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Abstract

Studies of the genetics of psychiatric disorders has become one of the most exciting and fast-

moving areas in human genetics. A decade ago, there were few reproducible findings and now 

there are hundreds. In this review, we focus on the findings that have illuminated the genetic 

architecture of psychiatric disorders and the challenges of using these findings to inform our 

understanding of pathophysiology. The evidence is now overwhelming that psychiatric disorders 

are “polygenic”, that many genetic loci contribute to risk. With the exception of a subset of those 

with ASD, few individuals with a psychiatric disorder have a single, deterministic genetic cause; 

rather, developing a psychiatric disorder is influenced by hundreds of different genetic variants, 

consistent with a polygenic model. As progressively larger studies have uncovered more about 

their genetic architecture, the need to elucidate additional architectures has become clear. Even if 

we were to have complete knowledge of the genetic architecture of a psychiatric disorder, full 

understanding requires deep knowledge of the functional genomic architecture – the implicated 

loci impact regulatory processes that influence gene expression and the functional coordination of 

genes that control biological processes. Following from this is cellular architecture: of all brain 

regions, cell types, and developmental stages, where and when are the functional architectures 

operative? Given that the genetic architectures of different psychiatric disorders often strongly 

overlap, we are challenged to re-evaluate and refine the diagnostic architectures of psychiatric 

disorders using fundamental genetic and neurobiological data.
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Introduction

Psychiatric disorders are the most enigmatic maladies in medicine. Although their existence 

has been known for millennia (Porter, 2002) and their impact on the public health well-

documented, remarkably little is known about their causal risk factors and fundamental 

neurobiology despite a considerable corpus of research. In the past century, many have 

applied the best tools then available but, until recently, without reproducible successes. The 

lack of success using approaches that were fruitful elsewhere is attributable an inadequate 

toolkit and the intrinsic complexity of the brain. Psychiatric disorders impact higher cortical 

functions (mood, behavior, perception, and cognition), which are far more difficult to 

localize, quantify, and model than more basic neurological functions. In addition, psychiatric 

disorders are defined based on self-report and observation of cognition and behavior rather 

than on direct measurement of an etiological factor, making them syndromes rather than 

single diseases. These features strongly suggest diverse and complex etiologies.

Despite these challenges, there has been remarkable progress in the past decade in 

elucidating the genetic underpinnings of psychiatric disorders with numerous findings that 

meet modern criteria for significance and reproducibility (Geschwind and Flint, 2015; 

Sullivan et al., 2018). In this review, we focus on the findings that have illuminated the 

genetic architecture of psychiatric disorders and the challenges of using these findings to 

inform our understanding of pathophysiology. Genetic architecture refers to the overall 

composition of the implicated risk variants in the population – the total number of variants 

and, for each, the frequencies in those afflicted and in the general population, and the degree 

of risk conferred (Timpson et al., 2018). The concept of genetic architecture is applicable to 

any trait (e.g., Huntington’s disease is caused by a rare, deterministic variant). Knowledge of 

genetic architecture can help optimize gene discovery (e.g., study design, ascertainment, and 

choice of genotyping technology) (Timpson et al., 2018; Visscher et al., 2012). Genetic 

architecture can inform prospects for clinical utility: although many deterministic 

monogenetic conditions are predicted or diagnosed using genetic testing, application to most 

psychiatric disorders traverses far more murky, probabilistic terrain (Timpson et al., 2018).

The evidence is now overwhelming that psychiatric disorders have a “polygenic” basis – that 

many genetic loci mostly with small effect sizes contribute to risk (Visscher et al., 2017). In 

this respect, psychiatric disorders are broadly similar to other common biomedical diseases. 

The polygenic concept allows for the fact that some individuals can harbor genetic variants 

of far larger effects. This is particularly salient for ASD where a large effect variant is 

present in ~15% of cases along with smaller proportions of individuals with TS, ADHD, and 

SCZ (Iossifov et al., 2012; Sanders et al., 2012; Satterstrom et al., 2018c; Singh et al., 2016; 

Willsey et al., 2017). A polygenic model can include weak and strong genetic effects as well 

as non-genetic influences (e.g., the impact of environmental exposures, life events (e.g., 

chronic fear), and the impact of individual choices). A key empirical finding is that genetic 

risk can be non-specific and shared to varying extents across many adult and childhood onset 

psychiatric disorders (Brainstorm Consortium, 2018; Cross-Disorder Group of the 

Psychiatric Genomics Consortium, 2013b; Schork et al., In press).
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As progressively larger studies of psychiatric disorders have uncovered increasingly more 

about their genetic architecture, the need to elucidate additional “architectures” has become 

clear (Figure 1). Even if we were to have complete knowledge of the genetic architecture of 

a psychiatric disorder, full understanding requires deep knowledge of the functional genomic 
architecture – how these loci interact in the nucleus (often across large distances), how gene 

and isoform expression are coordinated for many genes, and how these affect networks. 

Second, following from this, is cellular architecture: of all brain regions, cell types, and 

developmental stages, where and when are the functional architectures operative and what 

circuits do they influence? Finally, the data used to diagnose psychiatric disorders consist of 

signs and symptoms determined during patient-clinician interactions that infrequently have 

recourse to objective biomarkers to support or refute a diagnosis. Furthermore, the 

internationally accepted definitions of psychiatric disorders were crafted by experts and 

influenced by traditions dating back a century or more. Given that the genetic architectures 

of different psychiatric disorders can strongly overlap, we are challenged to re-evaluate and 

refine the diagnostic architectures of psychiatric disorders with respect to fundamental 

genetic and neurobiological data.

Psychiatric disorders and genetics

Definitions.

Many psychiatric disorders are internationally recognized (World Health Organization, 

1993). In this review, we focus on the ten psychiatric disorders that have been the subject of 

the greatest scrutiny by geneticists, and all are the focus of working groups in the Psychiatric 

Genomics Consortium (PGC) (Sullivan et al., 2018). We do not cover dementia and 

intellectual disability which are often considered neurological conditions with prominent 

psychiatric manifestations, but recognize the inherent arbitrariness of following this 

conventional delineation. Table 1 contains brief definitions of each condition along with 

lifetime prevalence rates and twin-heritabilities. The essence of each disorder is a persistent, 

pervasive, and pathological pattern of abnormal mood (as in mania or major depression), 

perception (e.g., auditory hallucinations in SCZ or bizarrely distorted body image in AN), 

behavior (e.g., repetitive hand-washing in OCD or injurious ethanol consumption in ALC), 

or higher-level cognition (e.g., delusions in SCZ). People with serious psychiatric disorders 

are often acutely aware that their symptoms and behaviors “don’t make sense,” and have 

made exhaustive attempts to ameliorate their illness.

Each of these disorders has an explicit operational definition based on symptoms (reported 

by a person or an informant) and signs (observed by a clinician). Many diagnostic features 

from laboratory testing, brain imaging, or pathology have been evaluated but few have 

acceptable positive and negative predictive values to support routine clinical use. One 

exception is the measurement of intelligence which defines intellectual disability and which 

is an important clinical stratifier for many psychiatric disorders (particularly ADHD and 

ASD). Thus, these conditions are “disorders” or syndromes not “diseases” due to their 

descriptive/syndromic definitions without objective defining features based on etiology. All 

are idiopathic with rare exceptions (single-gene disorders with prominent ASD features like 

MECP2 and Rett Syndrome).
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Impact.

Psychiatric disorders are among the conditions with the greatest impacts (Global Burden of 

Disease Collaborative Network, 2017), ranking fifth globally in causes of disability (Figure 

2). These disorders are associated with considerable morbidity and increased rates of 

mortality due to suicide and ill health (e.g., 10–15 year reduction in life expectancy for 

SCZ), and cost (due to health care, disability, and lost income). The human impact of a 

severe mental illness on the lives of the people afflicted and their families and communities 

is not readily condensed into a statistic but is nonetheless often profound. In addition, 

empirical studies have demonstrated the effectiveness of social, psychological, and/or 

pharmacological therapies for all of these disorders. These are treatable conditions and 

treatment often leads to marked improvements in symptoms and quality of life. However, 

particularly for severe psychiatric disorders, current therapies may only mitigate symptoms. 

Therapeutic failure is common.

Commonalities.

Four clinical features of psychiatric disorders are notable. First, there is considerable clinical 

variability. For example, individuals with ADHD or OCD can have mild, transient symptoms 

in childhood or lifelong, incapacitating symptoms. People with ASD can have profound 

impairment requiring lifelong care, as well as high academic/occupational achievement 

(despite impairments in social relations and behavioral flexibility). Features of many 

psychiatric disorders are on a continuum: depressed mood is a normal human experience, 

but becomes MDD if present continuously for weeks or months. Second, many psychiatric 

disorders are chronic illnesses: MDD often begins in adolescence and recurs throughout 

adulthood. SCZ frequently begins in early adulthood and is often life-altering. Most people 

with ASD in childhood continue to have ASD in adulthood (Billstedt et al., 2007; Howlin 

and Magiati, 2017). Third, given the syndromic nature of the definitions, it is unsurprising 

that these conditions are commonly comorbid (e.g., many people with AN or ALC also meet 

criteria for MDD, AN overlaps considerably with MDD and OCD, and about half of people 

with ASD have ADHD symptoms (de Bruin et al., 2007).

