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Abstract

The human microbiome plays critical roles in human health and has been linked to many diseases. 

While advanced sequencing technologies can characterize the composition of the microbiome in 

unprecedented detail, it remains challenging to disentangle the complex interplay between human 

microbiome and disease risk factors due to the complicated nature of microbiome data. Excessive 

numbers e f zero values, high dimensionality, the hierarchical phylogenetic tree and compositional 

structure are compounded and consequently make existing methods inadequate to appropriately 

address these issues. We propose a multivariate two-part zero-inflated logistic normal (MZILN) 

model to analyze the association of disease risk factors with individual microbial taxa and overall 

microbial community composition. This approach can naturally handle excessive numbers e f 

zeros and the compositional data structure with the discrete part and the logistic-normal part e f 

the model. For parameter estimation, an estimating equations approach is employed that enables 

us to address the complex inter-taxa correlation structure induced by the hierarchical phylogenetic 

tree structure and the compositional data structure. This model is able to incorporate standard 

regularization approaches to deal with high dimensionality. Simulation shews that our model 
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outperforms existing methods. Our approach is also compared to ethers using the analysis of real 

microbiome data.

1 Introduction

The human microbiome is composed of the collective genomes of commensal, symbiotic 

and pathogenic microorganisms including bacteria, archaea, viruses, and fungi and is an 

important contributor to human physiology and disease [1–3]. Perturbation e f the 

microbiome homeostasis or changes in individual microbes have been linked to a variety of 

human diseases including asthma, infection, and allergy in children [4–6], as well as cancer 

[7–9] and obesity [10, 11]. High-throughput sequencing technologies such as shotgun 

metagenomic sequencing and 16s ribosomal RNA gene sequencing have recently been 

applied to quantify microbes constituting the microbiome [12, 13]. Sequencing reads are 

usually aligned to known reference sequences [14, 15] in order to identify and quantify the 

abundance of microbial taxa.

While sequencing technologies can characterize the composition of microbiome in 

unprecedented detail, it remains challenging to examine the associations of disease risk 

factors or health outcomes with microbiome data due to the complicated structure of 

microbiome sequencing data [16]. First, because of enormous between-subject variation in 

sequencing reads, microbiome data is usually summarized as relative abundance (RA) at a 

certain taxonomy level: essentially the percentage of sequencing reads for each taxon in the 

sample. Thus, the RA has a compositional structure with the constraint that all the RA must 

sum to one. Compositional data structure could induce spurious relationships due to the 

linear dependence between compositional components because an increase in one 

component must induce a decrease in another component. Second, there is an underlying 

hierarchical structure of the microbiome data reflecting the evolutionary relationships 

(phylogeny) between microbes. This hierarchical structure could introduce dependence 

among taxa on top of the compositional structure. Third, there are excessive numbers of zero 

sequencing reads for many taxa. This sparsity causes modeling issues for many traditional 

approaches. Fourth, microbiome data can be of extremely high dimensions because a single 

sample can produce millions of sequencing reads. Since all of these features arise 

simultaneously, they are compounded and thus make the analysis of microbiome data much 

more complicated in practice.

Existing approaches remain inadequate to fully address the modeling challenges when 

studying the microbiome and its relationships with other variables of interest. Community 

level metrics of overall diversity such as Simpson index, phylogenetic diversity, and UniFrac 

distance [17, 18] reduce the dimension of the microbiome data dramatically and thus have 

straightforward interpretations. This type of methods is not able to decipher the associations 

of individual microbial taxa with other variables due to dimension reduction prior to 

association analysis. Differential abundance analysis is useful to compare microbial 

composition between two groups or multiple groups [19, 20], however, it cannot adjust for 

covariates which could be important in the presence of confounders. Regression models 

have also been developed in the literature and can be roughly divided into two categories by 
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how microbiome data is treated in the model: 1) predictors or 2) outcomes. For the first type 

of models [21–23], RA data are usually used and special handling is needed to deal with the 

large dimensional and compositional features of the RA data. Zero sequencing reads are 

often imputed with the pseudo count (ie, 0.5) representing the maximum rounding error. 

There are two subcategories for the second type of models according to what type of 

microbiome data is used: a) absolute abundance (ie, sequencing read counts) or b) RA. 

When modeling absolute abundance data [24–26], overdispersion needs to be appropriately 

handled and challenges from zero-inflated and high dimensional structures have not been 

fully addressed in this case. When modeling RA data [27], individual taxa are usually 

analyzed one by one with a multiple testing correction procedure to control for type I error 

rate. This approach is not able to incorporate the inter-taxa correlation. Under this setting, 

there are also methods developed for examining associations between longitudinal 

microbiome data and clinical covariates [28].

In this paper, we will develop a statistical regression model to identify the associations of 

disease risk factors with the distribution of microbial taxa. Therefore, microbial RA data 

form a multivariate dependent variable. A zero-inflated logistic normal model will be 

proposed to account for the zero-inflated data structure and the compositional structure. We 

will borrow ideas from GEE [29] to handle the overall correlations between microbiome 

taxa induced by the compositional structure and hierarchical phylogenic structure. 

Regularization approaches such as LASSO [30], SCAD [31] and MCP [32] will be 

incorporated in the method to address high dimensionality of the data. Simulation results 

show that our approach outperforms existing methods. A real study example is presented to 

identify infant gut microbial taxa that are associated with environmental exposures in the 

New Hampshire Birth Cohort Study [33]. All the simulations and real data analyses were 

done in R.

