
ADEpedia-on-OHDSI: A Next Generation Pharmacovigilance 
Signal Detection Platform Using the OHDSI Common Data Model

Yue Yu, PhD1, Kathryn J. Ruddy, MD, MPH2, Na Hong, PhD1, Shintaro Tsuji, PhD1, Andrew 
Wen, MS1, Nilay D. Shah, PhD1,3, and Guoqian Jiang, MD, PhD1

1Department of Health Sciences Research, Mayo Clinic, Rochester, MN

2Department of Oncology, Mayo Clinic, Rochester, MN

3Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, 
Rochester, MN

Abstract

Objective—Supplementing the Spontaneous Reporting System (SRS) with Electronic Health 

Record (EHR) data for adverse drug reaction detection could augment sample size, increase 

population heterogeneity and cross-validate results for pharmacovigilance research. The difference 

in the underlying data structures and terminologies between SRS and EHR data presents 

challenges when attempting to integrate the two into a single data base. The Observational Health 

Data Sciences and Informatics (OHDSI) collaboration provides a Common Data Model (CDM) 

for organizing and standardizing EHR data to support large-scale observational studies. The 

objective of the study is to develop and evaluate an informatics platform known as ADEpedia-on-

OHDSI, where spontaneous reporting data from FDA’s Adverse Event Reporting System 

(FAERS) is converted into the OHDSI CDM format towards building a next generation 

pharmacovigilance signal detection platform.

Methods—An extraction, transformation and loading (ETL) tool was designed, developed, and 

implemented to convert FAERS data into the OHDSI CDM format. A comprehensive evaluation, 

including overall ETL evaluation, mapping quality evaluation of drug names to RxNorm, and an 

evaluation of transformation and imputation quality, was then performed to assess the mapping 

accuracy and information loss using the FAERS data collected between 2012 and 2017. Previously 

published findings related to vascular safety profile of triptans were validated using ADEpedia-on-

OHDSI in pharmacovigilance research. For the triptan-related vascular event detection, signals 

were detected by Reporting Odds Ratio (ROR) in high-level group terms (HLGT) level, high-level 

terms (HLT) level and preferred term (PT) level using the original FAERS data and CDM-based 

FAERS respectively. In addition, six standardized MedDRA queries (SMQs) related to vascular 

events were applied.

Results—A total of 4,619,362 adverse event cases were loaded into 8 tables in the OHDSI CDM. 

For drug name mapping, 93.9% records and 47.0% unique names were matched with RxNorm 
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codes. Mapping accuracy of drug names was 96% based on a manual verification of randomly 

sampled 500 unique mappings. Information loss evaluation showed that more than 93% of the data 

is loaded into the OHDSI CDM for most fields, with the exception of drug route data (66%). The 

replication study detected 5, 18, 47 and 6, 18, 50 triptan-related vascular event signals in MedDRA 

HLGT level, HLT level, and PT level for the original FAERS data and CDM-based FAERS 

respectively. The signal detection scores of six standardized MedDRA queries (SMQs) of vascular 

events in the raw data study were found to be lower than those scores in the CDM study.

Conclusion—The outcome of this work would facilitate seamless integration and combined 

analyses of both SRS and EHR data for pharmacovigilance in ADEpedia-on-OHDSI, our platform 

for next generation pharmacovigilance.
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1 Introduction

Pharmacovigilance is a science which focuses on the collection, detection, assessment, and 

prevention of adverse effects associated with usage of pharmaceutical products. The US 

Food and Drug Administration (FDA)’s Adverse Event Reporting System (FAERS), a 

spontaneous reporting system (SRS), is a valuable resource for pharmacovigilance [1]. A 

key challenge with the use of FAERS is data quality: adverse events are reported by 

manufacturers, physicians, pharmacists, nurses and consumers, which leads to data 

duplication and a lack of standardization. Further, because not all adverse drug reactions 

(ADRs) are captured in FAERS, longitudinal observational databases like Electronic Health 
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Records (EHRs) and transactional claims can be used as additional data sources for 

pharmacovigilance to address gaps in coverage[2]. Using both SRS and EHR data 

simultaneously for pharmacovigilance could augment sample size, increase population 

heterogeneity and cross-validate results [3]. The difference of the underlying data models 

and terminologies between SRS and EHRs, however, presents challenges. It is thus 

beneficial to standardize different data sources, both in terms of how the data is modeled and 

the terminologies used to express concepts. A common data model (CDM) is a logical and 

semantic data model that can be used to standardize multiple data sources into a common 

format. Additionally, as part of the CDM definition itself, standard terminologies are 

adopted for normalizing the data semantics. Large-scale analyses can then be conducted 

using the same query to each of the individual data sources when a CDM is adopted [4]. 

Normalizing data into a CDM has been extensively employed to integrate and standardize 

heterogeneous data sources for pharmacovigilance research [5, 6] and other types of clinical 

research [7, 8].

One of the popular CDMs for pharmacovigilance is the CDM developed by the 

Observational Health Data Sciences and Informatics (OHDSI) organization, a multi-

stakeholder, interdisciplinary collaboration that creates open-source solutions to facilitate the 

use of observational health data for pharmacovigilance and clinical research [9]. This CDM 

defines both a data model and a standardized vocabulary for standardizing records. The 

OHDSI CDM could be used to facilitate research on identifying and assessing associations 

between medical interventions and health-related outcomes, which could be especially 

useful in pharmacovigilance studies.