Finally, the neurological impact of psychiatric disorders can be subtle. Some individuals 

have important neurological impairments (e.g., epilepsy and motor or sensory abnormalities) 

or neurological “soft-signs” (deficits in sensory integration, coordination, and complex 

motor sequencing). However, most people with a severe psychiatric disorder have little if 

any neurological impairment (e.g., consciousness, sensation, motor function, language, and 

many aspects of memory). Individuals who are at the worst point in their illnesses – floridly 

hallucinating, severely manic, profoundly melancholic, or starved down to a body mass 

index of 10 – usually have normal neurological exams and unremarkable or only non-

specific structural and functional brain imaging findings. This again suggests relatively 

subtle and heterogeneous etiological processes.

A brief history of genetic studies.

For over 150 years, researchers have applied the best available methods to try to find the 

causes of serious psychiatric disorders. Many of these methods had been informative for 

other medical disorders but unsuccessful for psychiatric disorders. The most reproducible 
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single clue that emerged was the tendency for psychiatric disorders to “run” in families – as 

established by 50+ years of twin, family, and adoption studies (summarized in Table 1) 

(Polderman et al., 2015). This observation logically led to attempts to identify the specific 

locations in the genome conferring risk. The progression of genetic studies mirrors 

technology development since the 1960s: single protein biomarkers, small numbers of 

restriction fragment length polymorphisms, genome-wide panels of microsatellite markers 

for linkage analysis, small numbers of selected single nucleotide polymorphisms (SNPs), 

arrays containing 105-106 genome-wide SNPs, and resequencing of genes and then exomes 

and whole genomes. Whenever a new technology emerged, a prominent early success was 

strongly influential. Examples include: identification of a genomic region for Huntington’s 

disease using linkage analysis of 12 markers in 1983, the association of common variation in 

APOE with Alzheimer’s disease in a candidate gene study of 30 cases in 1993, identification 

of CFH as a risk factor for age-related macular degeneration using SNP arrays in 96 cases in 

2005, and exome sequencing identifying the cause of Miller syndrome in four cases in 2009.

These early successes were a form of “winner’s curse” (Ioannidis, 2005) that led to gross 

underestimation of the efforts that would ultimately be required (we note that geneticists 

working on most other complex human diseases were similarly misled). Linkage analysis is 

poorly powered for complex traits (Risch and Merikangas, 1996). Compared to current 

knowledge, the reproducible yield of candidate gene association studies is negligible (Farrell 

et al., 2015). Linkage and candidate gene studies led to many claims of gene discovery (e.g., 

COMT, DISC1, DTNBP1, and NRG1 for SCZ) that were not subsequently supported 

(Border et al., In press; Farrell et al., 2015). Psychiatric genetics was bedeviled by 

reproducibility problems.

Global consortia.

The failure of simple models led to widespread acknowledgement of a need for sample sizes 

that were beyond the reach of any single group to achieve power to detect generalizable 

findings. The need for unprecedented levels of cooperation became widely recognized 

(Fischbach and Lord, 2010; Geschwind et al., 2001; Lajonchere and Consortium, 2010; 

Moldin, 2003; Psychiatric GWAS Consortium Coordinating Committee, 2009; Psychiatric 

GWAS Consortium Steering Committee, 2009). Many consortia emerged to combine efforts 

across research groups to elucidate reproducible genetic risk factors for psychiatric 

disorders. For adult onset disorders, this began with transient efforts (e.g., GAIN, ISC, and 

SGENE). For childhood onset disorders, these efforts began in ASD with smaller consortia 

such as the IMGSAC and PARIS during the linkage era (International Molecular Genetic 

Study of Autism Consortium, 2001; Philippe et al., 1999). Subsequently, the formation of 

the Autism Genetic Resource Exchange (AGRE) enabled expansion to include multiplex 

families (Geschwind et al., 2001; Lajonchere and Consortium, 2010). The largest 

consortium in psychiatric genetics is the PGC which began in 2007 (URLs) (Sullivan et al., 

URLs
Psychiatric Genomics Consortium, http://pgc.unc.edu
PsychENCODE Consortium, https://www.synapse.org//#!Synapse:syn4921369/wiki/235539
Simons Simplex Collection, https://www.sfari.org/resource/sfari-base
Autism Whole Genome Sequence (AGRE, iHART), http://www.ihart.org/data; https://research.mss.ng
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2018), and has spearheaded many of the major genetic advances in the field. The PGC has 

800+ members from 40+ countries and working groups for 11 psychiatric disorders. The 

PGC is a mega-analysis consortium that allows highly harmonized analyses, rigorous quality 

standards, and significance thresholds that maximize reproducibility. A feature of most 

consortia is making summary results freely available along with paths for other researchers 

to get access to individual data or biological samples for independent research.

As whole exome and whole genome sequencing (WES, WGS) have become mainstream, the 

Whole Genome Sequencing for Psychiatric Disorders consortium is adopting a similar 

approach as the PGC, but for modern resequencing (Sanders et al., 2018). Investigators 

conducting WES for ASD have formed multiple consortia. The Simons Simplex collection 

focused on discovery of de novo variation via WES and played a major role in accelerating 

gene discovery in ASD (Fischbach and Lord, 2010). The SPARK initiative is conducting 

WES on 50,000 ASD cases a rapid data-release policy (Spark Consortium, 2018). The 

Autism Sequencing Consortia rigorously harmonizes ASD resequencing data from multiple 

studies (Buxbaum et al., 2012), and combining data from multiple cohorts has enabled major 

advances (De Rubeis et al., 2014; Sanders et al., 2015).

Genetic architecture

We review here what we have learned about the genetic architectures of the 10 psychiatric 

disorders in Table 1. Because some of the basic techniques may be unfamiliar, we provide in 

Table 2 brief definitions and accessible introductions to these topics that are beyond the 

scope of this review. The results to date indicate that psychiatric disorder risk is imparted by 

many common variants of individually small effects, and several disorders also have 

contributions from rarer variants with larger impact on risk (Geschwind and Flint, 2015; 

Sullivan et al., 2018).

Background.

Knowledge of genetic architecture is fundamental to rational study design and genotyping 

technology choice. For many decades, this was debated with various authors speculating 

architectures inferred from indirect clinical or epidemiological data. The extreme positions 

were the common disease/common variant model (psychiatric disorders result from the 

cumulative effect of many common variants of small effect) and the multiple rare variant 

model (strong genetic impacts on single genes cause psychiatric disorders with each case 

having a different causal mutation). Neither model can explain all of the genetic risk, and 

many possible genetic architectures lie between these extremes.

Genetic variation lies on a continuum from common to extremely rare: a risk variant might 

be present on half the chromosomes in a population or be observed only once in 1,000,000 

people. We can consider a frequency continuum from ultra-rare (present once in a large 

sample, frequency <0.001%) to rare (present in a pedigree or in descendants of a recent 

ancestor, <0.1%) to uncommon (0.1% to 1%) to common (>1%). In general, rare variants 

arose recently and common variants are far older. Given what we know now, common 

variants generally have small effects on disease risk (OR <1.15), and rare variants typically 

have larger effect sizes (>2.0), are more likely to be deleterious, and tend to be removed by 
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natural selection (Fu et al., 2013; Nelson et al., 2012; Zeng et al., 2018). This is not an 

invariant rule, as rare variants may have a continuum of risk (Marouli et al., 2017), and a 

fraction of common variants have large effects (e.g., APOE and Alzheimer’s disease).

Technology.

Two main technologies have emerged for capturing germline genetic variation in individual 

subjects, resequencing and SNP arrays. Resequencing determines anew many types of 

genetic variation in the immediately accessible genome. It captures many types of genetic 

variation – SNPs, insertion-deletions, copy number variation – across the frequency 

spectrum, from ultra-rare to common. In concept, resequencing is the method of choice for 

psychiatric genomics. Costs for WGS have declined considerably (US $800/sample) but 

analyzing WGS data remains challenging. Most resequencing studies to data used WES, 

reducing expense and analytic burden via a focus on protein-coding regions where the 

functional impact of variants is easier to interpret than in the non-coding genome. Study 

designs are usually either standard case-control comparisons or family-based methods. For 

the latter, trios of unaffected parents and an affected offspring are popular as they enable 

identification of de novo variation (i.e., present in an affected child but absent in parents), 

which can improve power to detect high impact variants. Other resequencing technologies 

can focus on the less accessible parts of the genome (repetitive regions or regions with 

variable structure and gene content). Although very expensive and technically complex, 

single-cell resequencing of nuclei from a tissue can identify somatic mutations that arose 

during development (these changes are not heritable, but may contribute to illness in some 

individuals) (Evrony et al., 2016; McConnell et al., 2017). The largest resequencing studies 

of psychiatric disorders have fewer than 25,000 cases but this will change in the next few 

years.

SNP arrays commonly include 700,000 or more readily genotyped biallelic genetic variants. 

