
Murine astrotactins 1 and 2 have a similar membrane
topology and mature via endoproteolytic cleavage catalyzed
by a signal peptidase
Received for publication, December 11, 2018, and in revised form, January 9, 2019 Published, Papers in Press, January 29, 2019, DOI 10.1074/jbc.RA118.007093

Patricia Lara‡, Åsa Tellgren-Roth‡, Hourinaz Behesti§, Zachi Horn§, Nina Schiller‡, Karl Enquist‡,
Malin Cammenberg‡, Amanda Liljenström‡, Mary E. Hatten§, X Gunnar von Heijne‡1, and X IngMarie Nilsson‡2

From the ‡Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and the §Laboratory of
Developmental Neurobiology, Rockefeller University, New York, New York 10065

Edited by Karen G. Fleming

Astrotactin 1 (Astn1) and Astn2 are membrane proteins that
function in glial-guided migration, receptor trafficking, and
synaptic plasticity in the brain as well as in planar polarity path-
ways in the skin. Here we used glycosylation mapping and pro-
tease protection approaches to map the topologies of mouse
Astn1 and Astn2 in rough microsomal membranes and found
that Astn2 has a cleaved N-terminal signal peptide, an N-termi-
nal domain located in the lumen of the rough microsomal mem-
branes (topologically equivalent to the extracellular surface in
cells), two transmembrane helices, and a large C-terminal lume-
nal domain. We also found that Astn1 has the same topology as
Astn2, but we did not observe any evidence of signal peptide
cleavage in Astn1. Both Astn1 and Astn2 mature through endo-
proteolytic cleavage in the second transmembrane helix; impor-
tantly, we identified the endoprotease responsible for the mat-
uration of Astn1 and Astn2 as the endoplasmic reticulum signal
peptidase. Differences in the degree of Astn1 and Astn2 matu-
ration possibly contribute to the higher levels of the C-terminal
domain of Astn1 detected on neuronal membranes of the
central nervous system. These differences may also explain
the distinct cellular functions of Astn1 and Astn2, such as in
membrane adhesion, receptor trafficking, and planar polarity
signaling.

Astrotactins are vertebrate-specific integral membrane gly-
coproteins known to play critical roles in central nervous sys-
tem and skin development (1–4). An understanding of the
function of Astn13 and Astn2 in the control of neuronal migra-

tion and synaptic function could be important for treatment of
human brain disorders such as epilepsy and autism spectrum
disorders. Although the number of gene mutations that can
disrupt neuronal migration is large (5), Astn1 is one of a few
adhesion receptors shown to directly function in migration (6).

In the mouse, there are two astrotactin family members,
Astn1 and Astn2 (ASTN1 and ASTN2 in humans). Astn1 is
involved in glial-guided neuronal migration early in develop-
ment (1, 3, 6, 7) through the formation of an asymmetric com-
plex with N-cadherin (CDH2) in the glial membrane (6). Astn2,
which is 48% homologous to Astn1 and has two isoforms, is
abundant in migrating cerebellar granule neurons, where it
forms a complex with Astn1, and regulates the trafficking of
Astn1 during migration (4). At later stages of development,
Astn2 regulates synaptic function by trafficking of other mem-
brane receptors, including Neuroligins and other synaptic pro-
teins (8). A recent structure of the C-terminal endodomain of
Astn2 shows distinctive features responsible for its activity (9).
Astn1 and Astn2 are believed to share the same membrane
topology, with a cleaved N-terminal signal peptide (SP), two
transmembrane helices (TMHs), and a large extracellular
C-terminal domain (10). Both Astn1 and Astn2 undergo an
endoproteolytic maturation step in which an unknown prote-
ase cleaves the protein just after the second TM segment, with
the two fragments remaining attached through a single disul-
fide bond (10, 11).