The OHDSI CDM has been adopted for pharmacovigilance and pharmacoepidemiologic 

research in multiple studies. Zhou et al. [3] transformed the UK’s Health Improvement 

Network (THIN) database into the OHDSI CDM format. Three ADR analysis methods were 

conducted to assess the practical value of the CDM for pharmacovigilance by validating 

results of several published studies [10]. The study demonstrates that despite information 

loss as a result of incomplete mapping between medical concepts and the OHDSI standard 

vocabulary, the CDM-based THIN database outperformed the original THIN database in 

both analysis and runtime performance. Following this success, the adoption of the OHDSI 

CDM was considered to be a viable method for pharmacovigilance. Overhage et al. [11] 

further supported this consideration after transforming 10 disparate US observational 

healthcare databases into the OHDSI CDM format and evaluating the suitability of the 

model and its associated standardized vocabulary for active pharmacovigilance studies. In 

order to address the structure and coding problems in epidemiologic analysis and 

comparisons with other databases, Matcho et al. [12] converted the Clinical Practice 

Research Datalink (CPRD) database into the OHDSI CDM format. After an extraction, 

transformation and load (ETL) process, 99.9% of the conditions and 89.7% of the 

medications were mapped correctly, demonstrating high utility of the OHDSI CDM. The 

study also replicated a published case-control study [13] through the use of some queries on 

nonsteroidal anti-inflammatory drugs (NSAIDs) and the risk of first-time acute myocardial 

infarction (AMI) and obtained comparable results between the raw CPRD data and the 

CDM-based CPRD with less programmatic work.
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FAERS collects suspected adverse event reports from health care professionals, patients and 

pharmaceutical manufacturers in the USA and other countries and includes information 

about patient demographics, drug, adverse event and patient outcome information. FAERS is 

a prominent SRS that has been employed widely for pharmacovigilance research [1]. As 

previously noted, integrating data from SRSs and longitudinal observational databases is a 

recent trend in active pharmacovigilance research. While the OHDSI CDM has previously 

been adopted for tandardizing the data from a variety of EHR databases, few studies have 

examined the coverage and nformation loss associated with converting FAERS data into the 

OHDSI CDM. Transforming the FAERS data into the OHDSI CDM format has the potential 

to improve the quality of adverse event reporting data, support seamless data integration 

between FAERS and EHRs, and enable the standardization and reproducibility of 

pharmacovigilance analyses using common vocabularies.

In the ADEpedia project [14, 15]. we created a scalable and standardized knowledge base of 

adverse drug events (ADEs) for pharmacovigilance. In addition, as a part of the ADEpedia 

project, Wang et al, built a standardized FAERS dataset in a previous study [16]. Similarly, 

Banda et al., [17] developed AEOLUS (Adverse Event Open Learning through Universal 

Standardization) to build a standard process for FAERS data deduplication and tooling for 

mapping drug names to RxNorm concepts and outcomes to SNOMED CT concepts. 

Although their research increases the level of standardization in FAERS and provides a tool 

for drug name and outcome standardization which can be used to facilitate FAERS 

conversion into the OHDSI CDM, FAERS has not yet been completely transformed into the 

OHDSI CDM. It is important to design an ETL tool that covers all of the following aspects: 

1) database structure mapping; 2) concept mapping for several fields such as patient 

demographic data and unit data that lack of a system for normalization into standard 

concepts; and 3) data imputation for some required fields in OHDSI CDM such as year of 

birth that could not be mapped directly from FAERS. That being said, further investigation 

on the information loss during the ETL process is required to ensure the feasibility and 

accuracy of the transformation process. We therefore propose to extend the ADEpedia 

project leveraging some of the tooling developed in AEOLUS with the objective of 

developing a next generation signal detection platform known as ADEpedia-on-OHDSI that 

would be capable of fully converting the FAERS data into the OHDSI CDM format. We also 

assessed the accuracy of the conversion and appraised the ppropriateness of the OHDSI 

CDM for the FAERS data. We aimed to standardize the FAERS data and share the platform 

with the community to promote the integrative data analyses of FAERS and EHRs for 

improving signal detection.

2 Methods

2.1. Converting the FAERS data into the OHDSI CDM format

2.1.1. FAERS Source Data—Updated quarterly, the FAERS database can be 

downloaded from the FDA website [18]. The database has two versions with different 

formats, one version is referred as the Legacy version, which covers data from January 2004 

to August 27, 2012, and the other is named as FAERS, which covers data after September 

2012. In this study, we used the FAERS version and downloaded the FAERS database with 
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reports collected from September 2012 through March 2017, distributed quarterly. Table 1 

provides the description of the tables in the FAERS database. Note that adverse events in the 

FAERS database are captured using the MedDRA Preferred Terms (PTs), where MedDRA 

is a standardized medical terminology, aiming to facilitate standardization of regulatory 

activities terms for human medical products. MedDRA concepts are organized into 5 

hierarchical levels - System Organ Classes (SOCs), High Level Group Terms (HLGTs), 

High Level Terms (HLTs), Preferred Terms (PTs) and Lowest Level Terms (LLTs). 

However, due to data duplication and the lack of standardization in drug names, data 

cleaning and drug name normalization must be conducted prior to the CDM conversion 

process.