2 A multivariate zero-inflated logistic-normal model and regression

2.1 Multivariate logistic-normal distribution

Suppose there are K + 1 microbial taxa and let Y* = (Y1*, …, YK + 1* )T denote the true relative 

abundance (RA) of microbial taxa where the sup-script T denotes the transpose of a vector 

(or matrix). In this section, we don’t consider taxa have zero RA for illustration purpose. 

The RA has a compositional structure with ∑k = 1
K + 1Yk* = 1 and the vector Y* lies in the K-

dimensional simplex 𝒮k where there are only K degrees of freedom for the K + 1 RA’s [16].

We first present an brief introduction of the multivariate logistic-normal distribution that has 

been discussed in the literature [34] and has been proposed for modeling the compositional 

data. We say that a vector Y* follows a multivariate logistic-normal (LN) distribution [34, 

35] and thus its log-ratio transformation, a K -dimensional vector, 

U = log
Y1*

YK + 1* , …, log
YK*

YK + 1*

T
≜ U1, …UK

T follows a multivariate normal distribution N 

(μ, Σ) where μ = (μ1, …, μK)T is the K- dimensional mean vector and Σ is the K × K variance 

matrix.
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For any subset of RA’s, denoted by Yk1
* , …, YkL

* , 1 ≤ k1 < ⋯ < kL ≤ K + 1, 1 ≤ L ≤ K + 1, we 

can form a subcomposition by recalculating RA’s within this subset: 
Yk1

*

∑l = 1
L Ykl

*
, …,

YkL
*

∑l = 1
L Ykl

*
. It is straightforward to see that the log-ratio transformation of the 

subcomposition is a linear transformation of U given by

Uk1, …, kL
= log

Yk1
*

YkL
* , …, log

YkL − 1
*

YkL
*

T

= AU,

where A is a (L − 1) × K matrix with the kLth column being −1’s, the (l,kl) th elements, l = 
1, …,L — 1, being 1’s and all other elements being zero. If kL = K + 1, then matrix A has 

the (l,kl)th elements being 1’s and all other elements being zero’s. So Uk1,…,kL has a 

multivariate normal distribution with mean Aμ and variance AΣAT. Therefore, any 

subcomposition follows a LN distribution as well.

2.2 Multivariate zero-inflated logistic-normal distribution

In practice, many taxa may net be observed due to biological conditions. Thus, the observed 

RA vector Y = (Y1, …,YK+1)T is usually sparse, ie, contains many zeros. To account for the 

zere-inflated structure, we propose a multivariate zero-inflated logistic-normal (MZILN) 

distribution fer the data. Let Z be a (K + 1)-dimensional vector containing 1’s and 0’s with 

the kth element Zk = 1/0 to indicate the k th taxen being positive/zero. It is straightforward to 

see that the observed vector Y can be expressed in terms of Y* and Z:

Y =
Y1*Z1

∑k Yk*Zk
, …,

YK + 1* ZK + 1
∑k Yk*Zk

T
.

Under the assumption that Y* fellows a LN distribution, naturally Y will fellow a MZILN 

distribution with two parts: discrete part that governs the probabilities e f elements in Z 
being 0 or 1, and the continuous part that provides the conditional distribution function for 

the log-ratio transformation of observed non-zero RA’s.

Let pk1, …, kL
 denote the probability that the subset elements Zk1

, …, ZkL
 in Z are 1 and all 

ether elements in Z are zero. The distribution for discrete part can be written as:
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P Z1 = 1, Z2 = 0, …, ZK + 1 = 0 = p1,

P Z1 = 0, Z2 = 1, …, ZK + 1 = 0 = p2,

…
P Z1 = 0, …, ZK = 0, ZK + 1 = 1 = pK + 1,

…

P Z1 = 0, .., Zk1 − 1 = 0, Zk1
= 1, Zk1 + 1 = 0, …, ZkL

= 1, ZkL + 1 = 0, .., ZK + 1 = 0 = pk1, …, kL
,

…
P Z1 = 1, .., ZK + 1 = 1 = p1, …, K + 1,

and

∑
1 ≤ k1 < ⋯ < kL ≤ K + 1

1 ≤ L ≤ K + 1

pk1, …, kL
= 1.

There are (2K+1 − 2) parameters (i.e.,pk1, …, kL
’s) in the discrete part. This is essentially a (K 

+ 1)-dimensional multivariate Bernoulli distribution [36, 37] conditional on at least one 

element being 1.

The vector Z is similar to a missing indicator vector except that here it indicates whether the 

observed RA is positive or zero. For any taxen, say the kth taxen, there could be two reasons 

for Zk = 0: a) the taxon is truly absent and b) the taxon is not truly absent, but somehow it 

does not have any sequencing reads. It can be shown that Yk > 0 is equivalent to Zk = 1 for 

all k = 1,…, K + 1 (See details in Section S5 of the supplemental material). So the 

distribution of the discrete part can be also rewritten in terms of Y as follows:

P Y1 > 0, Y2 = 0, …, YK + 1 = 0 = p1,

…
P Y1 = 0, …, YK = 0, YK + 1 > 0 = pK + 1,

…

P Y1 = 0, .., Yk1 − 1 = 0, Yk1
> 0, Yk1 + 1 = 0, …, YkL

> 0, YkL + 1 = 0, .., YK + 1 = 0 = pk1, …, kL
,

…
P Y1 > 0, .., YK + 1 > 0 = p1, …, K + 1 .

