coil state appears. Interestingly, we do not observe either a bundle or a torus for
simulations using the cosine bending potential, as the chain transitions directly from the globule state
to the random coil state. On the other hand, when using the stiff bending potential, we observe a larger
region of torus phase compared to the simulations using harmonic bending potential, which agrees
with the theoretical prediction qualitatively. For L* = 80, although the transition between globule (G)
and bundle (B) phase in the simulation is predicted relatively well by the simple theory, the transition
from bundle (B) to torus (T) clearly deviates from the prediction. Specifically, in the simulations using
the harmonic bending potential, the transition from bundles to tori occurs at γe{γs = 2.5, while the
model predicts that these transitions occur at around γe{γs = 10. This large deviation is expected as
our simple continuous model is likely to break down for short chains, for which numbers of folds in
the folded state and number of chain wrappings in the torus become few, leading to local minima
and maxima in free energy as quantization effects set in. Such effects can indeed by seen in the more
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detailed models of Schnurr et al. [16] and Stukan et al. [15]. We also tested our model for chains with
dimensionless chain length L* = 300 and 1200, and found very similar agreement between theory and
simulation as we observed for L* = 600.

4. Conclusions

We have developed a simplified continuous analytical model to predict the collapse conformation
of a single self-attractive semiflexible polymer chain in solution. We produced from this theory phase
diagrams at various dimensionless chain lengths (L˚) by varying the ratios between three energy
parameters, namely the solvent-water surface energy (γs), the energy of bundle end fold (γe), and
the bending energy per unit length in a torus (γb). Three phases were modelled in this work—torus,
bundle, and globule. We showed that at long chain lengths, L* = 300 or higher, our model predicts the
transitions between globules and bundles, and between bundles and tori with reasonable accuracy
as shown by Brownian Dynamics simulation results using three different bending potentials. We
derived the exact solutions to the boundaries between globule, bundle, and torus phase. However, our
model breaks down for short dimensionless chain lengths (L˚ < 100), for which the detailed packing of
the filament becomes more important. Nevertheless, given the good qualitative agreement between
theoretical and simulated results at long chain length for transitions between collapsed states, this
simplified analytical model may be useful for obtaining quick estimates of the collapsed state of a given
polymer chain, and for gaining insight into the factors controlling transitions between collapsed states.

Supplementary Materials: Supplementary Materials can be found at www.mdpi.com/2073-4360/8/7/264/s1.
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