These SNPs are preselected for reliability and capacity to capture 90% or more of common 

genetic variation in a population either directly or indirectly by capitalizing on linkage 

disequilibrium (LD, the strong tendency for nearby genetic variants to be co-inherited). In 

effect, direct assessment of <1 million SNPs can be leveraged to accurately estimate 

genotypes for 10 million or more common, uncommon, and even rare genetic variants. SNP 

arrays are inexpensive ($35/sample) and have been applied to very large numbers of people. 

Arrays technology can also identify large, rare copy number variants (CNV Working Group 

of the Psychiatric Genomics, 2017; Luo et al., 2012; Sanders et al., 2011; Sebat et al., 2007). 

WGS provides substantial more genome coverage and resolution, especially with regards to 

certain forms of chromosomal structural variation (Redin et al., 2017), but at an order of 

magnitude cost more than SNP arrays. SNP array studies of readily measured human traits 

(e.g., height, educational attainment, lipid levels) now routinely exceed sample sizes of 1 

million, and studies of psychiatric disorders have 10,000–130,000 cases. These studies do 

not directly capture genetic variation in well-defined functional areas of the genome, 

necessitating substantial follow up to identify the causal variants and genes affected (Gusev 

et al., 2018; Sekar et al., 2016; Wang et al., 2018a).
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Key issues in all of these studies are rigorous quality control, careful assessment and control 

for multiple types of bias, and correction for multiple comparisons. A large number of 

statistical tests are conducted requiring correction for multiple comparisons. For example, 

for SNP array studies an accepted threshold is P<5×10−8, akin to correcting a=0.05 for 1 

million comparisons.

Common variant association studies of psychiatric disorders.

Most genetic studies of psychiatric disorders in the past decade have used SNP arrays to 

assess the role of accessible common variation (also known as GWAS, genome-wide 

association studies). The common variant findings for psychiatric disorders are summarized 

in Figure 3a. Studies in SCZ and MDD have yielded >100 loci, BIP has 53 loci, and ADHD, 

AN, and ASD have from 5–12 loci. The crucial determinant of the number of loci 

discovered is the number of cases; as sample sizes increase, more loci will be identified 

(Geschwind and Flint, 2015; Sullivan et al., 2018). As a common disorder with relatively 

low twin-heritability (Levinson et al., 2014), MDD has had notable difficulties with genetic 

discovery, but focusing on severe cases (CONVERGE Consortium, 2015) and increasing 

sample sizes has been particularly fruitful (Major Depressive Disorder Working Group of 

the Psychiatric Genomics Consortium, 2018).

Across all disorders, 241 loci have a significant association with the 10 psychiatric disorders 

in Table 1 with 22 loci associated with ≥2 psychiatric disorders. Although most loci are 

disease specific, many loci increase risk for multiple disorders. These loci together implicate 

~76 Mb of the genome as containing common genetic variants involved in the etiology of 

these disorders. We speculate that many loci contain multiple functional elements that 

contribute to risk. Around 400 protein-coding genes lie in these loci. Traditionally, genomic 

location is used to assign “SNPs-to-genes”; however, as discussed more fully below, this 

practice yields an incomplete portrait. If we overlay functional genomic data from human 

brain (e.g., eQTL or regulatory chromatin interactions), about 50% of the time genes located 

in loci are also implicated by functional data. Crucially, recent studies have shown that genes 

located far outside of a locus are often implicated (see functional architecture section below) 

(Wang et al., 2018a; Won et al., 2016).

Although the effects of any individual variant may be small, they can nonetheless point to 

biological processes that may be highly relevant to therapeutics. For example, GWAS results 

for SCZ (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) and 

MDD (Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium, 

2018) are enriched for genes that encode proteins known to interact with pharmacological 

targets of antipsychotics and antidepressants.

Genetic risk scores (GRS), SNP-heritability, genetic correlations.

In the past decade, GWAS provided the impetus for several methodological developments. 

These methods were partly motivated by the failure of early genetic studies to identify 

common variant associations with SCZ (sample sizes 250–1000 cases).

First, based on ideas from livestock genetics, GRS initially appeared as part of a SCZ GWAS 

(International Schizophrenia Consortium, 2009). A GRS captures the number of inherited 
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common risk variants as a normally distributed number and can be compared to a population 

mean (e.g., a person might have a standardized SCZ GRS of 2 indicating inheritance of SCZ 

risk alleles in the top 2–3 percentiles). Computing a GRS requires a sizable external training 

set and can be applied to new individuals of similar ancestry. GRS can use significant, nearly 

significant, and non-significant SNP associations, and have clearly indicated that more 

common variants will be discovered as sample sizes increase (International Schizophrenia 

Consortium, 2009). Indeed, GRS differences between cases and controls are now so widely 

replicated that GRS are used for quality control (the absence of a difference often indicates a 

basic problem with a dataset). Inheriting a notably large number of SCZ risk alleles (e.g., 

being in the top vs bottom decile for GRS) carries more than a 10-fold increased risk of SCZ 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014).

For example, Figure 3b shows the distributions of SCZ GRS in a set of SCZ cases and 

controls. There is a highly significant mean difference between groups but the distributions 

overlap substantially. Figure 3c depicts the same data but shows the proportions of cases and 

controls in each GRS decile. Cases in the top decile have 15 fold increased risk for 

schizophrenia compared to the lowest decile (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). Intriguingly, there are many controls in the top 

decile and many cases in the lowest decile. Detailed investigations of these observations are 

underway (e.g., do controls in the upper decile have a sub-clinical form of SCZ or have 

strong protective factors? Are cases in the lower decile phenocopies or more likely to have a 

strong-effect genetic variants?).

GRS have emerged as a potentially important output from psychiatric genetics and may help 

guide future precision medicine approaches. In other areas of medicine, GRS provide new 

ways to evaluate risk and to stratify patients – e.g., for prostate cancer, breast cancer, 

cardiovascular disease, and type 2 diabetes mellitus (Gronberg et al., 2015; Khera et al., 

2018; McCarthy and Mahajan, 2018; Shieh et al., 2016). For psychiatric disorders, 

considerable research is in progress; the potential is that, for the cost of an inexpensive SNP 

array, GRS could assist in differential diagnosis, therapeutic selection, outcome prediction, 

and patient stratification. Multiple clinical questions could be addressed: for an individual 

with multiple comorbidities (ADHD, ASD, OCD), do the three GRS indicate that one is the 

logical focus of treatment? Should this person with MDD and a high BIP GRS receive a 

mood stabilizer as well as an antidepressant? Can we identify people with PTSD at first 

presentation who are at high risk of a pernicious course of illness? Can information from 

genes in biological pathways be used to develop “mechanistic GRS” that could then be used 

to identify an antipsychotic with the greatest chance of clinical response? We would like to 

add an important caveat: although GRS are conceptually straightforward, their creation and 

use requires considerable care and sophistication to derive secure and reproducible findings 

(Lewis and Vassos, 2017; Torkamani et al., 2018). As just one example, incorrect inference 

can readily occur if the GRS training and target datasets are from different ancestries 

(Martin et al., 2017).

Second, several methods can calculate the heritability of a trait using SNP array data (Bulik-

Sullivan et al., 2015; Yang et al., 2011). These provide assessments of heritability based on 

genome-wide genotypes, and improves upon traditional heritability measurements given 
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their basis in direct genetic measurements. SNP-heritability can be estimate for traits that are 

difficult or impossible to assess using twins (e.g., antipsychotic adverse drug reactions). 

Indeed, SNP-heritability estimates are available for thousands of traits (Zheng et al., 2017). 

Table 1 shows SNP-heritability estimates, and these tend to follow traditional heritability. 

These provide exceptionally strong indications that common variation genetic variation is 

important for all complex psychiatric disorders, and more will be discovered with increasing 

sample sizes.

In almost all instances, SNP-heritability is less than twin/pedigree heritability. If reviewed 

critically, indirect twin/pedigree heritability estimates are often upwardly biased, and the 

degree to which SNP-heritability is different from indirect measures is unclear. For any real 

difference between SNP- and twin/pedigree-heritability, the major reasons are: (a) imperfect 

assessment of common variation (i.e., missing common variation in hard to genotype or 

impute regions); (b) complex, non-SNP common genetic variation whose identification 

requires resequencing or specialized methods; and/or (c) poor measurement of rare genetic 

variation with current sample sizes and technologies. It is important to note that the goal of 

genetic studies of psychiatric disorders is to generate clinical and biological insights and not 

to align different conceptualizations of heritability.

Third, we can now readily estimate the genetic correlations between traits using SNP array 

data (Bulik-Sullivan et al., 2015; Yang et al., 2011). These methods have provided insights 

into the fundamental basis of these disorders. A similar construct could be assessed using 

twin or pedigree data but with lesser power and precision. Notably, the major psychiatric 

disorders have significant and often sizable genetic correlations (Cross-Disorder Group of 

the Psychiatric Genomics Consortium, 2013a). A more comprehensive effort of 25 

psychiatric and neurological disorders showed that most psychiatric disorders had significant 

genetic inter-correlations, but there were far fewer for neurological conditions (Brainstorm 

Consortium, 2018). Importantly, comparison of SCZ results between European and East 

Asian samples indicated that the genetic correlation was indistinguishable from one, 

strongly indicating that the common variant genetic basis of SCZ is highly similar across 

these global populations (Lam et al., Submitted). Under a set of specific assumptions, we 

can also apply Mendelian Randomization (MR) to suggest causality; for two traits with 

sufficient numbers of significant associations, MR can assess the plausibility of whether one 

trait has a causal relation with another (e.g., lower educational attainment and higher body 

mass were putatively causal for MDD) (Major Depressive Disorder Working Group of the 

Psychiatric Genomics Consortium, 2018).

