Table 1.
Sr. | Authors | Year | Reinforcement/(wt %) | Dispersion method | % Increase in K1C (MPa·m1/2) | Remarks | Ref. | |
---|---|---|---|---|---|---|---|---|
1 | Wan et al. | 2014 | GO (0.25 wt %) | Sn + BM | 25.6 | K1C drops after 0.25 wt % of reinforcement | [63] | |
DGEBA-f-GO (0.25 wt %) | 40.7 | |||||||
2 | Sharmila et al. | 2014 | MERGO (0.25 wt %) | MS + USn | 63 | K1C drops after 0.25 wt % of reinforcement | [64] | |
3 | Zhang et al. | 2014 | GnPs (0.5 wt %) | Sn | 27.6 | Trend still increasing | [65] | |
fGnPs (0.3 wt %) | 50.5 | K1C drops after 0.3 wt % of reinforcement | ||||||
4 | Moghadam et al. | 2014 | UG (0.5 wt %) | 3RM | 55 | K1C drops after 0.5 wt % of reinforcement | [66] | |
GO (0.5 wt %) | 57 | |||||||
G-NH2 (0.5 wt %) | 86 | |||||||
G-Si (0.5 wt %) | 86 | |||||||
5 | Ma et al. | 2014 | m-GnP (1 wt %) | MS + Sn | 131 | K1C drops after 1 wt % of reinforcement of m-GnP | [59] | |
6 | Chandrasekaran et al. | 2014 | TRGO (0.5 wt %) | 3RM | 44.5 | Trend still increasing | [67] | |
GNP (1 wt %) | 49 | K1C drops after 1 wt % | ||||||
MWCNTs (0.5 wt %) | 12.7 | Trend still increasing | ||||||
7 | Wan et al. | 2014 | GO (0.1 wt %) | Sn + BM | 24 | K1C improves with silane functionalization | [68] | |
Silane-f-GO (0.1 wt %) | 39 | |||||||
8 | Zaman et al. | 2014 | m-clay (2.5 wt %) | MS | 38 | K1C drops after 2.5 wt % m-clay | [69] | |
m-GP (4 wt %) | 103 | Trend still increasing | ||||||
9 | Jiang et al. | 2014 | SATPGO (0.5 wt %) | USn | 92.8 | K1C drops after 0.5 wt % of reinforcement | [70] | |
10 | Shokrieh et al. | 2014 | GPLs (0.5 wt %) | Sn | 39 | K1C drops after 0.5 wt % of reinforcement | [71] | |
GNSs (0.5 wt %) | 16 | |||||||
11 | Jia et al. | 2014 | GF (0.1 wt %) (resin infiltration) | None | 70 | K1C did not change much between 0.1 to 0.5 wt % | [58] | |
12 | Tang et al. | 2013 | Poorly dispersed RGO (0.2 wt %) | Sn | 24 | Trend still increasing | [72] | |
Highly dispersed RGO (0.2 wt %) | Sn + BM | 52 | ||||||
13 | Wang et al. | 2013 | GO | 10.79 µm (0.5wt %) | USn | 12 | K1C drops after 0.5 wt % of reinforcement | [57] |
1.72 µm (0.5 wt %) | 61 | |||||||
0.70 µm (0.1 wt %) | 75 | |||||||
14 | Chandrasekaran et al. | 2013 | GNPs* (0.5 wt %) | 3RM | 43 | Dispersion and K1C improved with three roll milling | [73] | |
15 | Li et al. | 2013 | APTS-GO (0.5 wt %) | USn | 25 | Trend still increasing | [74] | |
GPTS-GO (0.2 wt %) | 43 | K1C drops after 0.2 wt % of reinforcement | ||||||
16 | Shadlou et al. | 2013 | ND (0.5 wt %) | USn | No effect | Fracture toughness improvement is higher by CNF and GO (high aspect ratio) compared with that by spherical ND | [75] | |
CNF (0.5 wt %) | 4.3 | |||||||
GO (0.5 wt %) | 39.1 | |||||||
17 | Jiang et al. | 2013 | GO (0.1 wt %) | Sn | 31 | Trend remains same after 1 wt % of reinforcement | [76] | |
ATS (1 wt %) | 58.6 | K1C drops after 0.1 wt % of reinforcement | ||||||
ATGO (1 wt %) | 86.2 | The maximum improvement is achieved with functionalization | ||||||
18 | Liu et al. | 2013 | p-CNFs (0.4 wt %) | Sn | 41 | Trend still increasing | [77] | |
m-CNFs (0.4 wt %) | 80 | |||||||
19 | Wang et al. | 2013 | ATP (1 wt %) | Sn | 14 | K1C drops after 0.1 wt % | [78] | |
GO (0.2 wt %) | 19 | Trend still increasing after 0.2 wt % | ||||||