2.1.2. The OHDSI CDM—There are 39 data tables in the OHDSI CDM version 5.3.0 

(Feb 18, 2018) for standardizing vocabularies, meta-data, clinical data, health system data, 

health economics, and derived data elements. Another critical feature of the OHDSI CDM is 

the utilization of standard concepts to describe data in its tables. Standard concepts in the 

OHDSI CDM are collected from various medical terminologies or ontologies such as 

SNOMED CT, RxNorm, and LOINC, and stored in the vocabulary tables. In this study, drug 

names in FAERS are mapped to RxNorm, a preferred standard terminology in the OHDSI 

CDM for drugs. Meanwhile, adverse vents/indications/outcomes are mapped to SNOMED 

CT, a preferred standard terminology in the OHDSI CDM for clinical concepts.

2.1.3 Data Cleaning and Drug/Outcome Mapping—The following procedures from 

AEOLUS were implemented to conduct data cleaning and Drug/Outcome Mapping in this 

study:

Impute missing values:  AEOLUS defines that a fully populated case record contains at 

least four ‘key’ demographic fields - event date, age, sex and reporter country. Records were 

aggregated by case ID, and missing fields were populated with data from other records in the 

same aggregation, if present.

De-duplicate case records:  A two-round case de-duplication was performed to eliminate 

the data redundancy problem caused by multiple case versions. First, case versions were 

aggregated by case ID: if the data in all of the other 9 chosen fields (case id, case initial/

follow-up code, event date, age, sex, reporter country, drug names, and reaction/outcomes 

preferred terms) of interest were the same, only the latest version of the case record was 

retained. Secondly, in order to solve the problem that a duplicate case version was not linked 

to the original case id by the FDA, for those case records with the same value in the four 

‘key’ demographic fields, only the latest record was retained.

Map drug names to RxNorm:  In this step, drug names in FAERS were mapped to 

RxNorm using the dictionary lookup approach. Furthermore, New Drug Application (NDA) 

drug names were mapped to the FDA Orange book of NDA ingredients first and then 

mapped to an OHDSI concept.

Map adverse events/indications/outcomes to SNOMED CT:  As SNOMED CT is the 

preferred standard vocabulary for clinical concepts in the OHDSI CDM, AEOLUS 
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implements a process to map MedDRA preferred terms (PTs) to SNOMED CT concepts. 

However, not all MedDRA PTs are mappable to SNOMED CT. Only 64% of MedDRA PTs 

in indications and 80% of PTs in reactions in FAERS can be mapped to SNOMED CT 

concepts[17]. In our implementation, we map MedDRA PTs to SNOMED CT concepts if 

applicable and keep the original MedDRA PTs for those failed to be mapped.

The implementation of AEOLUS yields a de-duplicated and standardized view of the 

FAERS database.

2.1.4 Transforming FAERS Tables into the OHDSI CDM—We developed a 

conversion tool to transform the FAERS tables into OHDSI CDM tables following OHDSI’s 

recommended ETL process. The following details the conversion process.

Define and execute structure mapping (extraction):  We defined structure mapping by 

choosing the appropriate tables/fields from the OHDSI CDM for tables/fields in the FAERS 

database. It was achieved manually through multiple rounds of discussions between two 

experts with medical informatics background. A total of 8 out of 39 OHDSI tables were 

chosen to map with 6 FAERS tables. Table 2 describes the content of the 8 OHDSI tables. 

And the details of the table level mappings are shown in Figure 1. For field level mappings, 

fields in FAERS tables and OHDSI tables were connected if they had the same 

interpretation. In addition, the case id in FAERS was mapped as a person_id in OHDSI 

PERSON table to be a record identifier that can be used as a foreign key in other tables. The 

details of the field level mapping are provided in Supplementary File 1. Note that the drug-

event or drug-indication pairs in FAERS were mapped to the FACT_RELATIONSHIP table 

in the OHDSI CDM. To simplify the use of the data for pharmacovigilance research, each 

pair was mapped to two FACT_RELATIONSHIP records. For example, if the medication 

with drug_exposure_id as 1 causes the adverse event with observationjd as 1, then there are 

two records in the FACT_RELATIONSHIP table: (Drug, 1, Observation, 1, causes) and 

(Observation, 1, Drug,1, caused by).

Transform data:  In this step, we conducted data conversion and data imputation to 

transform the FAERS data into the OHDSI CDM format.

First, after the structure mapping between FAERS tables and OHDSI CDM tables was 

created, additional data conversion is needed prior to the loading of the data into the OHDSI 

CDM format. For example, values in the age, drug dose and date fields in the FAERS tables 

need to be converted into the corresponding data type in the OHDSI CDM. We also mapped 

values in some other fields such as sex in the DEMO table, unit and route in the DRUG table 

to standard concepts in the OHDSI vocabulary manually.

Second, some of the fields in those mapped OHDSI tables are required fields, an imputation 

process was conducted as follows: 1) For the year_of_birth field in the PERSON table, the 

date of the adverse event occurred minus age was calculated to determine the year of birth of 

the patient; 2) For the condition_start_date field in the CONDITION_OCCURRENCE table, 

due to the indication date is not provided by the FAERS database, so we chose the therapy 

date to populate the CONDITION_OCCURRENCE table; 3) For the death_date field in the 
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DEATH table, if one case was reported death, the latest therapy end date would be extracted 

as the death date; 4) For the days_supply field in the DRUG_EXPOSURE table, if the 

FAERS therapy duration data was valid, we converted the duration time into days. If 

duration data was null, we used therapy end time minus start time to compute the number of 

days of supply for the drug in question. In addition, if supply time was 0 days for a record 

after computation, to the supply time was set to 1 day.