Rare variant association studies of psychiatric disorders.

Resequencing studies that implicate ultra-rare and de novo variation have the major 

advantage of pinpointing risk variants in specific genes. Compelling results can leverage the 

extensive neuroscience toolkit for experimental modeling of specific genes. Until relatively 

recently, identifying rare variants for psychiatric disorders was mainly limited to large 

structural variants (CNV Working Group of the Psychiatric Genomics, 2017; De Rubeis et 

al., 2014; Iossifov et al., 2012; Sebat et al., 2007). As noted above, resequencing 

technologies enable rare variant discovery in ever larger samples, and we know now that 
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ultra-rare and de novo single nucleotide variants contribute to risk (Genovese et al., 2016; 

Sanders et al., 2015; Satterstrom et al., 2018b; Singh et al., 2016; Wang et al., 2018b; 

Willsey et al., 2017). Rare variant association tests require the aggregation of rare, 

deleterious mutations at a particular locus (usually in protein-coding exons or annotated 

regulatory regions) in cases compared to controls (Zuk et al., 2014).

At present, the largest resequencing efforts are for ASD and SCZ. Rare variant discovery has 

been most successful in ASD where WES for rare, de novo, protein truncating variants 

(PTVs) in mutation intolerant genes has identified around 100 high-confidence connections 

to specific genes (Satterstrom et al., 2018b). Although each gene accounts for only a small 

fraction of cases, rare de novo variation is predicted to account for ~15% of ASD cases 

(Iossifov et al., 2014). Most of these mutations also decrease IQ and ID is an important 

comorbidity of ASD (Buja et al., 2018; Iossifov et al., 2014), which is consistent with 

previous work identifying dozens of known severe, rare medical genetic syndromes 

associated with ASD (reviewed in (Abrahams and Geschwind, 2008; Geschwind, 2009)).

The yield of resequencing in ASD is markedly higher than for other psychiatric disorders. 

WES has implicated only two genes for SCZ (Singh et al., 2016; Steinberg et al., 2017) at 

sample sizes that yielded dozens of associations for ASD. In TS, a role for de novo gene 

disrupting and missense variants has been established (Willsey et al., 2017) and two high-

confidence genes for TS were recently identified (Wang et al., 2018b). Sizable WES of 

ADHD and BIP are underway. For the other psychiatric disorders in Table 1, major 

resequencing efforts are at more nascent stages. There is debate in the field as to whether 

resequencing efforts are worth the 10–15× greater cost, particularly for later-onset disorders 

that are not associated with ID or neurological impairment. The sobering experiences in 

SCZ and type 2 diabetes suggest a limited role of large-scale resequencing in adult disorders 

until the costs decline substantially.

Identification of rare, genic mutations can be extremely informative. They directly implicate 

specific genes and are amenable to experimental modeling. At the same time, interpretation 

of these models is a formidable task. While some of these genes are relatively specific to a 

disorder like ASD, many confer broader phenotype risks (Abrahams and Geschwind, 2008; 

Ronemus et al., 2014; Satterstrom et al., 2018b). Pleiotropy is more the rule: most mutations 

increase risk for a range of neurodevelopmental outcomes (e.g., ID, ASD, epilepsy, or 

psychosis). These pleiotropic large effect mutations may work by disrupting key 

neurodevelopmental processes rather than specifically causing one defined clinical disorder 

(Geschwind and Levitt 2007). Even for a highly significant gene identified from 

resequencing, precisely which human phenotype is being modeled and with what specificity 

may be uncertain (i.e., ID and/or ASD). Another question from these findings is whether 

genes that harbor large effect mutations causing ASD and ID affect biological processes 

different from those that cause ASD that is not comorbid with ASD. Indeed, some gene 

network analyses suggest the existence of molecular processes that distinguish ASD from ID 

(Parikshak et al., 2013; Satterstrom et al., 2018b).

The relative contributions of rare de novo missense or inherited mutations to psychiatric 

disorders are not quite as well established as de novo protein truncating variants. However, 
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both rare missense and inherited mutations have been shown to contribute to ASD, simply 

with smaller effect sizes than de novo variants (Ruzzo et al., 2018; Sanders et al., 2015). 

Furthermore, the effects of PTVs can be assessed in a functional and evolutionary context 

(loss of one copy of the gene and the degree of constraint) (Samocha et al., 2014), while the 

functional impact of individual missense mutations is harder to determine. One approach to 

this problem integrates prior information such as gene or PPI networks to boost the signal of 

missense variation (Parikshak et al. 2013). The detection of inherited variation may be 

further hindered by ascertainment bias from study designs that favor detection of de novo 
variants. It is illustrative that studying families having multiple children with ASD 

significantly reduced the signal from de novo variation compared to singleton families, 

while enhancing that from inherited variation to identify risk genes (Ruzzo et al., 2018). 

Consistent with a role of rare, inherited variation in risk also comes from a recent WES of 

ASD and ADHD that excluded cases with ID or comorbidity (Satterstrom et al., 2018a). 

These investigators found that rare PTV in mutation intolerant genes occurred with equal 

frequency in both ASD and ADHD and that the genes impacted significantly overlapped. 

Larger samples are needed to determine if genes with statistically significant association 

with each disorder are shared, and whether the mutations have similar molecular impact. For 

example, even if mutations increasing risk for ASD and ADHD were in the same gene, they 

might impact different isoforms that could have different functional consequences. Emerging 

data from RNA sequencing from brain shows remarkable isoform diversity in parallel with 

distinct protein interactions and cell type specificity, further highlighting the importance of 

understanding mutational consequences in an isoform context.

Copy number variation (CNVs)

refers to structural chromosomal variants greater than 1 kb in size that lead to an increase or 

decrease in the DNA sequences encompassed by the CNV (e.g., fewer or more than two 

copies of an autosomal region). Approximately 4% of the genome comprises such structural 

variation, much of which is common, inherited, and relatively benign with regards to 

imparting disease risk (Brand et al., 2014; Conrad et al., 2010; Mills et al., 2011; Sebat et al., 

2004). Larger de novo CNVs, especially ones that disrupt genes or change gene dosages, can 

carry major risks particularly for neurodevelopmental disorders (Malhotra and Sebat, 2012; 

Sebat et al., 2007).

Several dozen rare CNVs are known to confer relatively strong risks for psychiatric 

disorders, most commonly in ASD and SCZ and less frequently in BIP, TS, and ADHD. 

Most known pathogenic CNVs increase risk for multiple disorders (de la Torre-Ubieta et al., 

2016; Kirov, 2015; Lowther et al., 2017; Malhotra and Sebat, 2012). These recurrent CNVs 

usually arise de novo, mainly via non-allelic homologous recombination in regions flanked 

by low copy number repeats.

CNVs associated with psychiatric disorders share several commonalities: (a) they usually 

contain multiple genes (with a few exceptions (Bucan et al., 2009; Talkowski et al., 2011)); 

(b) are usually >500 kb in size (although many expect that smaller CNVs will be found 

using WGS) and the major pathogenic mechanism is presumed to be dosage-sensitivity of 

genes in the CNV although distal regulatory effects on genes outside of the CNV are also 
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plausible (de la Torre-Ubieta et al., 2018); (c) many CNVs are associated with partial 

disruption of a range of developmental programs and impact multiple organs (cardiac, gut, 

immune, and endocrine as well as brain); (d) most CNVs confer increased risk for multiple 

psychiatric disorders including ID, ASD, ADHD, and psychotic disorders (Kirov, 2015; 

Lowther et al., 2017); (e) penetrance can be highly variable, ranging from subtle effects 

detectable by neuropsychological tests to mild degrees of anxiety/ADHD to co-occurrence 

of severe psychiatric disorders (Kendall et al., 2017; Stefansson et al., 2014; Ulfarsson et al., 

2017). Emerging evidence suggests that among other factors, some of this pleiotropy may be 

due to modification GRS because even in those with ASD or SCZ carrying large effect de 
novo mutations, there appears to be an additive effect of common variation on phenotypic 

expression (Tansey et al., 2016; Weiner et al., 2017).

Synthesis.

In the past decade, major papers from the PGC and other consortia have conclusively shown 

that all of the psychiatric disorders in Table 1 have an important contribution from hundreds 

or thousands of common genetic variants of relatively subtle effect. Exactly how these 

variants influence gene expression in the context of biological networks is generally 

unknown but has highlighted critical gaps in our knowledge of gene regulation. Work in 

progress on the functional architecture and cellular/tissue architecture will, we believe, yield 

the needed insights. The impact of rare variation is less well studied. Empirical data show 

that rare genetic variation plays a role in some of these psychiatric disorders (ASD and SCZ 

in particular but also for TS and ADHD). However, direct comparisons of the contributions 

of common and rare genetic variation show that common variation dominates heritable risk 

for SCZ and ASD (Gaugler et al., 2014; Purcell et al., 2014). Still, rare variants that disrupt 

genes provide a clear starting point for mechanistic studies, and identification of large effect 

mutations in patients is of substantial clinical utility. Finally, many disorders are early in the 

discovery process. Consistent with the documented clinical and epidemiological 

comorbidity, there is also important genetic overlap, including substantial components of 

genetic variation that increase risk for multiple disorders – both of which necessitate 

consideration of diagnostic architecture.