In this work, we mapped the topologies of mouse Astn1 and
Astn2 in rough microsomal membranes using glycosylation
mapping and protease protection assays. We found that Astn2
has a cleaved N-terminal SP, an N-terminal domain located in
the lumen of the RMs (topologically equivalent to the extracel-
lular surface in cells), two TMHs, and a large C-terminal lume-
nal domain. We further show that Astn1 has the same topology
as Astn2 but saw no evidence of SP cleavage for Astn1. Finally,
we identify the endoprotease responsible for the maturation of
Astn1 and Astn2 as signal peptidase, an ER-localized enzyme
that normally removes SPs from secreted and membrane
proteins.
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Results

Predicted topologies of mouse Astn1 and Astn2

Topology predictions for mouse Astn1 (UniProtKB Q61137-1,
splicing isoform 1) and Astn2 (UniProtKB Q80Z10-3, splicing
isoform 3) produced by the TOPCONS server (12) agree with
the topology model for Astn2 derived from epitope tagging and
cell surface staining (11); i.e. an N-terminal SP followed by two
transmembrane segments (TMH1 and TMH2) and a large
C-terminal extracellular domain (Fig. 1). In cells, both Astn1
and Astn2 are cleaved by an unidentified endoprotease into two
fragments that remain linked by a disulfide bond (11). Edman
sequencing of the two Astn2 fragments showed that the N-ter-
minal one starts at Gly52 (just after the predicted signal peptide)
and the C-terminal one at Asn466 (corresponding to Asn414 in
the isoform analyzed here). For Astn1, the C-terminal fragment
starts at Ser402; no sequence could be obtained from the N-ter-
minal fragment in this case.

Topology mapping of mouse Astn1

To characterize the mouse Astn1 protein, we used a well-
established in vitro glycosylation assay (13, 14) to determine the
topology of the protein when cotranslationally inserted into
dogpancreasroughmicrosomes(RMs).Thetransferofoligosac-
charides from the oligosaccharide transferase (OST) enzyme to
natural or engineered acceptor sites for N-linked glycosylation

(-NXS/TY, where X and Y cannot be Pro (15–18)) in a nascent
polypeptide chain is a characteristic protein modification that
can only happen in the lumen of the ER, where the active site of
the OST is located (19, 20). The topology of Astn1 in RMs was
also probed by treatment with proteinase K, which can only
digest parts of the protein protruding from the cytosolic side of
the RMs (21).

To be able to investigate the topology of the 1302-residue-
long and heavily glycosylated Astn1 protein, we selected to
work with various truncated versions of the full-length protein.
This was necessary because in vitro translation of such large
proteins is inefficient and because attachment of an oligosac-
charide increases the size of the protein by only 2–3 kDa, a shift
that is too small to be detectable by SDS-PAGE for the full-
length protein but can easily be visualized when using trun-
cated versions.

Truncated versions of Astn1 were expressed in vitro using
the TNT� SP6 Quick Coupled System supplemented with col-
umn-washed dog pancreas RMs (14, 21). The glycosylation sta-
tus was investigated using SDS-PAGE, and truncated Astn1
versions were designed so that differences in glycosylation pat-
terns could be used to infer the topology of the protein in the
RM membrane.

Astn1 1–381, a version that extends from the putative SP to
the end of the loop between TMH1 and TMH2, receives a single

Figure 1. TOPCONS topology predictions. A, overview of the sequence of Astn1, with hydrophobic segments (blue), potential acceptor sites for N-linked
glycosylation (Y), and proteolytic cleavage sites (red triangles) determined by Edman sequencing (11) marked. The TOPCONS topology prediction (http://
topcons.cbr.su.se (34))4 is given below. TOPCONS is a consensus predictor that collects data from the other prediction servers listed. B, the same for Astn2.
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glycan when translated in the presence of RMs (Fig. 2A, com-
pare lanes 1 and 2). Notably, there is no sign of the SP being
cleaved (which would reduce the molecular mass of the protein
by 2.6 kDa). Astn1 78 –381 (Fig. 2A, lanes 3 and 4) and Astn1
78 – 451 (Fig. 2A, lanes 5 and 6) also receive only a single glycan,
whereas Astn1 78 – 470 (Fig. 2A, lanes 7 and 8) is glycosylated
on two sites (note that glycan acceptor sites are rarely, if ever,
modified to 100% in the in vitro translation system; hence, mol-
ecules with both one and two added glycans are visible on the
gel). The second glycan addition, therefore, must be on Asn453.

