Skip to main content
. 2016 Aug 4;8(8):281. doi: 10.3390/polym8080281

Table 1.

A brief record of epoxy-based nanocomposites studied for improvement in fracture toughness values.

Sr. Authors Year Reinforcement/(wt %) Dispersion method % Increase in K1C (MPa·m1/2) Remarks Ref.
1 Wan et al. 2014 GO (0.25 wt %) Sn + BM 25.6 K1C drops after 0.25 wt % of reinforcement [63]
DGEBA-f-GO (0.25 wt %) 40.7
2 Sharmila et al. 2014 MERGO (0.25 wt %) MS + USn 63 K1C drops after 0.25 wt % of reinforcement [64]
3 Zhang et al. 2014 GnPs (0.5 wt %) Sn 27.6 Trend still increasing [65]
fGnPs (0.3 wt %) 50.5 K1C drops after 0.3 wt % of reinforcement
4 Moghadam et al. 2014 UG (0.5 wt %) 3RM 55 K1C drops after 0.5 wt % of reinforcement [66]
GO (0.5 wt %) 57
G-NH2 (0.5 wt %) 86
G-Si (0.5 wt %) 86
5 Ma et al. 2014 m-GnP (1 wt %) MS + Sn 131 K1C drops after 1 wt % of reinforcement of m-GnP [59]
6 Chandrasekaran et al. 2014 TRGO (0.5 wt %) 3RM 44.5 Trend still increasing [67]
GNP (1 wt %) 49 K1C drops after 1 wt %
MWCNTs (0.5 wt %) 12.7 Trend still increasing
7 Wan et al. 2014 GO (0.1 wt %) Sn + BM 24 K1C improves with silane functionalization [68]
Silane-f-GO (0.1 wt %) 39
8 Zaman et al. 2014 m-clay (2.5 wt %) MS 38 K1C drops after 2.5 wt % m-clay [69]
m-GP (4 wt %) 103 Trend still increasing
9 Jiang et al. 2014 SATPGO (0.5 wt %) USn 92.8 K1C drops after 0.5 wt % of reinforcement [70]
10 Shokrieh et al. 2014 GPLs (0.5 wt %) Sn 39 K1C drops after 0.5 wt % of reinforcement [71]
GNSs (0.5 wt %) 16
11 Jia et al. 2014 GF (0.1 wt %) (resin infiltration) None 70 K1C did not change much between 0.1 to 0.5 wt % [58]
12 Tang et al. 2013 Poorly dispersed RGO (0.2 wt %) Sn 24 Trend still increasing [72]
Highly dispersed RGO (0.2 wt %) Sn + BM 52
13 Wang et al. 2013 GO 10.79 µm (0.5wt %) USn 12 K1C drops after 0.5 wt % of reinforcement [57]
1.72 µm (0.5 wt %) 61
0.70 µm (0.1 wt %) 75
14 Chandrasekaran et al. 2013 GNPs* (0.5 wt %) 3RM 43 Dispersion and K1C improved with three roll milling [73]
15 Li et al. 2013 APTS-GO (0.5 wt %) USn 25 Trend still increasing [74]
GPTS-GO (0.2 wt %) 43 K1C drops after 0.2 wt % of reinforcement
16 Shadlou et al. 2013 ND (0.5 wt %) USn No effect Fracture toughness improvement is higher by CNF and GO (high aspect ratio) compared with that by spherical ND [75]
CNF (0.5 wt %) 4.3
GO (0.5 wt %) 39.1
17 Jiang et al. 2013 GO (0.1 wt %) Sn 31 Trend remains same after 1 wt % of reinforcement [76]
ATS (1 wt %) 58.6 K1C drops after 0.1 wt % of reinforcement
ATGO (1 wt %) 86.2 The maximum improvement is achieved with functionalization
18 Liu et al. 2013 p-CNFs (0.4 wt %) Sn 41 Trend still increasing [77]
m-CNFs (0.4 wt %) 80
19 Wang et al. 2013 ATP (1 wt %) Sn 14 K1C drops after 0.1 wt % [78]
GO (0.2 wt %) 19 Trend still increasing after 0.2 wt %
ATP (1 wt %) + GO (0.2 wt %) 27 K1C drops with the further increase in ATP of reinforcement
20 Alishahi et al. 2013 ND (0.5 wt %) Sn −26.9 Trend still increasing [79]
CNF (0.5 wt %) 19
GO (0.5 wt %) 23
CNT (0.5 wt %) 23.8
21 Ma et al. 2013 U-GnP (0.5 wt %) MgSr + USn 49 Trend still increasing [80]
m-GnP (0.5 wt %) 109
22 Feng et al. 2013 Graphene (0.5 wt %) Sn 76 K1C decreases after 0.5 wt % of reinforcement [81]
23 Chatterjee et al. 2012 GnPs (5 µm, 2 wt %) 3RM 60 Trend still increasing [82]
GnPs (25 µm, 2 wt %) 80
CNTs (2 wt %) 80
CNT:GnP = (9:1) (2 wt %) 76
24 Chatterjee et al. 2012 EGNPs (0.1 wt %) HPH + 3RM 66 K1C drops after 0.1 wt % of reinforcement [83]
25 Zaman et al. 2011 GP (2.5 wt %) Sn + MS 57 The surface modification significantly improved the K1C [84]
m-GP (4 wt %) 90
26 Rana et al. 2011 CNFs Sn + MS 40 K1C is dependent upon mixing time [85]
27 Bortz et al. 2011 GO (0.5 wt %) 3RM 60 K1C drops after 0.5 wt % of reinforcement [86]
28 Zhang et al. 2010 CNFs (0.5 wt %) 3RM 19.4 Trend still increasing [87]
SCFs (15 wt %) 125.8
SCF (10 wt %)/CNF (0.75 wt %) 210
29 Fang et al. 2010 GNs MS + Sn 93.8 Better results with combination of MS and Sn [88]
30 Jana et al. 2009 GP with “puffed” structure (5 wt %) Sn 28 Trend still increasing [89]
31 Rafiee et al. 2009 SWNT (0.1 wt %) Sn + MS 17 Graphene platelets have more influence on K1C than CNTs [90]
MWNT (0.1 wt %) 20