Functional architecture

Moving from common variant findings to genes, molecular pathways, and cells requires in 

genomic analysis. Table 2 contains additional definitions and references to important 

background that is beyond the scope of this review. Figure 4 presents a schematic of how we 

can systematically evaluate the implications and impacts of genetic architecture findings.

From variant to gene.

Because most genetic variation that contributes to common psychiatric disorders is not in 

protein-coding regions, a crucial step in understanding disease mechanisms is pinpointing 

the genes impacted by risk variants (Thurman et al., 2012; Visel et al., 2009). This requires 

functional annotation of non-coding regions, the goal of consortia like ENCODE (ENCODE 

Project Consortium, 2011), Roadmap (Roadmap Epigenomics Consortium, 2015), and 

GTEx (GTEx Consortium, 2017), which produced comprehensive initial regulatory maps 
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and transcriptional profiles across spectrum of cells and tissues. However, around half of 

non-coding regions have regulatory functions that are shared across tissues meaning that half 

of the regulatory elements in a given tissue may be relatively specific to a tissue, cell type, or 

developmental stage (Liu et al., 2017a; Roadmap Epigenomics Consortium, 2015; Won et 

al., 2016). This is particularly important for brain which has higher cellular heterogeneity 

and longer developmental trajectories compared to other tissues. The need for brain-specific 

functional genomic data led to PsychENCODE (PsychENCODE Consortium, 2018) (URLs) 

which has produced and integrated multiple types of functional genomic data from human 

brain (Gandal et al., 2018b; Li et al., 2018; Wang et al., 2018a). Its goals are to complement 

the work of these other consortia by producing accurate regional, cell type, and stage-

specific annotation of gene regulation and transcription at tissue and cellular levels in brain 

from healthy individuals and cases with major psychiatric disorders. This effort is 

complemented by the BRAIN single cell atlas of cell types and gene expression in human 

and mouse (Ecker et al., 2017).

These resources essentially provide maps for interpretation of genetic variation implicated in 

psychiatric disorders in the context of genes, their regulation, and the effects on biological 

pathways. A complicating factor is that assigning even well-annotated genomic regions to 

specific genes is not as simple as choosing the closest gene or genes containing variation that 

is highly correlated with the associated SNPs which is usually the default approach (Whalen 

et al., 2016; Won et al., 2016). Rather as suggested by studies of brain eQTL (GTEx 

Consortium, 2017; Hauberg et al., 2017) and chromatin structure (de la Torre-Ubieta et al., 

2018; Won et al., 2016), nearly half of the target genes of human regulatory variation are not 

in genomic loci defined by LD (Whalen and Pollard, 2018) (Table 3). Thus, “4D mapping” 

of chromatin interactions (i.e., brain regions across developmental time) is critical for 

understanding the functional relationships of regulatory regions to genes (Dekker et al., 

2017).

Functional genomic data include gene expression surveys, open chromatin, eQTLs, 

chromatin QTLs, methylation QTLs, histone marks, and regulatory chromatin interactions, 

initially for bulk tissues or sorted types of cells but increasingly at the single-cell level. As 

illustrated in Figure 4, these data can be combined to define candidate enhancer-promoter 

interactions (from locus to gene) whose accuracy can then be assessed in a biological 

system. Published brain eQTL data have N<1000 and contain only a fraction of presumed 

regulatory relationships. Chromatin capture methods such as Hi-C can define chromatin 

structure in brain nuclei (Dekker et al., 2013) and can predict functional interactions defined 

by eQTL and enhancer-mRNA relationships (Won et al., 2016). Although integration of 

functional genomic data from brain yields empirically-based hypotheses about regulatory 

relationships, experimental validation is required. Techniques like STARR-seq permit large 

scale validation (which suggests enhancer functionality) (Arnold et al., 2013; Liu et al., 

2017b), while analysis in an appropriate cell type with epigenome editing technologies can 

confirm target identity (de la Torre-Ubieta et al., 2018; Won et al., 2016). Currently, it is 

wise to be conservative and rely on regulatory interactions identified by multiple methods 

(e.g., eQTL/Hi-C (Gusev et al., 2018) or ATAC-seq/Hi-C (de la Torre-Ubieta et al., 2018). 

These distinct data types – often derived in different laboratories in different samples- show 

significant overlap in regulatory predictions (Gusev et al., 2018). This is in contrast to 
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comparisons relying on LD blocks or the assignment by the closest gene, where the overlaps 

with methods that directly assess chromatin are less substantial (Short et al., 2018; Whalen 

and Pollard, 2018).

Application of functional genomic approaches to define regulatory regions and target genes 

has yielded important albeit tentative clues as to the developmental and cell type architecture 

of psychiatric disorders. One example comes from studies that partition disease heritability 

defined by genome-wide SNP genotyping, or by mapping putative causal variants across the 

genome, to identify regions of enrichment, and ask in what tissues and what stages are these 

regions active (de la Torre-Ubieta et al., 2018; Finucane et al., 2018; Skene et al., 2018; Won 

et al., 2016). As discussed more fully below, these studies have implicated specific 

development epochs and brain regions in risk for several psychiatric disorders and cognitive 

phenotypes. These initial studies demonstrate that creation of these gene regulatory maps 

with multiple methods that address different molecular processes, developmental stages and 

brain regions is a critical step in understanding how disease risk biologically unfolds.

From genes to networks.

To understand how genes contribute to psychiatric disorders, we are faced with the task of 

measuring and understanding phenotypes across a hierarchically organized complex system, 

connecting genes to behavior. Few genes act in isolation but rather affect the function of 

other genes to influence a particular phenotype via in cellular networks or pathways 

(Barabasi et al., 2011; Geschwind and Konopka, 2009). This challenge is exacerbated by the 

polygenic nature of psychiatric disorders. To understand how genes contribute to CNS 

phenotypes, many groups have applied an analytical framework at a gene-network level 

involving coordinated regulation of gene expression (Parikshak et al., 2015; Parikshak et al., 

2013). Network analysis can interrogate multiple levels of molecular organization and 

enable integration with other information including known pathway annotations. 

Furthermore, when hundreds of genes are involved, network analysis provides an organizing 

framework that can divide large gene sets into biologically coherent modules for 

prioritization (Parikshak et al., 2015; Parikshak et al., 2013), or add power to GWAS (Horn 

et al., 2018). Combining network approaches with systems neuroscience permits the 

methodical connection of heterogeneous genetic risk factors to brain mechanisms (Gandal et 

al., 2016; Geschwind and Konopka, 2009).

Two general network approaches have been used in psychiatric genomics based on 

literature-curated pathway databases (e.g., Gene Ontology or, KEGG) or data-driven tissue 

specific approaches based on transcriptomic, proteomic, or other “omic” data (Parikshak et 

al., 2015). The former approach has many biases, including weighting highly studied genes, 

non-CNS functional annotations, or very non-specific annotations (e.g. “synaptic function”), 

and lack of tissue specificity (missing tissue specific interactions or emphasizing those 

observed in other tissues). Curated pathway-based studies using combinations of multiple 

methods and data sources are far more convincing than those using single sources, and have 

yielded evidence for common pathways across psychiatric disorders (Network and Pathway 

Analysis Subgroup of Psychiatric Genomics Consortium, 2015), but still do not fully 

overcome biases inherent in literature curation. This illustrates a weakness in current 
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functional annotations that are broad and biased with regards to how the neuronal annotation 

method. Gene network approaches can identify presumed functional modules in an unbiased 

manner but understanding what these modules mean beyond broad annotations remains a 

major stumbling block for the field, and will require efforts connecting gene expression to 

neural cell biology and physiology.

Despite these limitations, several studies in ASD and SCZ highlight the power of using 

transcriptional networks based on normal human brain tissue across development or brain 

regions, or more generalized protein-protein interactions (Hormozdiari et al., 2015; Li et al., 

2014; Lin et al., 2015) to identify molecular pathways, developmental epochs, or brain 

circuits enriched for genetic variation. Despite clear genetic heterogeneity, both ASD and 

SCZ risk converge on shared molecular pathways (Network and Pathway Analysis Subgroup 

of Psychiatric Genomics Consortium, 2015; Parikshak et al., 2015). In ASD, these pathways 

involve regulation of transcription and chromatin structure during neurogenesis, and 

subsequent processes of synaptic development and function during early fetal cortical 

development (Parikshak et al., 2015). A small study implicated similar stages during the 

developmental of the prefrontal cortex in SCZ risk (Gulsuner et al., 2013) consistent with 

several decades of neuroanatomical studies (Glausier and Lewis, 2018; Piper et al., 2012). 