Conditional on the subset Yk1
, …, YkL

 being non-zero and all other elements of Y being 

zero,the observed RA vector Y = 0, …, 0,
Yk1

*

∑l = 1
L Ykl

*
, 0, …, 0,

YkL
*

∑l = 1
L Ykl

*
, 0, …, 0

T

. We know that 
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the subcomposition of the non-zero RA’s 
Yk1

*

∑l = 1
L Ykl

*
,

Yk2
*

∑l = 1
L Ykl

*
, …,

YkL
*

∑l = 1
L Ykl

*

T

 follows a LN 

distribution from the previous section. Thus, the density function of continuous part is given 

by

f y =

pk1, …, kL
g uk1, …, kL

, y = 0, .., 0, yk1
, 0, .., 0, ykL

, 0, .., 0
T

,

⋮

p1, …, K + 1h u , y = y1, ..., yK + 1
T ,

where y, u and uk1, …, kL
 are the realizations of the random vectors Y, U and Uk1, …, kL

respectively, and g uk1, …, kL
 and h(u) are the density functions of the two multivariate 

normal distributions N Aμ, A∑ AT  and N (μ,Σ) respectively. The density function f (y) 

involves discrete probability masses pk1, …, kL
 ‘s because the continuous part of MZILN is 

essentially a distribution conditional on the subset Yk1
, …, YkL

 being non-zero.

In summary, the MZILN distribution is fully determined by these parameters: the mean 

vector μ, the variance matrix 1, and the discrete probability masses pk1, …, kL
,

1 ≤ k1 < ⋯ < kL ≤ K + 1, 1 ≤ L ≤ K + 1.

2.3 Regression model

Let xi be the Q by 1 vector of covariates and μi denote the K-dimensional mean vector of U 
for the ith subject. The regression model for the mean is

μi = Xiβ, (2)

where Xi = IK ⊗ 1, xi
T , Kronecker product, is a K × M matrix of covariates where M = K(Q 

+ 1) and β = β01
T , …, β0K

T T
 is a M-dimensional vector of regression coefficient parameters. 

Here β0k is the (Q + 1)-dimensional vector of parameters associated with the kth element of 

the mean vector μi. If we write β = (β1 , … , βp)T, then β0k=(β(k−1)(Q+1)+1,β(k−1)(Q+1)+2,

…,βk(Q+1))T,k = 1,…,K. We can also extract the K-dimensional vector of parameters 

associated with the q th covariate: βq0 = (βq+1,βq+1+(Q+1),…,βq+1+(K−1)(Q+1))
T,q=0,1,…,Q. 

Vector βq0 becomes the intercept vector when q = 0. Let βq0
K  denote the kth, k = 1, …,K , 
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element of βq0. A straightforward interpretation for βq0 is that it denotes the amount of 

change in RA of the kth taxa on log scale given one unit increase in the qth covariate, 

controlling for other covariates and the (K + 1)th taxa.

The overall perturbation can be also quantified in terms of the parameters with the assistance 

from a perturbation operator [26, 34, 38]. The vector

exp β00
1

1 + ∑k = 1
K exp β00

k , …,
exp β00

K

1 + ∑k = 1
K exp β00

k , 1
1 + ∑k = 1

K exp β00
k

represents the baseline microbiome composition without disturbance from any of the 

covariates. The vector

exp βq0
1

1 + ∑k = 1
K exp βq0

k , …,
exp βq0

K

1 + ∑k = 1
K exp βq0

k , 1
1 + ∑k = 1

K exp βq0
k

measures the shift in composition from baseline by one unit change in the q th covariate. 

The association of the covariate with the kth taxon is positive if kth element greater 1
K + 1

and negative if less. The magnitude of overall disturbance in microbiome composition 

induced by one unit change in the q th covariate is measured by βq0
T IK + 1K1K

T −1
βq0 where 

IK is the K × K identity matrix and 1K is the K-dimensional vector of 1 ‘s.

We can also model the associations between covariates x t and the discrete part of the 

MZILN distribution by allowing the parameters pk1, …, kL
,

1 ≤ k1 < ⋯ < kL ≤ K + 1, 1 ≤ L ≤ K + 1 to depend on the covariates x t. The parameters 

describing the associations between covariates x t and the parameters pk1, …, kL
 can be 

treated as nuisance parameters. So we will leave out that part. More details can be found in 

Section S1 of the supplemental material.

2.4 Estimation: estimating equation approach based on likelihood function

In this paper, we are interested in estimating the parameter vector that characterize the 

associations between the covariates and log-ratio transformed microbiome taxa RA. We will 

propose an estimating equation approach for the estimation based on log-likelihood 

function. Let Ai, Ui, Uk1, …kL
i  and pk1, …, kL

i denote the counterparts of A, U, Uk1, …, kL
and 

pk1, …, kL
 for the i th subject. We divide subjects into two groups based on the availability of 

taxa RA data: 1) subjects with only one non-zero RA and 2) subjects with two or more non-

zero RA’s. The full log-likelihood function is just the summation of the log-likelihood 

contributions from those two groups.
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For the first group, the log-likelihood contribution comes only from the discrete part, and 

thus it can be written as log pk1
i  where the sup script i is subject index and k1 denote the 

taxon with non-zero RA.

