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DNA damage–mediated activation of extracellular signal–
regulated kinase (ERK) can regulate both cell survival and cell
death. We show here that ERK activation in this context is
biphasic and that early and late activation events are mediated
by distinct upstream signals that drive cell survival and apopto-
sis, respectively. We identified the nuclear kinase mitogen-
sensitive kinase 1 (MSK1) as a downstream target of both early
and late ERK activation. We also observed that activation of
ERK3MSK1 up to 4 h after DNA damage depends on epidermal
growth factor receptor (EGFR), as EGFR or mitogen-activated
protein kinase/extracellular signal-regulated kinase kinase (MEK)/
ERK inhibitors or short hairpin RNA–mediated MSK1 deple-
tion enhanced cell death. This prosurvival response was partially
mediated through enhanced DNA repair, as EGFR or MEK/ERK
inhibitors delayed DNA damage resolution. In contrast, the second
phase of ERK3MSK1 activation drove apoptosis and required
protein kinase C� (PKC�) but not EGFR. Genetic disruption of
PKC� reduced ERK activation in an in vivo irradiation model, as
did short hairpin RNA–mediated depletion of PKC� in vitro. In
both models, PKC� inhibition preferentially suppressed late acti-
vation of ERK. We have shown previously that nuclear localization
of PKC� is necessary and sufficient for apoptosis. Here we identi-
fied a nuclear PKC�3ERK3MSK1 signaling module that regu-
lates apoptosis. We also show that expression of nuclear PKC� acti-
vates ERK and MSK1, that ERK activation is required for MSK1
activation, and that both ERK and MSK1 activation are required for
apoptosis. Our findings suggest that location-specific activation by
distinct upstream regulators may enable distinct functional out-
puts from common signaling pathways.

Irradiation (IR)3 and chemotherapy are widely used for the
treatment of cancer; however, adjacent healthy tissues can also
be damaged, including the mucosal tissues of the gut and oral

cavity. Such collateral tissue damage can result in significant
comorbidities and, in some cases, limit the course of therapy
(1). As IR and chemotherapies work in part by inducing apo-
ptosis, modulation of apoptotic mediators specifically in
nontumor cells could offer protection against collateral tissue
damage, resulting in improved quality of life and, in some cases,
better tumor eradication (2–4). PKC� is a ubiquitously
expressed serine–threonine kinase that controls a wide variety
of cell functions, including proliferation, cell survival, invasion
and migration, and cell death (5). PKC� has been identified as
an important mediator of DNA damage–induced apoptosis,
and our laboratory and others have shown that inhibition of
PKC� activation can reduce IR and chemotherapy-induced apo-
ptosis in vitro and toxicity to nontumor tissues in vivo (6 –9).
Remarkably, inhibition of PKC� has been shown to preserve
salivary gland function in mice exposed to head and neck IR but
did not impact treatment of the tumor (8). This supports pre-
vious data from our laboratory that suggests that, in contrast to
normal cells, in some tumor cells PKC� does not regulate apo-
ptosis but may instead have a prosurvival role (10 –12).

Studies from our laboratory indicate that nuclear PKC� is
required for apoptosis, suggesting that PKC� function may be
dictated in part by its subcellular localization (13–18). Further,
most studies suggest that PKC� does not directly regulate the
apoptotic machinery but may instead integrate upstream sig-
nals to regulate cell fate decisions in response to cell distress or
damage (2, 17, 19, 20). In this regard, PKC� has been shown
to regulate signaling through the mitogen-activated protein
kinase (MAPK) pathways (extracellular signal–regulated kinases
(ERK), c-Jun N-terminal kinases, and p38 MAPKs), primarily
downstream of growth factor receptors (21–23) but also in
response to DNA damage (24).