Importantly, these findings are emerge from different methods including protein-protein 

interactions PPI (Lin et al., 2015; O’Roak et al., 2012), integration of protein, gene 

expression, and phenotype data (Gilman et al., 2011; Hormozdiari et al., 2015), and 

chromatin marks (Sun et al., 2016). These efforts point at similar pathways and/or 

convergence of risk loci on similar biological processes (Corominas et al., 2014; Gilman et 

al., 2012; Li et al., 2014).

One caveat in the interpretation of these studies is that they are based on current knowledge 

of genetic contributions. In ASD, this is heavily biased towards rare, de novo PTV identified 

in simplex families which could impact different pathways than those affected by inherited 

variation. Although there is likely a role for rare inherited variation in ASD (Krumm et al., 

2015), few studies have identified significant signals based on inherited risk variants for 

specific genes. A recent study of multiplex ASD families found that inherited risk impacts 

pathways similar to those for de novo variation (Ruzzo et al., 2018). Similarly, the 

developmental trajectories of risk genes implicated by rare and common variation appear to 

overlap, particularly for the fetal period for ASD risk.

Transcriptomic networks define disorder-associated molecular pathology.

Psychiatric disorders are not generally associated with brain pathology on gross or 

microscopic examination. The development of methods to capture the brain transcriptome 

led to studies of differential expression in cases versus controls and evaluation of convergent 

molecular pathology (Parikshak et al., 2015). To organize these data, network/pathway 

approaches have been applied to brain tissue from subjects with most major psychiatric 

disorders including SCZ, MDD, and ASD (Parikshak et al., 2015). However, any changes 

detected in postmortem brain could be causal or reflect reverse causation. Integration of 

these data with genetic risk variants provides an opportunity to identify a causal foothold. In 

ASD, these analyses, replicated using different methods and samples, implicate synaptic and 
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neuronal signaling pathways overlapping with other causal gene-based network methods 

(Parikshak et al., 2016; Voineagu et al., 2011). Similar network analysis based on gene co-

expression identifies transcriptional networks dysregulated in SCZ, including co-expressed 

neuronal genes enriched for both common and rare SCZ-associated variants (Fromer et al., 

2016). Transcriptomic findings for ASD, SCZ, BIP, and MDD suggested shared and 

disorder-specific gene expression changes (Gandal et al., 2018a). Notably, cross-disorder 

transcriptome correlations parallel genetic correlations, consistent with common biology 

processes (Gandal et al., 2018a).

Several genes that cause rare forms of ASD (e.g., FMR1, CACNA1C, and TCF4) regulate 

expression or splicing of many genes associated with psychiatric disorders (Tian et al., 2014; 

Weyn-Vanhentenryck et al., 2014). FMR1 in particular interacts with the mRNA of many 

ASD and SCZ risk genes (Iossifov et al., 2014; Parikshak et al., 2013; Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014). Analysis of transcriptional 

(Cotney et al., 2015; Sugathan et al., 2014), splicing (Berto et al., 2016; Fogel et al., 2012; 

Weyn-Vanhentenryck et al., 2014) or signaling (Tian et al., 2014) networks indicates that at 

least some of the rare major gene forms of psychiatric disorders impact pathways that are 

more generally related to risk in the population. This highlights the relevance of rare forms 

of psychiatric disorders to understanding common genetic variation.

Tissue and cellular architecture

As with gene network analyses to identify biological pathways, it is possible to apply similar 

methods to identify empirically the brain regions and developmental stages in which the 

genetic findings are enriched. These analyses are important in a general sense – are these 

disorders rooted in early fetal development, childhood, adolescence, or adulthood? – but also 

because of neuroscience tools that can manipulate increasingly specific brain cell types in 

space and time.

Two general approaches are used to determine cell type or stage specificity. The first assigns 

genes implicated by risk variants directly to cell types based on transcriptomics (Polioudakis 

et al., 2018; Skene et al., 2018). The second partitions genetic risk across non-coding regions 

and compares the predicted activity of these regions across cell types and developmental 

stages, which to date has been primarily based on tissue level open chromatin rather than 

single cells (de la Torre-Ubieta et al., 2018). Development of robust single cell methods for 

chromatin analysis promises to be important (Cusanovich et al., 2018a; Cusanovich et al., 

2018b). At present, many psychiatric GWAS are under-powered to accomplish these 

intentions (Skene et al., 2018).

This lack of power for common variant analyses is certainly the case for ASD, where studies 

have relied primarily on measuring expression enrichment or de novo PTVs. These studies 

have demonstrated that ASD risk variants are enriched in cortical glutamatergic neurons 

expressed during neurogenesis and neuronal migration during fetal cortical development in 

human and mouse (Parikshak et al., 2013; Willsey et al., 2013). Examination of the laminar 

patterns of expression in primate indicated that ASD risk genes are enriched in upper 

relative to lower layer neurons. This may be important for understanding circuit level 
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architecture because upper layer neurons form the primary direct connections between 

cerebral hemispheres and cortical regions (Parikshak et al., 2013) and lower layer neurons 

primarily, but not exclusively, project to subcortical regions.

A recent study of single-nuclei RNA sequencing from human fetal and adult brain has 

validated the enrichment of genes harboring large effect de novo mutations associated with 

ASD in fetal glutamatergic neurons (Polioudakis et al., 2018). These detailed transcriptomic 

profiles provide nuance, especially for individual genes, identifying genes expressed broadly 

across neurons or with relative specificity for inhibitory neurons, neural progenitors, or non-

neural cells (Polioudakis et al., 2018). The importance of the fetal period for ASD is 

supported by GWAS results integrated with regulatory chromatin interactions and gene 

expression, which show enrichment of enhancer marks in the fetal brain and higher 

expression of ASD target genes during fetal corticogenesis (Grove et al., In press). 

Comparisons across brain regions, both prenatally and in adult, confirms prenatal cerebral 

cortical enrichment over other brain regions both prenatally, and relative to adult expression 

levels.

For SCZ, although earlier developmental stages are important for risk, considerable cell-type 

specificity emerges in the adult brain. The most comprehensive analysis to date used single-

cell and single-nuclei RNA-seq from multiple brain regions in mouse and human (Skene et 

al., 2018). Distinct patterns of enrichment were identified for different disorders, often 

mirroring known biology (e.g., multiple sclerosis and Alzheimer’s disease risk were 

enriched in microglia). Common variant genetic findings for SCZ showed enrichment in a 

limited set of major cell types: pyramidal neurons in cortex and hippocampal CA1, striatal 

medium spiny neurons, and cortical interneurons. MDD risk was clustered in cortical 

interneurons and embryonic midbrain neurons (these findings replicate in multiple new 

datasets, in preparation). Orthogonal functional genomic data are consistent with these 

finding as open chromatin in neuronal nuclei (NeuN+) from 14 regions from human adult 

brain showed significant enrichment of SCZ GWAS findings in cortex and striatum (Fullard 

et al., 2018), and open chromatin in mouse cortical layers showed SCZ enrichment in 

excitatory neurons in layer V (Hook and McCallion, 2018).

Although these studies are not yet definitive, we highlight emerging points of consistency. 

Genetic risk for SCZ appears to be more widespread in “4D” (Li et al., 2018) and somewhat 

more specific to adult brain (particularly pyramidal neurons, striatal medium spiny neurons, 

and cortical interneurons), but also with effects during fetal cortical development (de la 

Torre-Ubieta et al., 2018; Won et al., 2016). MDD risk is enriched in adult cortical 

interneurons (Skene et al., 2018), but also with fetal enrichment in midbrain neurons (Skene 

et al., 2018) (consistent with theories of catecholaminergic cortically-projecting brainstem 

systems in MDD). Genetic risk for ASD appears act primarily in fetal periods, involving 

cortical glutamatergic neurogenesis and early development. While ASD risk converges on 

glutamatergic neuron development, by no means is every risk gene expressed exclusively in 

these neurons (Polioudakis et al., 2018). These findings broadening and refining the 

neuronal classes where ASD risk genes act are supported by other analyses (Satterstrom et 

al., 2018b). The implication of fetal neurogenesis in childhood and adult-onset disorders 

may highlight a critical period in early brain development for multiple psychiatric disorders 
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(Geschwind and Rakic, 2013). As knowledge of gene regulation at a single cell level 

increases, the precision of assigning of genetic risk to specific cell types will establish a 

solid framework for the circuit architecture of these disorders.

Diagnostic architecture

Psychiatry is one of the few areas in medicine that lack of objective biomarkers of illness. 

Other areas of medicine have frequently updated diagnostic classifications as new biological 

data and increased understanding of etiopathology emerge. In the absence of objective 

diagnostic features from laboratory testing, brain imaging, or pathology, the definitions of 

psychiatric disorders are necessarily based on descriptive data collected via human 

interactions and organized by expert panels. A long-standing tension is whether psychiatric 

disorders are better considered as fewer broad categories or more numerous refined 

categories. In the past 30 years, psychiatric nosology has tended toward the latter position.