For the second group, the log-likelihood contribution comes from both the discrete part and 

the continuous part. Without loss of generality, let Yk1
i , …, YkL

i  be the non-zero RA’s for the 

ith subject in this group. Under the regression model, the vector Uk1, …kL
i  follows the normal 

distribution with mean AiXiβ and variance matrix Ai∑ Ai
T. Notice that when all RA’s are 

non-zero,Yk1
i , …, YkL

i  are simply the RA’s of all the taxa and Ai becomes the K × K identity 

matrix. Thus the log-likelihood contribution from this subject is

log pk1, …, kL
i + 0.5log Ai Σ Ai

T −1 − 0.5 Uk1, …, kL
i − AiXiβ

T
Ai Σ Ai

T −1
Uk1, …, kL

i − AiXiβ + constant .

Summing together the log-likelihood contributions from all subjects, we can write the 

complete log-likelihood function as:

∑
i

log pk1, …, kL
i + ∑

i
0.5log Ai Σ Ai

T −1 − 0.5∑
i

Uk1, …, kL
i − AiXiβ

T
Ai Σ Ai

T −1
Uk1, …, kL

i − AiXiβ

+ constant .

Notice the terms involving parameters β and Σ do not depend on pk1
i , …, kL ’s, and thus they 

can be maximized separately to obtain MLEs of the parameters β and Σ by treating 

pk1
i , …, kL ’s as nuisance parameters.

Let Ωi = Ai∑ Ai
T −1

 the new objective function involving only β and ∑ can be written as:

l β, Σ = 0.5∑
i

log Ωi − 0.5∑
i

Ui − Xiβ
T Ui − Xiβ ,

where Ui = Ωi
1/2Uk1, …, kL

i  and Xi = Ωi
1/2AiXi. The parameters β and ∑ can be estimated by 

setting the partial derivatives of objective function to 0. The equation with respect to β is:

∑
i

Xi
T Ui − Xiβ = 0, (3).
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There is another much more complicated equation for Σ as well. When the dimension of Σ is 

not high (e.g., the number of taxa less than sample size), we can solve these equations to 

obtain maximum likelihood estimators for both β and Σ.

For high dimensional cases, however, it is computationally challenging to estimate 2 and the 

MLE of 2 is usually not stable [39]. Fortunately, equation (3) is an estimating equation 

because the expectation of left-hand side is equal to 0, and thus equation (3) will produce 

consistent estimator of β for any fixed (could be mis-specified) covariance matrix ∑ [29, 40]. 

For simplicity and speed, we choose 2 to be the identity matrix. This is similar to the 

independence correlation structure under a GEE setting. Furthermore, the solution of 

equation (3) minimizes the sum of square error ∑ Ui − Xiβ
T Ui − Xiβ  and therefore the 

estimator of β becomes ordinary least-square (OLS) estimator given by

β = XTX
−1

XTU,

where U = ⋮
UN

U1
 and X = ⋮

XN

X1
 Due to the high dimensionality of β, a sparse estimate is 

desired to have easy and straightforward interpretation. Regularization approaches have been 

well established for OLS estimator such as LASSO [30], adaptive LASSO [41], Elastic Net 

[42], SCAD [31] and MCP [32]. While all the regularization approaches can be used, we 

will illustrate our approach with the MCP method where the tuning parameter is selected by 

minimizing the mean square error of a 10-fold cross validation. Our simulations showed that 

MCP gave better performance in identifying the true taxa.

3 Simulation

3.1 Simulation with low dimensionality: K<N

To examine the asymptotic properties of the estimators under low dimensional settings, three 

hundred data sets were randomly generated with each data set having 1 0 0 0 subjects and 2 

0 taxa (K=19). A 20-dimensional multivariate Bernoulli distribution was used to generate 

the discrete part where the marginal Bernoulli distributions were assumed to be independent. 

All the Bernoulli distributions have the same probability of 0.5 to be zero. A single covariate 

was generated from the standard normal distribution for the regression model. All intercept 

parameters in β00 were set to be −0.1 and all coefficients parameters in β10 were set to be 

0.8. The variance matrix ∑ is set to have diagonal elements being 1 and off-diagonal 

elements being 0.3. This corresponds to an exchangeable correlation structure with 𝜌 = 0.3. 

We calculated the average bias (Ave.Bias) of point estimators. The average percent of bias 

(Ave.Percent.Bias) and the average empirical coverage probabilities (Ave.CP) of the 95% 

confidence intervals (CI) were obtained as well. Results (Table 1) show that the estimator is 

virtually unbiased and CP is reasonably close to 95%.
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3.2 Simulation with high dimensionality: K>N

We carried out simulation studies to evaluate the performance of our proposed model for 

high dimensional cases under a number of settings. First, we assessed the impact of over-

dispersion on model performance. Under the MZILN model, 100 data sets were randomly 

generated with each data set having N = 300 subjects, K + 1 = 400 taxa (e.g., genera) and Q 
= 40 covariates. There were K × (Q + 1) = 16359 regression coefficients under this setting. 