The MEK/ERK pathway has well-established roles in prolif-
eration and survival and regulates cell cycle arrest and apopto-
sis in response to DNA damage (21, 22, 25–27). In damaged
cells, the duration, magnitude, and subcellular localization of
ERK1/2 activation may be critical in determining whether the
outcome is prosurvival or pro-apoptotic (21, 25). We show that
activation of ERK in response to DNA damage agents is bipha-
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sic, consisting of an early prosurvival phase and a later pro-apo-
ptotic phase. These phases are mediated by distinct upstream
regulators, with EGFR activating ERK in the early phase and
PKC� activating late-phase ERK. Furthermore, we identify a
unique ERK3MSK1 signaling module regulated by nuclear
PKC� that is essential for apoptosis. Our study shows that DNA
damage induces temporally distinct prosurvival and pro-apo-
ptotic signaling pathways and suggest that the functional out-
put of ERK3MSK1 activation in response to DNA damage is
regulated, at least in part, by the upstream activator.

Results

In response to DNA damage, biphasic activation of ERK drives
survival and apoptosis

ParC5 rat parotid acinar cells provide a useful model to study
DNA damage–induced cell death, as their response to irradia-
tion is similar to that observed in salivary acinar cells in vivo (3).
In parC5 cells treated with etoposide, ERK activation is bipha-
sic, with an initial peak at around 2 h and a second peak at 6 – 8
h (Fig. 1A). Similar results were seen when cells were treated
with IR (Fig. 2B). Quantification of pERK/ERK across multiple
time points from three independent experiments is shown in
Fig. 1B. To determine whether one or both of peaks of ERK
activity are required for apoptosis, we assayed activation of
caspase-3 in cells pretreated with PD98059, which inhibits

MEK, the upstream regulator of ERK. When apoptosis was
assayed 2– 4 h after addition of etoposide, pretreatment with
PD98059 resulted in an up to 4-fold increase in apoptosis, dem-
onstrating that early activation of ERK conveys a survival signal
(Fig. 1C). However, at 8 h, PD98059 slightly suppresses apopto-
sis. Consistent with this, when parC5 cells were pretreated with
PD98059 or a second MEK inhibitor, U0126, and then treated
with etoposide for 18 h, apoptosis was significantly reduced
compared with cells treated with etoposide alone (Fig. 1D).
Similar results were seen with pretreatment using MEK inhib-
itors followed by IR (Fig. 1E). These data demonstrate that ERK
activation in response to DNA damage can drive both survival
and apoptosis and that these distinct functional outputs may be
dictated by the kinetics of activation.

Activation of EGFR in response to DNA damage promotes cell
survival

Activation of EGFR occurs rapidly but transiently in
response to DNA damage, with kinetics similar to the early
phase of ERK activation (Fig. 2A, left). Early activation of ERK
requires EGFR activity, as it is abolished in cells pretreated with
gefitinib (Fig. 2A, right). Notably, EGFR inhibition only blocked
early activation of ERK (up to 4 h), with no effect on late acti-
vation of ERK (Fig. 2, A and B). However, both EGFR inhibitors
increased apoptosis up to 8 h after addition of etoposide (Fig.

Figure 1. Biphasic activation of ERK drives survival and apoptosis. A, ParC5 cells were treated with 50 �M etoposide for the indicated times (hours). Cells
were harvested and immunoblotted for pERK and stripped and reprobed for ERK and �-actin. B, quantitation by densitometry of three separate experiments
similar to that shown in A. Data represent pERK/ERK/actin ratios � S.E. Statistics represent one-way ANOVA and post hoc Tukey’s multiple comparisons. **, p �
0.001; *, p � 0.05. C, ParC5 cells were pretreated with the DMSO control (black columns) or 10 �M PD98059 (gray columns) prior to addition of 50 �M etoposide
for the indicated times (hours). D, ParC5 cells were pretreated with the DMSO control (black columns), 20 �M PD98059 (dark gray columns), or 20 �M U0126 (white
columns) prior to addition of 0, 0.5, 5, or 50 �M etoposide for 18 h. E, ParC5 cells were pretreated with the DMSO control (black columns), 20 �M or 40 �M PD98059
(dark gray columns), or 20 �M or 40 �M U0126 (light gray and white columns) and then left untreated or treated with 10 Gy of IR. Cells were harvested 48 h after
IR. Caspase-3 activity (C and E) and DNA fragmentation (D) were assayed as described under “Experimental procedures.” Data shown are representative
experiments; statistics represent two-way ANOVA for comparison of time point or treatment with the corresponding control. **, p � 0.001; *, p � 0.05. Error bars
represent S.E. from triplicate samples.
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2C), similar to that seen with the MEK inhibitor PD98059
(Fig. 1C).