For almost all psychiatric disorders, genetic data are the most fundamental biomarker yet 

discovered (recalling that humans are “exposed” to their genomes from conception and 

given the plausible absence of reverse causation). Given the well-documented and extensive 

patterns of comorbidity, it is perhaps unsurprising that genetic results show fundamental 

overlaps between many adult and childhood disorders. For common variation, SCZ has 

significant positive genetic correlations with BIP, MDD, ADHD, ASD, and AN (Brainstorm 

Consortium, 2018), and MDD has significant positive genetic correlations with anxiety 

disorders, ASD, ADHD, BIP, and AN (Major Depressive Disorder Working Group of the 

Psychiatric Genomics Consortium, 2018). Neurological conditions in contrast have far fewer 

significant genetic correlations (and largely for clinical subtypes like migraine with/without 

aura). Moreover, the lifetime presence or absence of many psychiatric disorders have 

positive genetic correlations with quantitative measures of symptoms – e.g., lifetime MDD 

has a genetic correlation of 0.98 with depressive symptoms (Major Depressive Disorder 

Working Group of the Psychiatric Genomics Consortium, 2018). Similar results have been 

reported for ASD, ADHD, and OCD (Martin et al., 2018a). Similarly, for rare variation, as 

described above, there are pleiotrophic effects for most rare CNV and exon variants of 

strong effect as many such variants increase risk for multiple neurodevelopmental 

conditions.

Given the emerging genetic findings, one might naturally wonder about clinical genetic 

testing – what are the standards for technological readiness and precisely which findings are 

ready for clinical use in psychiatry? A full treatment of this complex topic is beyond the 

scope of this review, and the answers also depend on national laws, local ethical standards, 

and access to genetic testing technologies. On the scientific side, we think that the available 

data support three uses in clinical psychiatry. (a) For severe, childhood onset 

neurodevelopmental disorders (particularly severe ID and ASD), one can argue for genetic 

evaluation of large CNVs and rare mutations that disrupt the protein sequence of genes 

important to neurodevelopment. We note that this is now done in many academic centers. 

The utility is mostly diagnostic for the child and relevant to family planning for the parent; 

some variants will also be medically important and lead to a change in clinical management. 

(b) Large CNVs in severe psychotic disorders (SCZ and schizoaffective disorder) will be 
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present in 3–5% of cases. The utility is diagnostic and in ameliorating medical morbidity 

given that most CNVs are multi-system disorders carrying additional medical risks. (c) 

Unusual cases: individuals with a wide range of single-gene disorders can initially present 

with prominent psychiatric features. Instead of a primary psychiatric disorder, the behavioral 

features are secondary to a biological process that has been disrupted by a strong-effect 

mutation. Classic examples include Wilson’s disease and Huntington’s disease which can 

present with psychotic or mood symptoms. The utility here is diagnostic and possibly 

therapeutic (e.g., copper chelation therapy for Wilson’s disease can markedly improve 

outcomes if not delayed due to a missed diagnosis).

In many countries, genetic tests can be used by consumers without having rigorous 

evaluation of analytical validity, clinical validity, and clinical utility (again there are complex 

and country-dependent issues). However, there are abundant examples of genetic tests that 

are now being used clinically that have minimal or no scientific basis. This is obviously 

highly troubling and problematic but such testing has been allowed to occur due to failures 

of regulatory processes.

The fundamental database is not sufficiently complete to draw unambiguous conclusions – 

research in progress by many groups is combining epidemiological, clinical, and genetic risk 

factors in historically large samples. However, we posit that the genetic results are consistent 

with a tentative position: based on pervasive genetic overlap between most childhood and 

adult-onset psychiatric disorders and their inter-correlations with cognitive ability and 

personality, a central part of the inherited liability is shared by many psychiatric disorders. 

There may well be additional genetic factors that increase risk for specific disorders. When 

the scientific database is more mature, revision of psychiatric nosology based on combining 

clinical with rare and common variant genetic results may well be warranted.

Conclusions & future directions

Complete genetic discovery.

In the past decade, genetic approaches to psychiatric disorders have yielded more 

reproducible insights into etiology than any other prior approach. We now know vastly more 

about the fundamental causes of these impactful disorders than ever before. What we know 

now is incomplete and inadequate. We need to complete genetic discovery, and we believe 

that this should be an international priority in this area. Inexpensive SNP arrays can measure 

the contributions of the vast majority of common variation and be efficiently assessed in 

large populations now. To measure the full spectrum of rare variation and less accessible 

common variation, we will need resequencing efforts of similar magnitude but this will 

likely have to wait for more efficient platforms and improved functional annotations.

Genetic architecture in individuals.

We have described multiple architectures for psychiatric disorders. The ultimate goal is 

understanding as fully as possible the etiological process in individuals with a severe 

psychiatric disorder. How does knowledge derived from large populations contribute to 

illness in an individual? For example, in those with ASD who harbor a rare de novo PTV, is 
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that variant sufficient to cause the disorder or are additional genetic or environmental risk 

factors required? The answers will likely vary depending on the gene, but already there are 

multiple hints that risk profiles in individuals are likely to be complex, even in those 

harboring large effect mutations. For instance, few large effect mutations are specific to a 

disorder suggesting a possible role for additional genetic, environmental, and stochastic 

factors. Although some large effect CNVs associated with ASD or SCZ have effects on 

fecundity, when discovered in population surveys in individuals without regard to disease 

status, many have relatively modest effects on the ability to have offspring, compared with 

those having the disease diagnosis (Stefansson et al., 2014). In the instances where this has 

been studied directly, polygenic risk acts additively with major mutational burdens (Gaugler 

et al., 2014; Niemi et al., 2018; Purcell et al., 2014; Weiner et al., 2017).

The model that we prefer is that many (but not all) large effect mutations sensitize an 

individual to manifest a developmental neuropsychiatric disorder. We recognize that there 

are rare large effect mutations that show clear preferential effects towards a disorder as is the 

case for some CNVs and rare protein altering mutations. However, the effects on brain 

development and function of many de novo or Mendelian mutations are so large as to be 

non-specific with respect to any single disorder (e.g. epilepsy, ASD, SCZ, ID). The resultant 

phenotype in an individual is dependent on the impact of environmental factors, and/or the 

additive effects of other rare variation and polygenic risk. This model may also help explain 

the high unaffected carrier rate for some inherited mutations, if one presumes that the parent 

carrying the mutation lacks the polygenic risk that has accumulated in the child. However, 

we are still a long way from being able to confidently predict disorder phenotypes from 

measurement of genetic risk. As noted above, the basic data remain incomplete and our – 

further genetic discovery efforts are needed to derive secure and enduring answers to these 

fundamental questions. We do note that the concept of individual architecture also spans 

multiple the other architectures described in this review, which will be essential to 

understanding mechanisms and focused therapeutics in the individual.

Sex differences.

The genetic and pathophysiological explanations for sex differences in psychiatric disorders 

remain poorly understood, but the advances in gene discovery described here provide a new 

foundation to fuel studies in this important area. Many psychiatric disorders show a different 

prevalence or onset in males and females (Seedat et al., 2009). For example, marked sex 

differences in lifetime risk are apparent for ADHD, AN, ASD, MDD, and SCZ (Hudson et 

al., 2007; Martin et al., 2018b; Philippe et al., 1999). Whether sex differences are due to 

differential vulnerability, diverging behavioral/cognitive manifestations, and/or observer bias 

is not known with clarity but is likely to differ across diagnoses. For example, in ASD, 

genetic and functional genomic evidence suggests the presence of female protective factors 

based in brain function and structure (Robinson et al., 2013; Werling and Geschwind, 2013; 

Werling et al., 2016), whereas in MDD or ALC, social factors likely may have a larger role 

(Riecher-Rossler, 2017). Understanding the basis of sex differences may provide critical 

clues for pathophysiology and could inform diagnosis and treatment.
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What’s the end game?

It is essential to consider what is required to improve the diagnosis and treatment of 

individuals with severe psychiatric disorders. An extreme possibility is that achieving this 

intention could require a full understanding of the development of the human brain, the most 

complicated machine known to us. Achieving this intention is unlikely to occur in the 

foreseeable future. However, there are indications from other areas of medicine that full 

understanding of a pathological process is not required to improve therapeutics. For 

instance, the causes of melanoma are not fully worked out but the advent of checkpoint 

inhibitors – based on several key pieces of the melanoma puzzle — has markedly improved 

outcomes for disseminated disease.

A reasonable, and not overly optimistic, answer is that a solid beachhead is needed, a 

definite, reproducible, and clear identification of a neurobiological process conferring risk or 

protection for a psychiatric disorder. With such knowledge, the field changes markedly: 

beachheads become lodgements, lodegments become full theaters of engagement, and 

manifest progress becomes achievable. Instead of discovering medicines by accident and 

happenstance (as with virtually all prototypic medications used in clinical psychiatry), the 

power of modern rational drug design can be implemented.

To achieve this end, we suggest the need for a concerted global effort. We are far from being 

able to confidently predict disorder phenotypes from measurement of genetic risk. Given the 

marked progress to date, we believe it sensible to continue large and comprehensive gene 

discovery efforts. Such efforts are now clearly incomplete, but definable stopping points can 

be articulated (e.g., where genetic discovery asymptotes or if new discoveries only replicate 

known functional and cellular architectures). This will require working with groups 

traditionally underrepresented in psychiatric research to attain an inclusive and complete 

understanding of the contribution to disease in individuals with non-European ancestries. 