Load data:  After data transformation, 8 OHDSI tables were created to store the normalized 

data in a PostgreSQL database. Users can download a virtual machine containing a full 

OHDSI SQL database and related tools at OHDSI’s website (http://www.ohdsi.org/web/

wiki/doku.php?id=documentation:software:ohdsi-in-a-box). Note that although we had 

normalized and imputed data for the required fields in OHDSI table, many required fields of 

our 8 tables contained null values due to failed concept mapping or there being no equivalent 

value in the FAERS tables to use as a source. In these instances, we used the default value or 

“Not Available” (concept_id = 0) recommended by OHDSI. For example, as the gender field 

is required in the OHDSI PERSON table, we used the concept id “0” as the value for the 

gender field for those records with a missing value. After data loading was completed, we 

also added a description of the source FAERS database into the OHDSI “CDM_SOURCE” 

table.

2.2. Evaluation Experiments

We conducted an experiment to evaluate the appropriateness of the OHDSI CDM for 

representing the FAERS data and validate the data mapping and conversion process. In 

addition, we also evaluated the utility of the CDM-based FAERS through a replication study.

2.2.1. Evaluation of the ETL Process—We assessed the ETL process by computing 

the overall statistics before and after the ETL process and investigating field level mapping 

quality. We also assessed the completeness of the mapping of drug names into RxNorm 

concepts by providing descriptive statistics to describe the overall mapping results and 

summarizing the characteristics of the unmatched drug names. To assess the accuracy of the 

drug name mappings, we randomly sampled 500 unique mappings and two annotators 

manually verified the correctness of the mapping. Kappa coefficient [19] was calculated to 

assess the inter-annotator agreement. We also calculated the data transformation rate 

between the original FAERS and the CDM-based FAERS to assess the information loss 

during the ETL process.

2.2.2. Utility Evaluation through a Replication Study—We replicated the study of 

Roberto et al.[20] using our CDM-based FAERS to assess its utility. In Roberto’s study, 

legacy FAERS data from 2004 to 2010 was used to determine the vascular safety profile of 

triptans. We replicated this analysis using the FAERS data collected after 2012 and 

compared the results obtained using the original FAERS and the CDM-based FAERS. We 

used both the triptans’ brand name/unique concept ID and ingredient name/unique concept 

ID to search the triptan-related event reports.
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Specifically, for ADR signal detection, a disproportional algorithm was used to detect the 

triptan related signals. Reporting odds ratio (ROR) and relevant 95% confidence intervals 

(95% Cl) were calculated to measure the ratio of the odds of case/non-case [21]. Figure 2 

shows the calculation method of ROR. In the contingency table, one case is defined as a 

triptan-related adverse report, which may have more than one vascular event, whereas non-

cases were all reports of vascular events without the use of triptans. Seven triptan drugs and 

1,689 PTs belonging to the MedDRA SOCs ‘Cardiac disorder’ or ‘Vascular disorders’ were 

applied to retrieve triptan related vascular event reports. When the case number > 3 and the 

lower limit of 95% Cl of ROR > 1, a triptan-related vascular event was considered to be a 

positive ADR signal.

In order to get a comprehensive signal detection result, the detection process was performed 

in three different hierarchical levels. For the primary analysis, signals were detected using 

high-level group terms (HLGT) and high-level terms (HLT) from MedDRA to increase the 

sensitivity of detection. The secondary analysis, which is the PT level adverse drug reaction 

signal detection aiming to enhance the specificity of analysis [22], was then performed in 

PTs belonging to those HLTs which were discovered as positive signals in the primary 

analysis. Finally, six standardized MedDRA queries (SMQs) related to vascular events were 

applied. Those SMQs are a group of MedDRA PTs describing the same vascular medical 

condition, which are validated and pre-determined by MedDRA.

3 Results

3.1. ETL Performance

3.1.1. Overall ETL Evaluation—After data extraction, transformation and loading, data 

in FAERS was converted into 8 OHDSI CDM tables. A total of 4,619,362 adverse event 

cases were transformed into the OHDSI CDM format. The average age of patients was 55.2 

years. Of all the patients, 2,577,989 (55.8%) were female, 1,603,982 (34.7%) were male and 

437,391(9.5%) were Unknown/Not Specified.

Table 3 presents a comparison of the generated statistics for records from the original 

FAERS dataset and the CDM-based FAERS database. Among 8 CDM-based FAERS tables, 

the PERSON table, DRUG_EXPOSURE table and CONDITION_OCCURRENCE table 

have the same amount of data as the original tables (DEMO, DRUG, INDI) in FAERS. In 

the OHDSI CDM version of FAERS, adverse event information and patient outcomes were 

transformed into the OBSERVATION table. Thus, records in the OBSERVATION table can 

be considered to be equivalent to the sum of the REAC table and the OUTC table in FAERS. 

In the FACT_RELATIONSHIP table, it should be noted that all relationships are directional, 

and as such each relationship record will be represented twice symmetrically. In regards to 

the four relationship types in FACT_RELATIONSHIP table, 61,739,303 drug-adverse event 

combinationsv were stored twice for relationship type “Causes” and “Caused by” 

symmetrically, 9,593,169 drug-indication combinations were also saved twice for 

relationship type “May treat” and “May be treated by” respectively.