Previous studies have suggested a role for EGFR and ERK in
regulation of DNA double-stranded break repair, which could
in part explain the prosurvival phenotype we observed (29 –33).
To test this, we assayed DNA damage using a comet assay in
cells treated with IR and pretreated with gefitinib or PD98059.
Although untreated cells and inhibitor-treated cells had a sim-
ilar amount of DNA damage at 15 min, DNA damage was
increased in inhibitor-treated cells 30 min and 1 h after IR com-
pared with the control, indicating a delay in DNA repair with
inhibition of ERK or EGFR (Fig. 2D). Our study shows that
prosurvival signaling through EGFR3ERK correlates with
enhanced DNA repair in the first few hours after DNA damage.
This could occur via direct regulation of DNA repair by
EGFR3ERK or through an indirect mechanism, such as pro-
longed activation of cell cycle checkpoints to allow repair.

PKC� activation of ERK in response to DNA damage drives
apoptosis

PKC� is a pro-apoptotic kinase that also regulates ERK sig-
naling in some biological contexts (5). We investigated the
kinetics and magnitude of ERK activation in parC5 cells
depleted of PKC� using shRNA (Fig. 3A) and in salivary gland
tissue lysates from PKC��/� and PKC��/� mice that were
treated with IR to the head and neck (Fig. 3B). In PKC��/�

mice, the pattern of ERK activation by IR was similar to that
observed in cells treated with etoposide, with two phases of
ERK activation at 2 and 6 h (Fig. 3B). In PKC��/� mice, both
phases of ERK activation were reduced; quantitation of pERK/
ERK by densitometry shows that the second peak (6 h) was
more dramatically reduced than the first peak (2 h) (45% versus
80% reduction, respectively) (Fig. 3B). This suggests that deple-
tion of PKC� primarily inhibits the “pro-apoptotic” phase of
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ERK activation. To confirm this, we assayed ERK activation in
parC5 cells depleted of PKC� with shRNA (�561) or a scram-
bled shRNA (SCR). Similar to PKC��/� mice, depletion of
PKC� resulted in a small decrease in the early phase of ERK
activation by etoposide at 2 h and a more dramatic effect on
later activation of ERK at 6 h (Fig. 3A). Our data suggest that
PKC� primarily regulates the second phase of ERK activation to
drive apoptosis, independent of prosurvival signaling by ERK.
Depletion of PKC� also slightly decreased activation of EGFR in
cells treated with etoposide (Fig. 3A), consistent with partial
inhibition of the early phase of ERK activation (Fig. 3, A and B).
To directly ask whether PKC� contributes to cell survival in
response to DNA damage, we analyzed caspase-3 activation in
parC5 cells depleted of PKC�. Depletion of PKC� using three
independent shRNAs suppressed apoptosis at all time points,
indicating that PKC� drives apoptosis and does not play a role
in the early prosurvival effect through EGFR3ERK (Fig. 3C).
Our study demonstrates that, in response to DNA damage,
PKC� activation of ERK appears to solely drive cell death
signaling.