To determine whether the first glycan addition is on Asn115

or Asn226 (Asn328 is too close to TMH2 to be reached by the
OST (22)), we expressed Astn1 versions lacking the entire
N-terminal region, up to but not including TMH2 (Fig. 2B). The
two shorter versions were not glycosylated at all when
expressed in the presence of RMs, whereas Astn1 160 – 470 was
modified on a single glycosylation site. The latter must be
Asn453, showing that neither Asn226 nor Asn328 becomes gly-
cosylated. We conclude that the putative SP in Astn1 appears
not to be cleaved by signal peptidase and probably forms an
N-terminal transmembrane helix (TMH0) and that Astn1 has
two segments (residues 22–152 and 402–1302) exposed to the
lumen of the RMs and one segment (residues 174 –380)
exposed to the cytosol. Further, because Asn115 is glycosylated
in all four constructs, it appears that the N-terminal segment in
the Astn1 constructs that start at Met78 can be translocated to
the lumenal side of the RMs even though it lacks the putative
SP.

We further used a protease protection assay (21) to verify the
proposed topology of Astn1. So that segments of Astn1 that are
protected from proteinase digestion by the RM membrane
would be of a convenient size for SDS-PAGE separation, we
first expressed Astn1 78 –728. The protein becomes glycosy-
lated (Fig. 2C, compare lanes 1 and 2), but it is difficult to deter-
mine on how many sites. Interestingly, two prominent bands at
�38 kDa (marked N) and �36 kDa (marked C) were generated
in the presence of RMs (Fig. 2C, lane 2), suggesting internal
endoproteolytic cleavage, in agreement with the published
Edman sequencing results that identified a cleavage site
between Ser401 and Ser402 (11). In addition, a third band at �65
kDa that appears to receive a single glycan in the presence of
RMs was also seen (Fig. 2C, lanes 1 and 2). The latter would be
consistent with internal translation initiation at Met160 and
indeed comigrates with Astn1 160 –728 (Fig. 2C, lane 4).

Proteinase K treatment of RMs carrying Astn1 78 –728
digests cytoplasmically accessible parts of the protein and
leaves only two protected fragments: one of identical size to the
“endoproteolytic” 36-kDa band and one at �39 kDa (Fig. 2C,
lane 3). The two protease-protected fragments are precisely
what would be expected from the topology derived from the
glycosylation study; the 39-kDa band (marked C*) represents
fragment 381–728, generated when proteinase K digests the
cytosolic loop, and the 36-kDa band represents the slightly
smaller C-terminal fragment 402–728, generated by endopro-
teolytic cleavage near the C-terminal end of TMH2. The
expected protected N-terminal fragment 78 –181 is too small to
be resolved on the gel.

Similar results were obtained for Astn1 160 –728. In addition
to the full-length protein at �65 kDa, two bands at �36 kDa
(marked C) and �25 kDa (marked N) were seen in the presence
of RMs (Fig. 2C, compare lanes 5 and 6); Endo-H treatment
shifted both the full-length band at �65 kDa and the �36 kDa
band to a lower molecular mass, whereas the 25-kDa band did
not shift (Fig. 2C, lane 8). Consistent with the Astn1 160 –728
results, the glycosylated, �36-kDa band represents the same
endoproteolytic C-terminal fragment 402–728, whereas the
unglycosylated 25-kDa band represents the N-terminal endo-
proteolytic fragment 160 – 401.

Given the sequence context of the endoproteolytic cleavage
site (see “Discussion”), we hypothesized that the responsible
protease may be a signal peptidase. Indeed, inclusion of a signal
peptidase inhibitor (23) in the in vitro translation of Astn1 160 –
728 completely inhibits formation of the �36-kDa and �25-
kDa products (Fig. 2C, lane 11).

We conclude that Astn1 has the same topology as proposed
previously for Astn2; namely, with two lumenal domains (resi-
dues 22–152 and 173–1302) and one cytosolic domain (resi-
dues 174 –381). The putative SP appears not to be cleaved but,
rather, forms an N-terminal transmembrane helix (TMH0).
We identify signal peptidase as the enzyme responsible for the
endoproteolytic cleavage event at Ser401.