Figure 3 shows an overview of the mapping quality of FAERS into the OHDSI CDM format 

at the field level. For most of OHDSI CDM tables, the primary key is automatically 
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generated by the system, except for the PERSON table. For the other fields, we perform the 

mapping, calculation and transformation process to ensure that the data in the field is 

completely imported. The remaining fields in the OHDSI CDM were left empty if the 

FAERS data set did not provide any associated information. Note that there are two required 

fields, race_concept_id and ethnicity_concept_id in the PERSON table which were not 

available to be mapped from FAERS directly. So, in order to comply with OHDSI 

specifications, the recommended blank value with the concept id “0” was used.

3.1.2. Mapping Quality of Drug Names to RxNorm—Drug name mapping results 

were compared across the original FAERS data and CDM-based FAERS to evaluate the drug 

name mapping quality. Of the 15,438,807 medication records in the OHDSI 

DRUG_EXPOSURE table, 14,502,476 (93.94%) records were mapped to RxNorm codes. 

Of the 340,249 unique drug names in the FAERS source data, 159,995(47.02%) unique 

names are matched into 10,897 RxNorm codes.

We investigated the results of drug name mappings. Table 4 shows the comparison of the 

top10 drug names in the original FAERS data and CDM-based FAERS data. Amongst the 

top 10 drug names before and after the mapping normalization was done, 6 drug names 

(Humira, Enbrel, Aspirin, Xarelto, Revlimid and Xyrem) appeared in both the top 10 drug 

names before mapping and the top 10 drug names after mapping. We also found an increase 

in the number of records for those 6 drugs. These results indicate that the mapping leads to 

better concept-level integration of records. The integration may be associated with the 

standardization of uppercase and lowercase letters (for example, source drug name 

“ENBREL” and “Enbrel” are both mapped to concept “Enbrel (RxCUl = 216891)” in 

RxNorm), normalization of special characters (for example, source drug name “ASPIRIN.” 

Is mapped to the concept “Aspirin (RxCUl = 1191)” in RxNorm) and the concept-level 

integration of differing input formats for the same drugs (for example, source drug name 

“HUMIRA” and “HUMIRA 40 MG” are both matched to concept “Humira (RxCUl = 

353484)” in RxNorm).

For the manual verification of 500 unique mappings, the mapping accuracy of the two 

annotators was determined to be 96.8% and 96.6% respectively with the observed kappa 

value of 0.91, indicating high mapping performance and “almost perfect agreement” [23]. 

The following summarizes the mapping errors : 1) For multi-ingredient medicines, all the 

active ingredients may not have been completely identified, e.g., “Lisinopril HCTZ” mapped 

to only “Lisinopril”; 2) Active ingredients of medicines were not exactly mapped, e.g. 

“MAGNESIUM SULPHATE” matched to “Magnesium”; 3) Non-specific drug names in 

original FAERS database, e.g., “ANTIDEPRESSANTS” matched to “Clonazepam”; 4) 

Errors caused by some medical devices or medications not collected by RxNorm, e.g. 

“PARAGARD T 380A” matched to “Copper”.

A total of 936,331 (6.06%) of records and 180,254 (52.98%) unique drug name terms in the 

original FAERS data were not mapped with RxNorm codes, of which 164,171(91.08%) 

unique drug names have an occurrence of less than 5 records. The top 10 unmapped drug 

names are shown in Table 5. The following reasons may result in a mapping failure: 1) The 

drug name was too complicated to match, such as “DIANEAL LOW CALCIUM 
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PERITONEAL DIALYSIS SOLUTION WITH DEXTROSE”; 2) Some drug names were 

not included in RxNorm due to it is not being a US drug trade name, such as “DUODOPA” 

and “LOXONIN”; 3) Drug names that were not specific enough caused mapping failures, 

such as “ANTIHYPERTENSIVES”.

3.1.3. Transforming and Imputing Quality of other Additional Health Data—13 

fields in the CDM-based FAERS were involved in data type conversion or concept mapping 

for the ETL process. The information loss of those fields is shown in Figure 4. Among all 

the 13 fields, we observed a total of 10 fields with very low information loss. Among them, 

gender_concept_id, condition_concept_id, lot_number, observation_concept_id and 

measurement_date were completely populated with the data from FAERS and for the other 

five fields, drug_exposure_start_date, drug_exposure_end_date, observation_date, 

value_as_number and unit_concept_id, more than 99% of the fields were transformed and 

loaded into the CDM-based FAERS. The following highlights the underlying reasons why 

those 10 fields have such a low information loss: 1) For condition concept and observation 

concept, all the terms of ADE or indication in the original FAERS is recorded as MedDRA 

PTs. And as we mentioned in the method section, those concepts were loaded into the 

OHDSI CDM either by SNOMED CT concepts or MedDRA PTs, so there is no information 

loss during the ETL process. 2) Only a few date values are not in a standard date format, 

resulting in a high loading rate of data for those 4 date fields. 3) For the gender and patient’s 

weight unit, standard terms were used as data input. 4) For lot number and weight value, 

only data types were changed during the data transformation.