Nuclear translocation of PKC� is required for DNA damage–
induced apoptosis, and direct targeting of PKC� to the nucleus
induces apoptosis (13, 16). Therefore, we investigated the
hypothesis that the pro-apoptotic phase of ERK activation is
mediated through nuclear PKC�. ParC5 cells were transduced
withAd-GFP,Ad-GFP-PKC�WT,orAd-GFP-PKC�NLS,acon-
struct where we added an SV40 NLS to PKC�, resulting in
direct targeting of PKC� to the nucleus (15, 16). Remarkably,
expression of either Ad-GFP-PKC�WT or Ad-GFP-PKC�NLS
resulted in increased ERK activation (Fig. 3D). PKC�CF is a
caspase-cleaved form of PKC� generated in response to DNA
damage and is a potent inducer of apoptosis (28). PKC�CF is
constitutively nuclear because of loss of constraints imposed by
the regulatory domain of the kinase (16). As shown in Fig. 3E,
expression of pEGFPN1-PKC�CF robustly induces pERK, fur-
ther supporting our conclusion that nuclear localization of
PKC� is sufficient to activate ERK. To determine whether ERK
activation is required for apoptosis induced by nuclearly tar-
geted PKC�, parC5 cells transduced with Ad-GFP-PKC�NLS
were treated with the MEK inhibitors PD98059 and U0126.
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Expression of Ad-GFP-PKC�NLS induced caspase-3 activa-
tion, as shown previously, and this could be suppressed by both
MEK inhibitors, indicating a requirement for ERK activation
downstream of PKC� for induction of apoptosis (Fig. 3F).

ERK activates MSK1 in response to DNA damage

Our study shows that nuclear PKC� induces apoptosis via
activation of ERK; however, downstream targets of ERK that
drive apoptosis are largely unknown. MSK1/2 kinases are acti-
vated downstream of ERK and p38 and predominantly localize
to the nucleus, where they phosphorylate transcription factors
and regulate chromatin remodeling (29 –31). In response to
DNA damage, MSK1 is activated in a biphasic manner with
kinetics similar to what we have shown previously for ERK
(Figs. 4A and 1A). Activation of MSK1 in �561 and �844 cells is
suppressed compared with SCR cells (Fig. 4A). Similar to ERK
(Fig. 3, A and B), loss of PKC� suppresses late MSK1 activation
(6 to 8 h) to a greater extent than early activation (2 to 4 h) (Fig.
4A), whereas pretreatment with gefitinib only suppresses early
activation of MSK1 (Fig. 4B).

Our observation that MSK1 and ERK activation are co-reg-
ulated in response to DNA damage suggests that activation

of MSK1 may contribute to prosurvival signaling through
EGFR3ERK and pro-apoptotic signaling through PKC�3ERK.
Indeed, depletion of MSK1 using three unique shRNAs results
in increased apoptosis up to 8 h after addition of etoposide,
indicating that, like ERK, early activation of MSK1 is prosur-
vival (Fig. 4C). In contrast, depletion of MSK1 dramatically
decreases cell death 24 – 48 h after IR (Fig. 4D), analogous to
what we described previously when MEK/ERK was inhibited
(Fig. 1E). Our data support a model whereby, in response to
DNA damage, EGFR activation of ERK and MSK1 promotes
cell survival in the first few hours after DNA damage, whereas
late activation of MSK1 downstream of PKC�3ERK may be
required for apoptosis.

PKC� drives DNA damage–induced apoptosis via ERK3MSK1

As targeting PKC� to the nucleus activates ERK (Fig. 3D), we
asked whether nuclearly targeted PKC� also activates MSK1 as
evidenced by phosphorylation on Ser-376. As seen in Fig. 5A,
transduction of parC5 cells with Ad-GFP-PKC�NLS results in
activation of MSK1. MSK1 activation by Ad-GFP-PKC�NLS
could be suppressed by pretreatment with the MEK/ERK inhib-
itor PD98059 but not the p38MAPK inhibitor SB20358 (Fig.
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5B). Unexpectantly, inhibition of p38MAPK with SB20358
increased pERK in both Ad-GFP and Ad-GFP-PKC�NLS trans-
duced cells; however, pMSK1 was only increased in cells that
were also transduced with Ad-PKC�NLS (Fig. 5B). Notably,
p38MAPK inhibition has no effect on etoposide induced apo-
ptosis (Fig. S1), indicating that this pathway does not contribute
to apoptotic signaling through PKC�.