The covariates were generated using a 40-dimensional multivariate normal distribution with 

mean 0 and a polynomial decay variance matrix with the ijth element equal to 

ρX
i − j , i, j = 1, …, 40 where ρX = 0.5. We assumed that only 4 covariates were truly associated 

with the microbiome community and each of the 4 covariates was associated with 9 log-ratio 

transformed taxa. That means the 16359-dimensional p vector had only 36 non-zero 

elements which were generated from a uniform distribution over the interval −3, − 1) ∪ 1, 3
To mimic the non-zero RA proportion in real data, the probability of having non-zero RA is 

set to be 0.54 for each taxon. We set the ijth element of outcome variance matrix ∑ to be 

σ2ρ i − j , i, j = 1, …, 399, where ρ = 0.5 and σ was chosen to control the average signal-to-

noise ratio (SNR). The SNR can be translated into over-dispersion according to their inverse 

relationship [26]. A high/low SNR indicates a low/high over-dispersion and there is no over-

dispersion if SNR is infinity (ie, σ = 0). We tested three scenarios with high, moderate and 

low over-dispersion by setting SNR equal to 1.5, 4.5 and 7.5 respectively. We evaluated the 

model performance by the three measures: recall=TP/(TP+FN), precision=TP/(TP+FP) and 

F1=2*recall*precision/(recall+precision), where TP, FN and FP denote true positives, false 

negatives and false positives, respectively, and F1 is an overall measure weighting the 

precision and recall equally. We compared different regularization approaches including 

LASSO [30], adaptive LASSO [41], Elastic Net [42], SCAD [31] and MCP [32], and MCP 

gave the best model performances (See Section S2 in supplemental material). Thus, we 

present simulation results with MCP employed as the regularization approach. The results 

(Figure 1A) showed that the model performs better as over-dispersion decreases. The model 

can accommodate over-dispersion very well as all the performance measures were good 

across all the three scenarios. The high recall rates indicate that the model is powerful in 

terms of picking up the non-zero coefficients. The good precision rates indicate low false 

positive rates. The F1 score had a similar pattern as recall and precision rates.

Second, we examined the robustness of our approach with respect to misspecification of the 

outcome correlations. Three cases with weak, moderate and strong correlations were tested 

where p was set to be 0.2, 0.5 and 0.8 respectively. Data were generated with SNR=4.5 and 

other parameter settings were the same as previously described for testing the effects of 

over-dispersion. Results (Figure 1B) showed that the model is insensitive to correlation 

misspecification as the performance measures remain relatively stable for all three 

situations. The recall, precision and F1 measures are not only stable, but also having high 

values across the three cases which again marks the good model performance.

As suggested by one of the reviewers, we also examined the robustness with respect to 

misspecification of the distribution on top of the misspecification of correlation. Correctly 

specified regression equation is Ui = Xi β+ εi, where i is subject index and εi have the 

normal distribution N( 0,2). We add a perturbation to the residual so that the distribution is 
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mis-specified: Ui = Xiβ + 1 − γ εi + γσ δi − 1  where 0 ≤ γ ≤ 1 and δi is a random vector with 

each element following the chi-square distribution with 1 degrees of freedom. The parameter 

a is to adjust signal-to-noise ratio. The two random vectors εi and δi are independent. Notice 

that 03B3 quantifies the degree to which the model is mis-specified. γ = 0 corresponds to 

the correctly specified distribution, γ = 1 corresponds to a completely misspecified 

distribution, and 0 < γ < 1 corresponds to a partially mis-specified distribution. In this set of 

simulations, ρx = 0.85, ρ = 0.5, SNR=4.5, data sparsity is set at 0.54 and the non-zero 

regression coefficients were generated from a uniform distribution over the interval [−7, −4) 

∪ (4, 7]. All other settings are the same as described at the beginning of this section. The 

results (See Section S3 in the supplemental material) showed that the recall rate is fairly 

robust to this misspecification. The precision dropped a little bit, but it remains stable as γ 
increases. F1 has a similar pattern as precision.

Third, we evaluated the model performance under different data sparsity levels. Previously, 

each taxon was set to have p = 54% non-zero RA. Here we simulated two more situations: 

one with a low sparsity level (p = 0.2) and the other with a high sparsity level (p = 0.8). SNR 

and p were fixed at 4.5 and 0.5 respectively and all other parameters were the same as 

described at the beginning of this section. Results showed (Figure 1C) that our approach can 

handle all the three scenarios ranging from high data sparsity to low data sparsity. Recall 

rates were high across the three sparsity levels and, similar to earlier simulation results, good 

precision rates and F1 scores were observed as well. The high data sparsity level did not 

have a strong negative impact on the performance measures.

We performed two additional sets of simulations where we randomly chose different 

reference taxon to check the robustness of our model for different reference taxon. In these 

simulations, px = 0.85, ρ = 0.5, SNR=4.5, data sparsity is set at 0.54 and the non-zero 

regression coefficients were generated from a uniform distribution over the interval [−7, −4) 

∪ (4, 7]. All other settings are the same as described at the beginning of this section. The 

results (See Section S4 in supplemental material) showed that the recall rate had good 

robustness compared with the case with the true reference taxon (i.e., the reference taxon 

used in the data generation). Precision rate and F1 score dropped a little bit, but they 

remained stable across the two cases with randomly selected reference taxon.