For each of the remaining 3 fields, drug_concept_id, locationjd, and route_concept_id, the 

information loss is greater than 6%. The information loss of the drug_concept_id field has 

been discussed in the section above. For the route_concept_id field, the information loss rate 

is about 34%, the highest among all the fields. That is primarily caused by the lack of 

standardization for route in FAERS. The information loss in location_id is 6.75%, primarily 

due to the error input in the original FAERS data since the country name was standardized 

using the ISO 3166-1 standard in the ETL process.

We also analyzed the information loss (shown as table 6) for those 4 fields loaded with the 

imputation data: 1) For the year_of_birth field, only when the data of age, age unit or event 

date field are completely available in the same raw patient’s record, the birth year can be 

calculated. Of the 2,751,210 records with age information in the original FAERS database, 

only 1,990,826 (72.36%) was transformed into the CDM-based FAERS. 2) For 

condition_start_date, we imputed 99.63% of the values based on the therapy date from the 

original FAERS database. 3) For death_date, we imputed 100% of the death cases using the 

last therapy end date. 4) For days_supply, we imputed 2,287,681 records. Note that only 

23,977 records in the original FAERS have the supply information.

3.2 Result of the Replication Study

We investigated the triptan-related vascular events in the original FAERS and CDM-based 

FAERS, respectively. We retrieved 1,101,856 reports containing at least one PT from the 

‘Cardiac disorder’ or ‘Vascular disorders’ SOCs. Table 7 lists the retrieval results of triptan-
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related reports. The number of triptan-related reports is 24,251 and 24,499 using the original 

FAERS and the CDM-based FAERS, respectively. We noticed after the ETL process, more 

triptan-related reports were retrieved. Of all the specific triptan drugs, sumatriptan had the 

most adverse event reports in our studies (the original FAERS: 16,521; CDM-based FAERS: 

16,767).

We compared the numbers of positive signals detected by ROR to three studies in HLGT, 

HLT, PT levels, and their overlap between CDM-based FAERS and original FAERS study. 

Interestingly, we found slightly more ADRs in CDM-based FAERS than those in the original 

FAERS study in both HLGT level (6 vs 5) and PT level (50 vs 47) with the same number of 

ADRs at the HLT level (18). This finding indicated that the CDM-based platform does have 

an impact on the signal detection results.

Figure 5 shows the signal detection results of SMQ analysis. 2 queries detected a positive 

ADR in both our original FAERS data study (Central nervous system hemorrhages and 

cerebral conditions: 1.77, 1.00-3.13; Cerebrovascular disorders: 9.44, 7.41-12.02) and 

CDM-based FAERS study (Central nervous system hemorrhages and cerebral conditions: 

1.92, 1.11-3.32; Cerebrovascular disorders: 9.58, 7.53-12.18). The signal detection scores of 

all the six queries in the original FAERS data study were a bit lower than those scores in the 

CDM-based FAERS study because the CDM data study could collect more triptan-related 

event cases.

4 Discussion

Our evaluation of the ETL process demonstrated the feasibility of converting the FAERS 

database to the OHDSI CDM format. Even with some information loss during the ETL 

process, the process was evaluated to be reasonably accurate and meaningful. The study 

provides a way to facilitate the effective integration of the spontaneous reporting data with 

the EHR data through the adoption of the OHDSI CDM. There are significant advantages 

when adopting the OHDSI CDM for FAERS: most significantly, it will improve the 

precision of ADR signal detection through standardization. Furthermore, the ability to 

seamlessly integrate EHR and other forms of longitudinal data make it possible to further 

discover and understand additional knowledge about adverse events such as causes, 

confounders and possible corrective actions. The adoption also allows a series of open-

source applications to assist data analysis such as ATLAS [24]. In addition, we also released 

the ETL process open source to the broad community so other teams can adopt the ETL 

process to save time and facilitate the usage of CDM.

For drug mapping, we used the matching method as developed by Banda, et al [17], and we 

achieved similar information loss to drug exposure in our research (6.06%) as in Banda’s 

research (7%). This is regarded as an acceptable result when also compared with 7% in 

Zhou’s research [3] and 10.3% in Matcho’s research [12]. In order to identify in further 

detail the reason why those drug names could not be matched or mismatched with the 

OHDSI standard concepts, we conducted a manual review for the drug names which were 

not matched or mismatched and concluded the reasons as the following: 1) Some drug 

names, such as those with a brand name registered outside the US, medical devices, or new 
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drugs that were not collected by RxNorm, could not be mapped to OHDSI concepts 

correctly, although Banda’s study linked the New Drug Application (NDA) drug names to 

the FDA orange book of NDA ingredients; 2) For some drug combinations or complicated 

drug names, active ingredients may not have been accurately identified due to the match 

rules used in Banda’s study; 3) Some drug names were not clearly recorded in FAERS.

In order to improve the accuracy of drug name mappings, we plan to investigate the 

following areas in future work. First, there are a number of standardized vocabularies (e.g., 

WHO Anatomical Therapeutic Chemical Classification, ATC) which collect drug concepts 

such as non-US drug brand names. These vocabularies are also loaded into the OHDSI 

CDM. Although these vocabularies are not preferred for the OHDSI CDM and not 

recommended to annotate drug exposure data, drug name mapping results may be improved 

by other vocabularies as a supplement to RxNorm. The OHDSI CDM provides semantic 

relationships between concepts from different vocabularies, which could be used to create 

these RxNorm extensions. Secondly, compared with the OHDSI CDM version we used, the 

version for OHDSI will update and comes with the newest RxNorm version, which covers 

more drug names, especially for new drugs. We thus consider updating the CDM version 

used by the database in the future, which may improve the drug name mapping accuracy. 