To verify a pro-apoptotic function for MSK1 downstream of
nuclear PKC�, we analyzed the ability of Ad-GFP-PKC�NLS to
induce apoptosis in parC5 cells in which MSK1 was depleted
with shRNA. Apoptosis driven by expression of Ad-GFP-
PKC�NLS was suppressed in cells depleted of MSK1, and the
degree of suppression was correlated with the amount of MSK1
depletion (Figs. 5C and 4C). Finally, we asked whether MSK1 is
required for apoptosis induced by PKC�CF. Expression of pEG-
FPN1-PKC�CF potently induced apoptosis in control parC5
cells, but apoptosis was severely reduced in cells depleted of
MSK1 (Fig. 5D).

Our study defines a common ERK3MSK1 pathway that,
when activated by EGFR in response to DNA damage, drives
cell survival but when activated by nuclear PKC� drives apopto-
sis (Fig. 6). Moreover, we define a nuclear specific function for
PKC� in driving apoptosis through ERK3MSK1. Activation of
ERK3MSK1 for survival versus apoptosis is temporally dis-
tinct, which may reflect access to specific upstream regulators.

Discussion

We show that, in the context of DNA damage, activation of
ERK can have a dramatically different biological outcome

depending on when, how, and where in the cell it is activated.
We identify temporally distinct prosurvival and pro-apoptotic
signaling pathways that are both mediated through ERK3
MSK1. Prosurvival signaling through EGFR3ERK enhances
DNA repair in the first few hours after DNA damage through
a PKC�-independent pathway. In contrast, pro-apoptotic
signaling through ERK occurs 6 – 8 h after DNA damage and
is independent of EGFR but dependent on PKC�. Further-
more, our study identifies a unique ERK3MSK1 signaling
module regulated by nuclear PKC� that is essential for DNA
damage–induced apoptosis. Our study suggests that loca-
tion-specific activation by distinct upstream regulators may
enable common signaling pathways to have unique func-
tional outputs.

The MEK/ERK pathway has well established roles in prolif-
eration and survival and paradoxically regulates cell cycle arrest
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Figure 5. PKC� drives DNA damage–induced apoptosis via ERK3MSK1. A, ParC5 cells were transduced with Ad-GFP or Ad-GFP-PKC�NLS (m.o.i. 200) for
24 h. Cells were harvested at the indicated times post-IR and immunoblotted for the indicated proteins. B, ParC5 cells were pretreated with 20 �M PD98059 (PD),
5 �M SB203580 (SB), or a combination of both concurrently with transduction of either Ad-GFP or Ad-GFP-PKC�NLS adenovirus (m.o.i. 200). Cells were then
harvested and immunoblotted for the indicated proteins. C and D, ParC5 cells stably expressing either SCR control or MSK1 shRNA were either left untrans-
fected or transfected with GFP, GFP-PKC�NLS (C), or GFP-PKC�CF (D) plasmid for 24 h. Cells were harvested and assayed for caspase-3 activity. Data shown are
representative experiments. Statistics represent two-way ANOVA for comparison of time point or treatment with the corresponding control. **, p � 0.001; *,
p � 0.05.