3.3 Comparisons with other methods

We also compared our approach with established existing approaches: the sparse Dirichlet-

multinomial (DM) regression [25], kernel-penalized regression (KPR) [22], zero-inflated 

beta (ZIB) regression [27] and the nonparametric correlation: Spearman (SP) correlation 

test. KPR, ZIB and SP employ the false discovery rate (FDR) control for correcting multiple 

comparisons. KPR employ a significance test [43] to generate p values after penalized 

estimates are obtained. ZIB and SP test each covariate-taxon association one by one and 

selected the pairs based on the FDR control. We set FDR=0.05 in the simulation. The 

comparison was carried out under three SNR levels (1.5, 4.5, 7.5) and three data sparsity 

levels (0.54, 0.65, 0.8). The data sparsity level was set at 0.54 when studying different SNR 

levels. The SNR was set at 4.5 when studying different data sparsity levels. Other simulation 

settings are the same as described at the beginning of this section except that the value of px 
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was changed to 0.85 and the non-zero elements of the β vector were generated from a 

uniform distribution over the interval [−7, −4) ∪ (4, 7].

The results (Fig. 2) showed that our approach outperforms all other approaches by a wide 

marge in terms of recall rate and F1. The precision rate of our approach is also superior for 

most of the time except when data sparsity level is high where ZIB has higher precision rate 

(Fig. 2E). This is probably due to the smaller average model size:18.2 for ZIB. A downside 

of the ZIB approach [27] is that it does not provide effect size estimates, and consequently it 

is unknown whether an identified taxon is positively or negatively associated with a 

covariate.

4 Application in the New Hampshire Birth Cohort Study

New Kampshire Birth Cohort Study (NKBCS) is a large ongoing molecular epidemiological 

cohort study to evaluate the health impacts of environmental exposures with a focus on 

arsenic in pregnant women and their children in rural New England [44]. The study began 

enrollment of pregnant women at about 24 to 28 weeks prenatal appointments at study 

clinics and follow up both mothers and babies after birth. Madan and Keen et al. [45] studied 

the associations e f delivery mode and feeding method with infant intestinal microbiome 

composition at approximately 6 weeks of life in a subset of approximately 100 full-term 

babies from the NKBCS. Participants provided infant stool samples collected at six weeks 

postpartum. Delivery mode (cesarean vs. vaginal delivery) was abstracted from maternal 

delivery records. About 30% babies were operatively delivered by Cesarean section and the 

rest were vaginally delivered. Feeding method was determined by interval telephone 

interviews about infant diet from birth until the time of stool collection. Feeding type was 

grouped into three categories: breast fed, formula fed and mixed fed with approximately 

70%, 6 % and 25% babies in these categories respectively. DNA was extracted from the 

stool samples using the Zymo DNA extraction kit (Zymo Research). Illumina tag sequencing 

of the 16S rRNA gene V4-V5 hypervariable region was performed at the Marine Biological 

Laboratories (MBL) in Woods Hole, MA with established methods [46, 47]. Using QIIME 

version 1.9.1 (74), open reference operational taxonomic units (OTUs) were formed from 

the sequences with the uclust algorithm at 97% similarity (75). PyNAST alignment (76) with 

Greengenes core reference (77, 78) on the representative sequence for each OTU was used 

to build the OTU-table and assign taxonomy (78, 79). A phylogenetic tree was constructed 

using the FastTree method (80). 16S sequencing generated a total of 14,362,739 (mean: 

140,811, range: 27,897 – 260,579) bacterial DNA reads, of which, 8,210,402 (mean: 80,494, 

range: 12,244 −178,802) passed quality filters and formed 8612 OTUs that were assigned to 

253 bacterial genera.

We reanalyzed the data using our method to identify individual taxa that are differently 

abundant across delivery modes and feeding types. In the statistical data analysis, 12 genera 

were removed because they had no sequencing reads on those subjects who had information 

on both delivery mode and feeding type. We have K = 241 in the analysis since there were 

241 genera in the data, and thus the vector U is an 240-dimensional vector. Akkermansia 
was set as the reference genus at random. There were two covariates in the regression model: 

delivery mode and feeding type. There were 2*240=480 regression coefficients in the model. 
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We coded delivery mode as a binary independent variable (0=cesarean, 1=vaginal delivery). 

Due to the small number of formula fed babies, and because in the previous analyses we 

identified microbiome patterns in mixed fed babies were more similar to formula fed than 

exclusively breastfed babies, we lumped formula fed and mixed fed babies together such that 

feeding type was also a binary variable (0 =breast fed, 1=formula or mixed fed). Other 

covariates can be easily added to the model if necessary. MCP was used as the regularization 

approach in our analysis.

There were 28 genera selected for the association with delivery mode (Table 2), of which 17 

genera had positive associations and 11 genera had negative associations. Compared with 

Madan and Hoen et al. [45] that only found 5 genera in association with delivery mode, 

although we missed two of their genera (Pectobacterium and Rothia), our approach found 23 

more genera including Bifidobacterium, Clostridium and Streptococcus which are known to 

have important impact on children’s health [48–57]. There were 23 genera selected for 

association with feeding type (Table 3), of which 9 genera had positive associations and 14 

genera had negative associations. Madan and Hoen et al. [45] found feeding type associated 

with only one genus (Lactococcus) which was also selected by our method, and in addition, 

we identified 2 2 more genera including Bacteroides, Bifidobacterium, Blautia and 

Enterococcus that have been linked to infant’s health in the literature [48, 57–64].