Topology mapping of mouse Astn2

We used the same glycosylation mapping approach to deter-
mine the topology of the 1300-amino-acid-long mouse Astn2
protein (splice isoform 3, lacking exon 4, which encodes a
52-residue segment in the domain between TMH1 and TMH2).
Astn2 1– 482 includes both the putative SP, the two predicted
transmembrane helices TMH1 and TMH2, and a portion of the
large C-terminal domain. A small amount of glycosylated full-
length product at �56 kDa, two weak bands at �50 kDa that
might represent glycosylated and unglycosylated products
lacking the SP (which has a calculated molecular mass of 6.4
kDa), and a prominent product at �43 kDa are seen in the
presence of RMs (Fig. 3A, lanes 2, 4, and 5). The latter is sensi-
tive to Endo-H digestion, and the two bands at �50 kDa col-
lapse to the lower-molecular-mass form upon the same treat-
ment (Fig. 3A, lane 6). The glycosylated 43-kDa band fits the
molecular mass expected for a product resulting from removal
of the signal peptide (residues 1–51) and the endoproteolytic
cleavage at Asn413 observed by Edman sequencing (11) (note
that we use a different splice version of Astn2 that lacks 52
residues in the cytosolic segment compared with the one used
in this reference). This explains the limited amount of glycosy-
lated full-length product (Fig. 3A, lanes 2, 4, and 5) because
most of the molecules that become glycosylated are cleaved
after the SP and/or TMH2, as seen in Fig. 3A, lane 6.

To confirm this interpretation, we also analyzed Astn2 161–
482, which lacks the putative SP. Astn2 161– 482 yields four
prominent bands when expressed in the presence of RMs (Fig.
3B, lane 2): unglycosylated full-length product at �37 kDa, sin-
gly and doubly glycosylated full-length products at �39 kDa
and �42 kDa, and a smaller endoproteolytic product at �35
kDa. Endo-H treatment collapses the �39-kDa and �42-kDa
bands to the size of the unmodified full-length product at �37
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Figure 2. Topology mapping of Astn1 and inhibition of endoproteolytic cleavage by an inhibitor of signal peptidase. A, the indicated truncated versions
of Astn1 were translated in vitro with [35S]Met in the presence (�) or absence (�) of RMs and analyzed under reducing conditions by SDS-PAGE. Unglycosylated
products are indicated by an open circle, singly glycosylated products by a filled circle, and doubly glycosylated products by two filled circles. The glycosylated
Asn residues are indicated by a red circle in the cartoon. Mw, molecular weight. B, the same as in A. C, Astn1 78 –728 was translated in vitro with [35S]Met with or
without RMs (lanes 1 and 2). RMs were subjected to PK digestion (lane 3). The N- and C-terminal fragments resulting from endoproteolytic cleavage between
Ser401 and Ser402 are indicated (N and C, respectively), as is the protease-protected C-terminal fragment (C*). RMs carrying Astn1 160 –728 were subjected to
Endo-H (EH) digestion (lanes 4 – 8). Note the shift in mobility for the full-length and C bands caused by deglycosylation (compare lanes 7 and 8). Astn1 160 –728
was also translated in vitro with [35S]Met in the presence (�) or absence (�) of RMs and the signal peptidase inhibitor SPI (lanes 9 –11).
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kDa and the �35-kDa band to a smaller, �30-kDa band (Fig.
3B, lane 5). Similar to Astn1, addition of the signal peptidase
inhibitor to the in vitro translation completely inhibits forma-
tion of the �35-kDa endoproteolytic product (Fig. 3B, lane 3),

and the signal peptidase inhibitor plus Endo-H treatment of
RM-integrated Astn2 161– 482 leaves only the unmodified full-
length product (Fig. 3B, lane 7; for unknown reasons, the signal
peptidase inhibitor makes bands run slightly higher in the gel).

Figure 3. Topology mapping of Astn2 and inhibition of endoproteolytic cleavage by an inhibitor of signal peptidase. A, Astn2 1– 482 was translated in
vitro with [35S]Met in the presence (�) or absence (�) of RMs and analyzed under reducing conditions by SDS-PAGE (lanes 1 and 2). Unglycosylated products
are indicated by an open circle and singly glycosylated products by a filled circle. Two cleavage products potentially resulting from removal of the SP by signal
peptidase are indicated by a bracket, and the N-terminal endoproteolytic fragment is marked by an asterisk. Endo-H digestion of RMs with Astn2 1– 482 is
shown in lanes 3– 6; note that the two products potentially generated by removal of the SP (bracket) coalesce into one band and that the endoproteolytic
fragment (N) shifts to a lower molecular weight (Mw) upon deglycosylation (lane 6). B, Astn2 161– 482 was translated in vitro with [35S]Met in the presence (�)
or absence (�) of RMs and the signal peptidase inhibitor SPI. After translation, RMs were further treated with Endo-H (EH) or subjected to mock treatment. The
glycosylated Asn residues are indicated by a red circle in the cartoons.
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These results are entirely consistent with the proposed topol-
ogy of Astn2 (11) and identify signal peptidase as the enzyme
responsible for the endoproteolytic cleavage event at Asn413.