Finally, we can conduct a manual mapping using the open source OHDSI Usagi application 

[25] for those drug names that remain unmapped.

Another problem regarding drug name mapping is version updates of RxNorm. RxNorm 

releases monthly updates adding new drugs and retiring inactive or deprecated drugs. Thus, 

if we do not update the drug name mapping with the latest version of the RxNorm in a 

timely manner, some bias for pharmacovigilance studies which involve detecting adverse 

events in drug class level may occur, especially in the case of inactive drug involvement. So, 

in future work, we will develop tools for our ADEpedia-on-OHDSI platform to accelerate 

the drug name mapping update process.

Due to our focus on developing an ETL tool for the current FAERS database, we did not use 

the same collection period as in Banda’s research to evaluate the drug mapping results. 

Although our information loss rate of drug exposure was comparable to Banda’s, some 

reasons behind mismatched drug names in the legacy AERS database may remain 

undiscovered. In our future research, we will extend our ETL tool to meet the transformation 

request for mapping the legacy AERS database to the OHDSI CDM format.

Another issue for mapping is observation and condition concepts. While the preferred 

vocabulary for observation/condition concept representation is SNOMED CT in the OHDSI 

CDM, all the indication names and ADE names are recorded by MedDRA PTs in FAERS, 

which could not be mapped to SNOMED CT concepts completely. In order to reduce 

information loss, we conducted a compromise process in which loaded the MedDRA code 

directly for those terms that could not match with SNOMED CT concepts. In a future study, 

we will extend the existing mapping between MedDRA and SNOMED CT in UMLS 

(according to Bodenreider’s study, about 58% of the PTs in MedDRA could be mapped into 

SNOMED CT concepts through the UMLS [26].) to improve the match rate. A 

comprehensive semantic analysis of non-mapped MedDRA PTs will be conducted to 
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facilitate the mapping. Post-coordination and natural language processing methods may also 

be used to improve the concept mapping between MedDRA and SNOMED CT.

The information loss of other CDM-based FAERS tables was also assessed in our study. We 

believe that information loss does not hugely affect the results of pharmacovigilance studies 

because most information loss is caused by the error or ambiguous input in the original 

FAERS database itself. On the other hand, for some required fields, we performed a series of 

data calculations and imputations. Although some of those imputed data may not accurate, 

this process ensures the integrity of the data and improves the quality of data. We will design 

a more rigorous validation to evaluate the impact of computation algorithms in future 

research.

Our comparison of the original FAERS and the CDM-based FAERS in the vascular safety 

profiling of triptans shows more ADRs detected using the CDM-based FAERS, illustrating 

the utility of the CDM-based FAERS for ADR detection. We examined the difference of the 

number of triptan-related reports and the number of ADRs detected. The number of triptan-

related reports captured in the CDM-based FAERS was 1.02% higher than that found in the 

original FAERS. Through an investigation of the drug source names of retrieval results, we 

found that the retrieval results of CDM-based FAERS were more comprehensive and 

accurate because of the use of concept mapping and normalization. This validates the value 

of drug name standardization. In addition, there are some other advantages of drug name 

standardization: 1) a more accurate data retrieval result could improve the signal detection 

precision. 2) we can choose the search concepts directly using the RxNorm codes, greatly 

reducing the design time and complexity of retrieval query, and increasing the portability of 

the query. 3) executing SQL-based queries in CDM-based FAERS will consume far less 

time than running a regular expression query in the original FAERS. For instance, it took 

less than a minute to execute a query in CDM-based FAERS as opposed to about 7 minutes 

in the original FAERS for the same sumatriptan-related event report retrieving task. 

Furthermore, there is only a slight difference for the ROR and 95% CI value of the signal 

detection between the original FAERS and the CDM-based FAERS. This indicates that 

although the drug mapping algorithm could be further improved, the transformation does not 

excessively impact our signal detection result. In addition, the ROR of signals detected by 

the CDM-based FAERS was greater than the ROR of signals detected by the original 

FAERS, which suggests that the sensitivity of CDM-based FAERS detection was better than 

that of the original FAERS detection.

We also compared the signal detection results of the original FAERS study vs. CDM-based 

FAERS study to further validate whether CDM-based FAERS was a good approximation of 

the original FAERS data. More ADR signals and higher ROR value were detected in the 

CDM-based FAERS study than that in the original FAERS study at different adverse event 

levels, which indicates the CDM-based approach is more powerful in the ADR signal 

detection study. In future research, we will leverage advanced technologies, such as text 

mining EHRs, to verify all the detected signals and further validate the reliability of the 

CDM-based FAERS.

Yu et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As previously mentioned, in this study, we aimed to build a platform which contains both 

standardized SRS data and EHR data to facilitate next generation pharmacovigilance signal 

detection. As such, we are actively working on identifying use cases (e.g., signal detection of 

the immune-related adverse events) [27] that integrate both EHR data and FAERS data for 

improved signal detection. In future work, we will develop new methods to conduct 

comprehensive pharmacovigilance signal detection utilizing the ADEpedia-on-OHDSI 

platform.