As a sensitivity analysis, we randomly chosen a different reference genus (Anoxybacillus) 

and reran our approach on the real data set, the selected genera are generally consistent (See 

Table 1A in the Appendix) especially for those with stronger associations. For example, the 

top 8 genera positively associated with feeding type are the same. The top 8 genera 

negatively associated with feeding type are also the same. For the genera positively 

associated with delivery mode, almost all genera are the same except 1 (out of 16) genus 

identified by reference genus Akkermansia was not identified by reference genus 

Anoxybacillus and 3 (out of 18) genera identified by reference genus Anoxybacillus were 

not identified by reference genus Akkermansia. For genera negatively associated with 

delivery mode, the top 4 genera identified by reference genus Anoxybacillus are among the 

top 6 genera identified by reference genus Akkermansia.

As a comparison, we also analyzed the data using DM, ZIB and SP. We also applied 

Wilcoxon rank sum test which generated nearly identical results as the SP approach, thus 

Wilcoxon test results were not presented. We did not include KPR in this comparison 

because KPR is not developed for testing the associations of binary variables with 

microbiome. FDR was set at 0.05 for ZIN and SP. Consistent with the simulation results, 

ZIB and SP found less genera than MZILN as shown in Tables 2 and 3. DM selected more 

taxa than expected and had good overlap with MZILN.

5 Discussion

This paper proposed an innovative MZILN model for analyzing microbiome RA in relation 

to health risk factors. The approach is based on a two-part model with the discrete part to 

handle excessive number of zeros commonly seen in microbiome sequencing data and the 

logistic-normal part to address the compositional structure of microbiome RA data. Standard 
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regularization procedures such as LASSO, SCAD and MCP can be easily incorporated into 

this approach to obtain sparse estimations of high-dimensional regression parameters to 

avoid overfitting of the model. By borrowing the strength of estimating equations, the 

proposed approach can accommodate complex inter-taxa correlation structure induced by 

the phylogenetic hierarchical structure and the compositional data structure. Our simulation 

study has demonstrated the performance of our approach in comparison with existing 

methods. Our approach can be applied to RA of OTU, amplicon sequence variant and other 

RA data as well although the description in this paper has been focusing on analyzing taxa 

RA. R program is available upon request to implement the method. We are also working on 

building an R package.

Excessive zero data points could be due to biological reason or data collection technical 

reason. We assume a probability is associated with each data point (or combination of data 

points) being zero. All these probabilities can depend on the covariates through another set 

of regression equations. But because the probabilities are not our focus in this manuscript, 

we can treat them as nuisance parameters when the target of inference is the impact of the 

covariates on the non-zero part of the taxa (See details in Section S1 of the supplemental 

material). In essence, it is equivalent to a conditional regression where it is conditional on 

the taxa RA being non-zero. This kind of inference has been studied in the literature [24, 28] 

where FDR approach was used to deal with multiple testing whereas we employed 

regularization approaches to obviate concerns of multiple testing. Although we focus on the 

inference for the non-zero taxa, it is necessary to include the zero part in the model to 

formally describe the distribution of the data. In the future, we will develop methods that can 

handle high-dimensional parameters from both the non-zero part and zero part of microbial 

data.

Compared with the miLineage approach [24], an immediate advantage of our method is the 

flexibility to handle high-dimensional microbial taxa data (ie, number of taxa bigger than 

sample size) with regularization approaches whereas their approach has to analyze lineages 

to have a solution in such cases. Depending on what is needed in practice, our model can 

produce sparse estimates with individual 𝓁1 penalties as well as group 𝓁1 penalties. Our 

handling of high dimensionality is different than those methods that treat microbiome data 

as covariates instead of outcome variables [21, 23] where standard regularization approaches 

cannot be directly applied due to the compositional structure of the covariates. Penalized 

likelihood estimation methods have also been developed to analyze high-dimensional 

microbiome absolute abundance count data in relation to other covariates such as 

micronutrients [25, 26], but they are not as flexible as our method in terms of employing the 

penalization terms. Our estimator has a very simple form: ordinary least square (OLS) 

estimator, and thus naturally allows for all standard regularization approaches that can be 

applied for OLS estimators. A downside of our proposed approach is that we did not 

consider the zero-part in the estimation by treating the zero-part parameters as nuisance 

parameters. This may cause efficiency loss in the estimation process when microbiome data 

is extremely sparse. However, even with sparse data, the overall performance of our 

approach still is still better than other approaches according to the comparison in the 

simulation.
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Compared with many existing methods developed to analyze RA data, one of the nice 

properties of our method is that we do not impute zero sequencing counts with a pseudo 

count (eg,0.5) or impute zero proportion with an arbitrary small proportion. When dealing 

with RA data, log-ratio transformation is often used to address the compositional data 

structure. However, log-ratio transformation can only be applied to non-zero RA, and thus 

imputation for zero RA is a commonly used technique in the literature which could distort 

the data and consequently distort the estimated associations. Our method does not need to 

impute zero RA’s by constructing the MZILN distribution that can appropriately handle the 

zero-inflated data structure.

Our approach allows for a very flexible inter-taxa correlation structure. There are two main 

drivers for the inter-taxa correlation: the inherent compositional data structure and the 

hierarchical phylogenetic tree structure. Compositional data structure induces negative 

correlations between taxa because all taxa RA sum to 1 and thus one RA increase is 

accompanied by the decrease of another RA. The phylogenetic tree structure reflects 

evolutionary relationships among microbes based upon similarities and differences in their 

genetic characteristics. It does not necessarily induce negative inter-taxa correlations. 