Figure 6. Biphasic activation of ERK and MSK1 in response to DNA
damage regulates survival and apoptosis. Our study defines a common
ERK3MSK1 pathway that, when activated by EGFR in response to DNA
damage, drives cell survival but when activated by nuclear PKC� drives
apoptosis.
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and apoptosis, particularly in response to DNA damage (21, 22,
25–27). We show that biphasic activation of ERK in response
to DNA-damaging agents sequentially activates prosurvival
and pro-apoptotic signaling pathways. EGFR activation is
required for the early, prosurvival phase of ERK activation in
response to DNA damage. Notably, pretreatment of cells
with gefitinib only suppressed the early phase of ERK activa-
tion, confirming that early and late ERK activation have dis-
tinct upstream regulators. The kinetics of activation of EGFR
and early activation of ERK are similar to the kinetics of DNA
repair, as assayed by comet, supporting published studies
that show a role for EGFR in the regulation of IR-induced
DNA double-stranded break repair (32–35). In some cases,
EGFR regulation of DNA repair is associated with nuclear
translocation of EGFR, and EGFR has been shown to interact
with and regulate DNA repair machinery, including DNA-
dependent protein kinase (32). EGFR can also regulate chro-
matin remodeling and DNA repair through tyrosine phos-
phorylation of histone H4 (36).

The second, pro-apoptotic phase of ERK activation is largely
dependent on PKC� and independent of EGFR. A pro-apopto-
tic function for PKC� is supported by extensive studies in vitro
and in vivo that demonstrate a role for PKC� in apoptosis in
response to many types of cell and tissue damage (3, 4, 10, 17,
18, 20). Furthermore, our study confirms that PKC� does not
contribute to cell survival signaling in response to DNA dam-
age, as depletion of PKC� suppresses the apoptotic response at
all time points (Fig. 3C). However, the fact that ERK activation
is only partially suppressed in irradiated tissues from a � knock-
out mouse supports data suggesting that other pathways, such
as Akt and NF-�B, can contribute to ERK activation in response
to DNA damage (22).

MSK1/2 kinases, members of the AGC kinase family, are
activated by the ERK1/2 and p38 pathways in response to extra-
cellular stimuli and predominantly localize to the nucleus (29 –
31). Activation of MSK1/2 results in phosphorylation of tran-
scription factors required for immediate-early gene expression
and chromatin-associated proteins, including histone H3 (30,
37–39). In our study, MSK1 was activated by DNA damage with
similar kinetics as ERK, and early MSK1 activation, like early
ERK activation, was EGFR-dependent. We show that early acti-
vation of MSK1 through an EGFR3ERK pathway promotes
cell survival, consistent with studies that show a role in stress
resistance (30) and enhanced apoptosis in an MSK1/2 knockout
mouse (40). Given its known role in chromatin modification, it
is interesting to speculate that MSK1 could contribute to the
increase in EGFR-induced DNA repair we observed in the first
few hours after DNA damage.

Notably, prosurvival signaling through EGFR3ERK3MSK1
is transient; however, our study does not address how this signal
is turned off. Nyati et al. (41) show that ataxia telangiectasia–
mutated (ATM) activation can down-regulate ERK through
activation of dual specificity phosphatase-1 (DUSP1), also
known as MKP-1. Likewise, nuclear localized DUSPs, such as
DUSP5, are candidates for regulation of the nuclear level of
activated ERK (42). Inhibition of ERK activation through
DUSP6 has been shown to enhance the DNA damage response
and increase sensitivity to EGFR inhibitors (43). Finally, it is

possible that prosurvival ERK signaling does not need to be
“turned off” for PKC� to induce pro-apoptotic ERK signaling, as
sustained ERK activation has been shown to induce apoptosis
(21, 25).