3RM: three roll milling; APTS-GO: amino-functionalized graphene oxide (GO); ATGO: 3-Aminopropyltriethoxysilane functionalized silica nanoparticles attached GO; ATP: attapulgite; ATS: 3-amino functionalized silica nanoparticles; BM: ball milling; CNF: carbon nanofiber; CNT: carbon nanotube; DGEBA-f-GO: diglycidyl ether of bisphenol-A functionalized GO; EGNP: amine functionalized expanded graphene nanoplatelets; fGnP: polybenzimidazole functionalized graphene platelets (GnPs); G-NH2: amino-functionalized GNPs; G-Si: silane modified GNPs; GF: graphene foam; GN: amine functionalized graphene sheet; GnP: graphene platelet; GNP*: graphite nanoplatelet; GNS: graphene nanosheet; GO: graphite; GP: graphite particles; GPL: graphene nanoplatelets; GPTS-GO: epoxy functionalized GO; HPH: high pressure homogenizer; m-clay: surface modified nano clay; m-CNF: triazole functionalized carbon nanofiber; m-GnP: surface modified GnP; m-GnP*: surfactant modified graphene platelet; m-GP: surface modified graphene platelets; MERGO: microwave exfoliated reduced graphene oxide; MgSr: magnetic stirring; MS: mechanical stirring; MWCNT: multi-walled carbon nanotube; MWNT: multi-walled carbon nanotubes; ND: nanodiamond; pCNF: pristine carbon nanofibers; RGO: thermally reduced graphene oxide; SATPGO: 3-aminopropyltriethoxysilane modified silica nanoparticles attached GO; SCF: short carbon fibers; Silane-f-GO: silane functionalized GO; Sn: Sonication; SWNT: single-walled carbon nanotubes; U-GnP: unmodified graphene platelets; UG: unmodified graphene nanoplatelets; USn: ultrasonication.