Conclusion

In this study, we extracted, transformed and loaded the FAERS spontaneous reporting data 

into an integrated data repository based on the OHDSI CDM in our ADEpedia-on-OHDSI 

platform to support the needs for the next generation signal detection. The outcome of the 

work would facilitate seamless integration and combined analyses of multiple datasets in our 

platform, particularly through leveraging EHR data, so as to improve signal detection. The 

open-source conversion tool is available at https://github.com/adepedia/adepedia-on-ohdsi.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlight

• A next generation pharmacovigilance platform using the OHDSI CDM is 

designed

• An ETL tool for converting FAERS to the OHDSI CDM is developed

• A comprehensive ETL performance evaluation for CDM-based FAERS is 

conducted

• A replication study is conducted to validate the utility of CDM-based FAERS
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Figure 1. 
Table level mapping between FAERS and the OHDSI CDM
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Figure 2. 
Calculation method of ROR.
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Figure 3. 
Database heat map of mapping quality. * represents the required fields.
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Figure 4. 
Information loss of ADEpedia-on-OHDSI ETL process.
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Figure 5. 
The associations between triptans and 6 vascular related SMQs in the analysis of two 

studies. Abbreviations: ROR: Reporting Odds Ratio; 95% CI: 95% Confidence interval.
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Table 1.

FAERS source table description

Table name Description

DEMO Includes patient demographic and administrative information

DRUG Includes drug or biologic information

REAC Includes adverse event coded by MedDRA terms

OUTC Includes patient outcomes

RPSR Includes report sources

THER Includes drug therapy start and end dates

INDI Includes indication for drugs or diagnosis coded by MedDRA terms

Abbreviations: MedDRA, Medical Dictionary for Regulatory Activities
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Table 2.

OHDSI CDM table description

OHDSI CDM Table Name OHDSI CDM Table Description

LOCATION captures location or address information of patients and health institutions

PERSON contains patient demographic information

CONDITION_OCCURRENCE records disease or medical conditions of patients

DEATH contains cause of death and time of death for relevant patients

DRUG_EXPOSURE captures records regarding patient drug exposures

OBSERVATION captures clinical facts about a patient that cannot be represented by other tables

FACT_RELATIONSHIP contains relationships between facts from different OHDSI CDM tables

MEASUREMENT contains the information of examination or testing
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Table 3.

Basic Statistics of OHDSI CDM Tables after ETL Process.

FAERS Table name Records OMOP CDM Table name Records

DEMO 4,619,362 PERSON 4,619,362

DRUG 15,438,807 DRUG_EXPOSURE 15,438,807

INDI 9,593,169 CONDITION_OCCURRENCE 9,593,169

REAC 13,142,011 OBSERVATION 16,303,802

OUTC 3,161,791 FACT_RELATIONSHIP 142,664,944

THER 5,863,850 DEATH 440,562

RPSR 372,284 MEASUREMENT 977,450

LOCATION 210
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Table 4

Top 10 drug names before and after mapping

No. Top 10 unique drug names before mapping Records No. Top 10 RxNorm concepts after mapping (RxCUl) Records

1 HUMIRA 297,057 1 Humira (353484) 297,990

2 ENBREL 174,208 2 Enbrel (216891) 270,576

3 XARELTO 160,440 3 Aspirin (1191) 210,856

4 REVLIMID 157,543 4 Xarelto (1114199) 161,414

5 XYREM 100,265 5 Revlimid (337535) 157,754

6 Enbrel 96,118 6 Prednisone (8640) 121,733

7 DIANEAL LOW CALCIUM PERITONEAL
DIALYSIS SOLUTION WITH DEXTROSE 93,291 7 Metformin (6809) 110,579

8 AVONEX 91,681 8 Xyrem (353098) 100,270

9 TYSABRI 87,050 9 Methotrexate (6851) 99,311

10 ASPIRIN. 87,007 10 Lyrica (593441) 98,368

Abbreviations: RxCUI, RxNorm Concept Unique Identifier
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Table 5

Top 10 unmatched drug name terms in FAERS

No. Drug names in FAERS Records

1 DIANEAL LOW CALCIUM PERITONEAL DIALYSIS SOLUTION WITH DEXTROSE 93,291

2 HUMIRA 40 MG/0.8 ML PEN 19,210

3 DUODOPA 6,900

4 SERETIDE 6,577

5 HUMIRA 40 MG/ 0.8 ML PRE-FILLED SYRINGE 5,654

6 NOVORAPID 5,488

7 LOXONIN 3,788

8 ANORO ELLIPTA 3,525

9 DIANEAL PD2 3,290

10 ADDERALL XR 3,021
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Table 6

Information loss of imputation fields

Field name Data No. before ETL Data No. after ETL Transformation Rate

year_of_birth 2,751,210 1,990,826 72.36%

condition_start_date 4,036,046 4,021,248 99.63%

death_date 136,538 136,538 100%

days_supply 23,977 2,287,681 NA
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Table 7.

Total triptan-related reports and number of cases with vascular events based on three studies.

Active
ingredient

The original FAERS CDM-based FAERS

Total reports Cases Total reports Cases

Sumatriptan 16,521 3,869 16,767 3,981

Eletriptan 2,549 835 2,552 838

Zolmitriptan 1,596 643 1,615 649

Rizatriptan 3,696 1,227 3,645 1,203

Naratriptan 557 190 560 193

Frovatriptan 398 136 400 138

Almotriptan 303 104 346 122

Total 24,251 6,516 24,499 6,622

Cases: number of reports of triptan-related vascular events
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