As PKC� is ubiquitously expressed and regulates a wide vari-
ety of cell functions in addition to apoptosis, it is important to
understand how apoptotic specific signaling by PKC� is medi-
ated (5). We have shown that nuclear accumulation of PKC� is
necessary for apoptosis in response to DNA-damaging agents
and sufficient for apoptosis in many cell types (13–18). This
suggests that the subcellular localization of PKC� in the nucleus
may dictate the apoptosis-specific functions of PKC�. Con-
versely, it is tempting to speculate that localization of PKC� in
other cellular compartments may dictate other functions, such
as proliferation and cell migration. In this study, we use a con-
stitutively nuclear targeted form of PKC� to address the role of
nuclear PKC� in the regulation of pro-apoptotic signaling
through ERK3MSK1. Expression of PKC�NLS potently acti-
vates ERK and MSK1, and activation of these kinases is neces-
sary for PKC�NLS to induce apoptosis (Fig. 5). Likewise,
expression of �CF also induces ERK and apoptosis through an
MSK1-dependent pathway (Figs. 3E and 5D). Although our
study shows that nuclear targeting of PKC� is sufficient to acti-
vate ERK3MSK1, it should be noted that PKC�WT can also
activate ERK (Fig. 3D). Thus we cannot rule out a role for PKC�
in activating cytoplasmic ERK3MSK1. Indeed, PKC� is a
known effector of growth factor signaling and has been shown
to activate ERK in this context (9).

MSK1 is largely associated with cell survival through regula-
tion of transcription of stress-related genes (34). This is consis-
tent with the prosurvival role we demonstrate for early activa-
tion of MSK1 (Fig. 4C). Early activation of MSK1, like ERK,
occurs independently of PKC� but depends on EGFR (Fig. 4, A
and B). As MSK1 is predominantly a nuclear kinase, further
studies are needed to clarify whether EGFR activates a cytoplas-
mic or nuclear pool of MSK1. Our study defines an additional
role for MSK1 in the regulation of cell death and shows that it is
a component of the signaling cascade regulated by nuclear
PKC� that activates the apoptotic response. How PKC� regu-
lates nuclear ERK3MSK1 signaling is not known, although
unpublished studies from our laboratory suggest that PKC�
may regulate the abundance of nuclear and cytoplasmic DUSPs.
Likewise, additional studies will be needed to decipher how the
ERK3MSK1 pathways induce apoptosis. It is tempting to
speculate that, as a chromatin-modifying kinase, MSK1 could
contribute to DNA repair by regulating the accessibility of dam-
aged DNA to repair complexes.

Our identification of an ERK3MSK1 signaling cascade that
can regulate cell survival or apoptosis, depending on how and
where it is activated, suggests a common mechanism that can
be tuned according to the desired outcome. Conceivably, these
pathways could also have shared targets that promote different
functional outcomes dictated by the specific biological context.
Clarification of prosurvival and pro-apoptotic targets of ERK3
MSK1 is essential to maximize the therapeutic potential of tar-
geting these pathways.
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Experimental procedures

Cell culture and generation of shRNA stable knockdown cell
lines

Culture of the parC5 cell line has been described previous-
ly (44). ParC5 cells were stably depleted of target protein
by transducing with either a nontargeting lentiviral shRNA
(SCR) or lentiviral shRNAs against Protein Kinase C
Delta TRCN0000280561 (�561), TRCN0000022844 (�844),
TRCN0000022848 (�848) (Sigma-Aldrich, St. Louis, MO), or
Rps6ka5 (MSK1) Smartvector rat lentiviral set V3SR11245-
14EG314384 (MSK1sh726, MSK1sh760, and MSK1sh864)
(Dharmacon, Lafayette, CO). Human embryonic kidney
293T cells were cultured in Dulbecco’s modified Eagle’s medi-
um/high-glucose medium (Thermo Scientific, Logan, UT;
SH30243.02) supplemented with 10% fetal bovine serum (Sig-
ma-Aldrich, F2442) and transfected using FuGENE 6 (Pro-
mega, Madison, WI) to produce a lentivirus containing the
shRNA described above. The MEK inhibitors PD98059 and
U0126 and the P38 inhibitor SB203580 were obtained from
Tocris (Minneapolis, MN). The EGFR inhibitors gefitinib and
afatinib were obtained from Selleckchem (Houston, TX). All
inhibitors were added 30 min prior to addition of either 50 �M

etoposide (Sigma-Aldrich) or exposure to �-irradiation from a
cesium-137 source.