Discovery efforts across multiple architectures are warranted to understand the individual 

architecture that underlies disease risk and pathophysiology.
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Figure 1: Relationship of the levels of disease architecture to different stages of analysis.
Genetic studies identify the loci and causal variants that impact disease and thereby its 

genetic architecture. The subset of causal variants in coding regions are typically directly 

assignable to genes. As many loci are non-coding, regulatory regions and the genes they 

regulate need to be empirically defined and identified – such studies render the functional 

architecture of disease. As psychiatric disorders all appear to be polygenic, it is also 

necessary to consider the implicated genes in the context of biological networks and 

pathways. Sets of genes and networks can be places in specific developmental stages and 

cell types to generate more precise understanding their effects on brain regions and circuits. 

Clinical architecture – the “structure” of the interrelationships between psychiatric 

syndromes – is subsequently refined by increased knowledge at each of these levels.
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Figure 2: 
Prevalence and impact of psychiatric disorders compared to other major diseases. Looking at 

both measures allows evaluation of both how common and how impactful a psychiatric 

disorder is. These data are from global surveys, and we have included other major classes of 

disease. Prevalence (X-axis) and disability-adjusted life years (DALYs, Y-axis) for ten major 

classes of disorders. DALYs are a measure of overall disease burden due to the number of 

years lost due to poor health, disability, or premature mortality, here expressed as the 

proportion of total global DALYs. Psychiatric disorders rank fifth and accounted for 6.7% 

(females are the open diamond and males the closed diamond) (Global Burden of Disease 

Collaborative Network, 2017).
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Figure 3: 
(a) Overview of common variant gene discovery for the psychiatric disorders in Table 1. 

Sources and label definitions are in Table 1. The X-axis is the log10 of the number of cases 

in the largest current GWAS. The Y-axis is the number of genome-wide significant and LD-

independent loci. The color of each point reflects twin-heritability per the scale on the right. 

For BIP, MDD, and SCZ, the graph includes published and in preparation/in press results 

(connected by a line). Sample size is the major determinant of discovery. We thank PGC 

colleagues for allowing us to present pre-publication results.

(b) Density plot of genetic risk scores (GRS) in 4,932 SCZ cases (red) and 6,210 controls 

(blue) from Sweden (training set is from the PGC 2014 SCZ paper excluding Swedish 
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samples) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 

The X-axis shows the standardized GRS and the Y-axis shows the smoothed density, a 

prediction of the proportion of cases or controls with a given GRS value. The dashed vertical 

lines show the means of each group. The group means differ by over ⅔ of a standard 

deviation (0.686), and are highly significantly different (P=1.1e-254, controlling for 

genotyping array and 5 ancestry PCs). The two curves overlap substantially but there are 48 

controls with GRS > 2 and 24 cases with GRS < −2.

(c) Depiction of GRS described in Figure 3c but showing the proportions of cases (red) and 

controls (blue) in each SCZ GRS decile (Y-axis, 1=lowest 10%, 10=highest 10% GRS). X-

axis is the proportion within each decile. The proportions of cases increase steadily from 

lowest to highest. However, there are substantial numbers of cases in the lowest decile and 

controls in the highest decile.

Sullivan and Geschwind Page 40

Cell. Author manuscript; available in PMC 2020 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Establishing the functional and cellular architectures based on genetic findings.
To begin, genetic analyses identify highly confident associations with one or more 

psychiatric disorders. Common variation is usually detected using GWAS and SNP array 

technologies. Rare variation capitalizes on CNVs or resequencing via WES or WGS. Some 

causal variants alter protein structure or function and thereby directly point at specific genes. 

However, most genetic variation discovered to date is in non-coding regions which can have 

highly diverse regulatory functions (e.g., enhancer or repressor activity or regulation of 

splicing or alternative promotor usage). Assigning non-coding regulatory variants to genes is 

imprecise as gene regulation often occurs at a distance and does not necessarily involve the 

nearest gene. Instead, one can identify candidate target genes impacted by non-coding 

disease associated genetic variation using a range of functional genomic data. For example, 

quantitative mapping approaches can identify how a particular variant effects open 

chromatin, histone tail modifications, gene expression, splicing, and DNA methylation. 

These methods integrate DNA-based genetic variation with multi-level “omic” data – RNA 

sequencing (eQTL or sQTL), methylation analysis (mQTL), or ChIP-seq (hQTL) – to 

identify the quantitative impact of genetic variation on these molecular phenotypes. Other 

biochemical methods identify active/open chromatin (ATAC-seq. DNase-seq) or 3D 

chromatin structures such as enhancer-promotor loops (Hi-C, ChIA-PET), which provide 

additional information on the relationship between regulatory regions and specific genes 

with which they interact. Many functional genomic readouts are tissue-specific highlighting 

the need for comprehensive studies of the human brain across development. When 

combined, these methods can identify the likely functional impact of disease associated 

variation on specific genes, which can then be experimentally validated. Molecular pathways 

can be identified using pathway or gene network analysis. Sets of disease-associated 

candidate genes can be tested for cell type enrichment to define the cellular architecture. A 

similar approach applied to identified regulatory regions to define functional regulatory 

networks or the cell types impacted by disease associated regulatory variation.
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Table 2:

Brief list of “omic” technologies used to understand psychiatric disorders.

Initialism or acronym Reversed Description

GWAS Genome-wide association study Genomics: usually a case-control comparison of common genetic 
variation revealed by SNP arrays (pre-specified set of reliably 
measured biallelic genetic markers selected for good performance and 
coverage of the genome). Can achieve coverage of >90% of common 
variants in the genome. Can also identify rare copy number variants. 
Many studies of psychiatric disorders. Reviews PMID 19895722 
28969442 28686856.

WGS Whole genome sequencing Genomics: ab initio resequencing of the genome. In concept, can 
identify all types of genetic variation. Increasingly used clinically for 
rare genetic syndromes. Few studies of psychiatric disorders to date. 
Review PMID 29700468.

WES Whole exome sequencing Genomics: a version of WGS focused on the protein-coding parts of 
the genome (~3% using one of several methods to “pull-down” all 
known exons. This provides a focused and more inexpensive way to 
identify gene-disrupting or missense variants in exons. WES has 
identified ~100 genes for ASD, and an increased “burden” of rare, 
protein-altering genetic variation differing between cases and controls 
in SCZ and a few other disorders. Reviews PMID 24941179 
26139844.

- Epigenomics Unlike the (usually) static, body-wide nature of genomics (GWAS, 
WGS, WES), multiple readouts that capture changes that do not affect 
DNA sequence, but act to alter the functional state of cells and tissues. 
These include DNA methylation, histone tail modifications, etc. Initial 
approaches required large numbers of cells but improved versions can 
increasingly be applied to single cells. Epigenomic changes can be 
highly specific to a cell or tissue or common across the body; 
generally reflect cell differentiation and function. Review PMID 
22955614.

OC Open chromatin Epigenomic: regions of the genome that are not histone-bound in cell 
nuclei and thus “open” to gene regulatory processes. Main methods 
are ATAC-seq and DNase-seq. Review PMID 22955614.

ChIP-seq Chromatin immunoprecipitation sequencing Epigenomic: a class of methods to identify functional modifications to 
specific genomic regions. Many focus on changes to the N-terminus 
tails of histone proteins. Such changes are part of the “histone code” 
that can dramatically alter gene expression. Examples of histone 
marks strongly associated with functional chromatin states include 
acetylation at the 27th lysine of the histone H3 protein (H3K27ac) and 
trimethylation of the 4th lysine of the histone H3 protein (H3K4me3). 
Review PMID 22955614.

Hi-C None Epigenomic: One of several chromosome conformation capture 
methods that can capture genomic regions that are near each other in 
cell nuclei. Hi-C does this in an “all-to-all” manner, whereas other 
methods target more specific interactions. A subset of these DNA-
DNA contacts these can mediate regulatory interactions between 
regions that are located far apart. Reviews PMID 28905911 
30367165.

RNA-seq RNA sequencing Epigenomic: identify the amount of all RNA molecules in a cell or 
tissue, a transcriptomic technology. RNA-seq can also capture 
splicing and isoform level information. Review PMID 28626224.

eQTL Expression quantitative trait loci Genomic & epigenomic: identify genetic predictors of gene 
expression. Essentially, GWAS for every variable transcript in a tissue 
(~50,000) to identify genetic variants associated with RNA 
abundance. Many are highly tissue- or stage-specific. Reviews PMID 
23650636 26813401.
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Table 3:

Many regulatory interactions are distal

Distance from Regulatory Element to TSS

eQTL ATAC-seq HI-C

127 kb 407kb 394 kb*

Distribution of eQTL Distance from TSS

< 10kb > 10kb >100kb

24% 76% 29%

Average distance from regulatory elements defined by eQTL, ATAC-seq and Hi-C in fetal brain is shown as well as percentage of eQTL in >10kb 
(distal) and <10kb (proximal) bins from the TSS of genes in fetal brain. Data from (de la Torre-Ubieta et al., 2018; Polioudakis et al., 2018; Won et 
al., 2016) and Walker and Geschwind (unpublished). eQTL are generally closer to the TSS than the biochemically defined putative regulatory 
regions which is expected especially given the limited (10 kb) resolution of Hi-C.
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