Depending on the functional relationships ef microbes, this hierarchical tree structure could 

generate positive or negative inter-taxa correlations. The compositional data structure and 

the hierarchical phylogenetic tree structure are compounded in the data and can generate 

complicated inter-taxa correlations. Our MZILN method adequately handle the complex 

correlation structure by utilizing powerful estimation tools from estimating equations 

approaches.

Although normal distribution is assumed for the leg-ratio transformation of the data, this 

assumption can be largely relaxed in practice since estimating equation (3) does net rely on 

the normal distribution assumption as long as the mean of the left side of equation (3) is 0. 

The robustness to mis-specification of distribution was demonstrated with a simulation. This 

allows real data analysis to address a much broader range of distributions, and thus it make 

the model a very useful tool for researchers to study associations of microbiome with ether 

variables of interest.

The proposed approach needs to select a reference taxon because of the definition of the 

logistic-normal distribution. Simulation study showed that results are reasonably stable 

across randomly selected reference taxa. In the real data application, we also saw good 

consistent results across two randomly selected reference taxa although there are some 

differences. Our method is flexible in choosing a reference taxon because it does not require 

the reference taxon to have non-zero RA for all samples. Nonetheless, it warrants further 

investigation to find the optimal reference taxon for the analysis which will be one of our 

future research topics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Comparison of selected genera under two randomly selected reference genera: Akkermansia 
and Anoxybacillus. Results for Akkermansia being the reference genus is also presented in 

Section 4.

Table 1A.

Genera associated with delivery mode and feeding type under two different reference 

genera. Black and green indicate positive and negative associations respectively. Genera are 

sorted by association strength (measured by magnitude of estimated effect size) from 

strongest to weakest in each category.

Genera associated with delivery mode Genera associated with feeding type

Reference genus: Akkermansia Reference genus: Anoxybadllus Reference genus: Akkermansia Reference genus: Anoxybadllus

Bacteroides Bacteroides Eubacterium Eubacterium

Phascolarctobacterium Parabacteroides Enterococcus Enterococcus

Parabacteroides Phascolarctobacterium Oscillospira Oscillospira

Eubacterium Eubacterium Ruminococcus Lactococcus

Megamonas Collinsella Lactococcus Ruminococcus

Collinsella Bifidobacterium Blautia Blautia

Bifidobacterium Sutterella Dorea Dorea

Prevotella Prevotella Collinsella Collinsella

Ruminococcus Limnohabitans Eggerthella

Faecalibacterium Ruminococcus Haemophilus Parabacteroides

Escherichia Megamonas Staphylococcus Granulicatella

Corynebacterium Escherichia Serratia Veillonella

Lactobacillus Faecalibacterium Propioni bacterium Streptococcus

Chryseobacterium Lactobacillus Citrobacter Lactobacillus

Coprobacillus Corynebacterium Coryne bacterium

Acinetobacter Bifidobacterium Staphylococcus

Clostridium Chryseobacterium Escherichia Haemophilus

Veillonella Rothia Serratia

Propionibacterium Clostridium Peptoniphilus Propionibacteriu

Serratia Veillonella Clostridium Bifidobacterium

Amiddleobium Serratia Acinetobacter Citrobacter

Haemophilus Haemophilus Bacteroides Corynebacterium

Actinomyces Staphylococcus Pseudomonas Pseudomonas
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Genera associated with delivery mode Genera associated with feeding type

Reference genus: Akkermansia Reference genus: Anoxybadllus Reference genus: Akkermansia Reference genus: Anoxybadllus

Dorea Actinomyces Rothia

Staphylococcus Escherichia

Finegoldia Acinetobacter

Streptococcus
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Fig. 1: 
Model performance measures as a function of the SNR (in panel A), the correlation (in panel 

B) and the data sparsity level (in panel C).
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Fig 2: 
Performance comparison of our approach (MZILN) with the sparse Dirichlet-multinomial 

regression (DM), kernel-penalized regression (KPR), zero-inflated beta regression (ZIB) and 

Spearman’s correlation test (SP). FDR was set at 0.05 for KPR, ZIB and SP.
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Table 1.
Simulation results for low dimensional case.

Ave.Bias is the average bias of the estimates for the 19 parameters; Ave.Percent.Bias is the average bias as the 

percentage of the true value; Ave.CP is the average empirical CP of the 95% CI for the parameters.

Parameter True Ave.Bias Ave.Percent.Bias (%) Ave.CP (%)

β00 −0.1 0.0003 2.00 94.8

β10 0.8 0.0004 0.17 94.7

SD 1 −0.003 0.33 94.5

ρ 0.3 −0.0004 0.15 94.4
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Table 2.

Genera identified to be associated with delivery mode. Black and green indicate positive and negative 

associations respectively. Red indicates that the direction of the identified association is unknown. The genera 

are sorted by association strength (measured by magnitude of estimated effect size or p value) from strongest 

to weakest in each category.
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Table 3.

Genera identified to be associated with feeding type. Black and green indicate positive and negative 

associations respectively. Red indicates that the direction of the identified association is unknown. The genera 

are sorted by associatio n strength (measured by magnitude of estimated effect size or p value) from strongest 

to weakest in each category.
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