ATP (1 wt %) + GO (0.2 wt %) | 27 | K1C drops with the further increase in ATP of reinforcement | ||||||
20 | Alishahi et al. | 2013 | ND (0.5 wt %) | Sn | −26.9 | Trend still increasing | [79] | |
CNF (0.5 wt %) | 19 | |||||||
GO (0.5 wt %) | 23 | |||||||
CNT (0.5 wt %) | 23.8 | |||||||
21 | Ma et al. | 2013 | U-GnP (0.5 wt %) | MgSr + USn | 49 | Trend still increasing | [80] | |
m-GnP (0.5 wt %) | 109 | |||||||
22 | Feng et al. | 2013 | Graphene (0.5 wt %) | Sn | 76 | K1C decreases after 0.5 wt % of reinforcement | [81] | |
23 | Chatterjee et al. | 2012 | GnPs (5 µm, 2 wt %) | 3RM | 60 | Trend still increasing | [82] | |
GnPs (25 µm, 2 wt %) | 80 | |||||||
CNTs (2 wt %) | 80 | |||||||
CNT:GnP = (9:1) (2 wt %) | 76 | |||||||
24 | Chatterjee et al. | 2012 | EGNPs (0.1 wt %) | HPH + 3RM | 66 | K1C drops after 0.1 wt % of reinforcement | [83] | |
25 | Zaman et al. | 2011 | GP (2.5 wt %) | Sn + MS | 57 | The surface modification significantly improved the K1C | [84] | |
m-GP (4 wt %) | 90 | |||||||
26 | Rana et al. | 2011 | CNFs | Sn + MS | 40 | K1C is dependent upon mixing time | [85] | |
27 | Bortz et al. | 2011 | GO (0.5 wt %) | 3RM | 60 | K1C drops after 0.5 wt % of reinforcement | [86] | |
28 | Zhang et al. | 2010 | CNFs (0.5 wt %) | 3RM | 19.4 | Trend still increasing | [87] | |
SCFs (15 wt %) | 125.8 | |||||||
SCF (10 wt %)/CNF (0.75 wt %) | 210 | |||||||
29 | Fang et al. | 2010 | GNs | MS + Sn | 93.8 | Better results with combination of MS and Sn | [88] | |
30 | Jana et al. | 2009 | GP with “puffed” structure (5 wt %) | Sn | 28 | Trend still increasing | [89] | |
31 | Rafiee et al. | 2009 | SWNT (0.1 wt %) | Sn + MS | 17 | Graphene platelets have more influence on K1C than CNTs | [90] | |
MWNT (0.1 wt %) | 20 |
3RM: three roll milling; APTS-GO: amino-functionalized graphene oxide (GO); ATGO: 3-Aminopropyltriethoxysilane functionalized silica nanoparticles attached GO; ATP: attapulgite; ATS: 3-amino functionalized silica nanoparticles; BM: ball milling; CNF: carbon nanofiber; CNT: carbon nanotube; DGEBA-f-GO: diglycidyl ether of bisphenol-A functionalized GO; EGNP: amine functionalized expanded graphene nanoplatelets; fGnP: polybenzimidazole functionalized graphene platelets (GnPs); G-NH2: amino-functionalized GNPs; G-Si: silane modified GNPs; GF: graphene foam; GN: amine functionalized graphene sheet; GnP: graphene platelet; GNP*: graphite nanoplatelet; GNS: graphene nanosheet; GO: graphite; GP: graphite particles; GPL: graphene nanoplatelets; GPTS-GO: epoxy functionalized GO; HPH: high pressure homogenizer; m-clay: surface modified nano clay; m-CNF: triazole functionalized carbon nanofiber; m-GnP: surface modified GnP; m-GnP*: surfactant modified graphene platelet; m-GP: surface modified graphene platelets; MERGO: microwave exfoliated reduced graphene oxide; MgSr: magnetic stirring; MS: mechanical stirring; MWCNT: multi-walled carbon nanotube; MWNT: multi-walled carbon nanotubes; ND: nanodiamond; pCNF: pristine carbon nanofibers; RGO: thermally reduced graphene oxide; SATPGO: 3-aminopropyltriethoxysilane modified silica nanoparticles attached GO; SCF: short carbon fibers; Silane-f-GO: silane functionalized GO; Sn: Sonication; SWNT: single-walled carbon nanotubes; U-GnP: unmodified graphene platelets; UG: unmodified graphene nanoplatelets; USn: ultrasonication.