Immunoblot analysis

Immunoblot analysis was performed as described previously
(3). Polyvinylidene difluoride membranes were stained with
Ponceau S (Sigma-Aldrich, P3504) following transfer to con-
firm equal transfer and loading. The following antibodies were
obtained from Cell Signaling Technology (Danvers, MA): phos-
pho-p44/42 MAPK (ERK1/2) (Thr-202/Tyr-204) (CST4370),
p44/42 MAPK (ERK1/2) (CST4696), phospho-EGFR (Tyr-
1068) (CST3777), EGFR (CST2232), phospho-MSK1 (Ser-376)
(CST9591), p38 (CST9212), PKC� (CST2058), and vinculin
(CST13901). Antibodies to �-actin (ab49900) and GFP (ab290)
were obtained from Abcam (Cambridge, MA). Antibodies to
phospho-p38 (Thr-180, Tyr-182; NB500-138) and MSK1 (bs-
2995R) were obtained from Novus (Centennial, CO) and Bioss
Antibodies Inc. (Woburn, MA), respectively. Area density anal-
ysis was performed on the indicated blots using VisionWorks
software from Analytikjena.

Comet assay

Materials for the comet assay were purchased from Trevigen
(Gaithersburg, MD). ParC5 cells were treated with DMSO, 300
nM gefitinib, or 20 �M PD98059 and incubated at 37 °C for 1 h
prior to irradiation using a cesium-137 source (10 Gy). Follow-
ing IR, cells were harvested at the indicated times for measure-
ment of DNA damage using the neutral comet assay according
to the Trevigen comet assay protocol. Images were analyzed by
Trevigen Comet Analysis Software (version 1.3d). Tail moment
was used to quantify DNA damage.

Expression of PKC� constructs

Overexpression of all PKC� constructs was achieved using
either adenoviral transduction or plasmid transfection, as

described previously (13, 16). For adenoviral infection, parC5
cells were transduced with Ad-PKC�WT-GFP, Ad-PKC�NLS-
GFP, or Ad-GFP at m.o.i. ranging from 50 to 200 focus-forming
units/cell. Infection was allowed to proceed for 24 – 48 h, as
indicated. Transient transfections of plasmid pEGFPN1 and
pEGFPN1-PKC� constructs (�WT, �NLS, and �CF) were per-
formed using Jetprime transfection reagent (Genesee Scientific,
El Cajon, CA).

In vivo irradiation

C57Bl/6 PKC��/� and PKC��/� mice (45) were maintained
at the University of Colorado Anschutz Medical Campus in
accordance with laboratory animal care guidelines and proto-
cols and with approval of the University of Colorado Denver
Institutional Animal Use and Care Committee. Six- to eight-
week-old female mice were anesthetized as described, and the
head and neck regions were irradiated using a cesium-137
source, whereas the remainder of the body was shielded with
lead. Salivary glands were harvested and tissue extracts pre-
pared as described previously (3).

Analysis of apoptosis in vitro

Active caspase-3 was detected with the Caspase-3 Cellular
Activity Assay Kit PLUS (Biomol, Farmingdale, NY; BML-
ALK7030001), which uses N-acetyl-DEVD-p-nitroaniline as a
substrate, according to the manufacturer’s instructions. DNA
fragmentation was assayed using the Cell Death Detection
ELISA Plus Kit (Sigma-Aldrich) according to the manufactu-
rer’s instructions.

Statistics

Data shown in figures are representative experiments re-
peated a minimum of three times. Error bars indicate standard
error. Caspase-3 activity, DNA fragmentation, and comet
assays were designed with triplicate biological samples. Statis-
tics were determined using GraphPad Prism 7 software. A two-
way ANOVA (� � 0.05) with Dunnett’s multiple comparisons
(**, p � 0.001; *, p � 0.05) was performed within each time point
or treatment, comparing each column (gray or white) with the
corresponding control (black).

Author contributions—A. M. O. and T. A. data curation; A. M. O.,
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