Discussion

Earlier work using epitope mapping of Astn2 expressed in
COS7 cells has shown that the N and C termini are exposed on
the cell surface, whereas the domain between TMH1 and
TMH2 can only be immunodecorated in detergent-permeabi-
lized cells (11). Further, both Astn1 and Astn2 have been shown
to be cleaved by an unknown endoprotease into an N- and a
C-terminal fragment, and Edman sequencing of the C-terminal
fragments identified cleavage sites between Ser401-Ser402 in
Astn1 and Gly465-Asn466 in Astn2, just after TMH2. In addi-
tion, for Astn2, Edman sequencing of the N-terminal endopro-
teolytic fragment indicated removal of the putative SP (residues
1–51); no sequence was obtained for Astn1, leaving open
whether the putative SP is cleaved in this protein.

Here we confirmed and extended these results for Astn1 and
Astn2 using glycosylation mapping and protease protection
assays in a coupled in vitro transcription–translation system
supplemented with RMs. Our results for Astn2 are in perfect
agreement with those from the earlier study; Astn2 has a
cleaved N-terminal SP, an N-terminal domain located in the
lumen of the RM (topologically equivalent to the extracellular
surface in cells), two TMHs, and a large C-terminal lumenal
domain (Fig. 4). We found that Astn1 has the same topology
as Astn2 but saw no evidence of SP cleavage; rather, it seems
that the putative N-terminal SP in Astn1 remains a part of
the protein, presumably forming a third transmembrane
helix (TMH0).

We further show that an inhibitor of the signal peptidase
complex completely inhibits the endoproteolytic cleavage of
both Astn1 and Astn2. The unknown endoprotease involved in
the maturation of Astn1 and Astn2 is thus signal peptidase, the
enzyme that cleaves SPs from secretory and membrane pro-
teins in the ER (24). Although it is uncommon that signal pep-
tidase catalyzes internal cleavage reactions of this kind in cellu-

lar proteins, many viral polyproteins mature through signal
peptidase– catalyzed cleavages after internal hydrophobic seg-
ments in the primary translation product (25, 26). Indeed, the
SP cleavage site and the cleavage site after TMH2 identified by
Edman sequencing in Astn2 are precisely the ones predicted by
the SignalP server (27) (Fig. S2).

These findings raise the possibility that higher levels of SP-
mediated cleavage of Astn2 relative to Astn1 explain the higher
levels of the Astn1 C terminus we detected previously on cen-
tral nervous system neuronal surface membranes by antibody
labeling and functional assays (6, 8). This also likely contributes
to the apparently distinct functions of Astn1 as a membrane
adhesion receptor that functions in glial-guided migration (3, 6,
7) and of Astn2 as an endolysosomal trafficking protein that
functions in both migration (4) and synaptic function (8).
Finally, the exceptionally long Astn2 SP hints at the possibility
that, after cleavage, the SP may have additional functions in the
cell, as seen for many other very long SPs (28). It will therefore
be of interest to determine whether the Astn2 SP domain func-
tions in receptor trafficking or planar polarity signaling
pathways.

Experimental procedures

Enzymes and chemicals

Unless otherwise stated, all chemicals were from Sigma-Al-
drich (St. Louis, MO). Plasmid pGEM1, the TNT� Quick Cou-
pled Transcription/Translation System, the rabbit reticulocyte
lysate system, and deoxynucleotides were from Promega (Mad-
ison, WI). [35S]Met was from PerkinElmer Life Sciences. All
enzymes were from Fermentas (Burlington, ON, Canada),
except Phusion DNA polymerase, which was from Finnzymes
(Espoo, Finland), and SP6 RNA polymerase, which was from
Promega. The QuikChangeTM site-directed mutagenesis kit
was from Stratagene (La Jolla, CA), and oligonucleotides were
from Eurofins MWG Operon (Ebersberg, Germany). All other
reagents were of analytical grade and were obtained from
Merck (Darmstadt, Germany).

Figure 4. Topology and proteolytic modifications of Astn1 and Astn2. Signal peptidase cleaves both Astn1 and Astn2 after TMH2 and also removes the SP
from Astn2. The disulfide bridge that keeps the two endoproteolytic fragments together is indicated.
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DNA manipulation

The complementary DNAs of mouse Astn1 and Astn2 (1302
and 1300 amino acid residues, respectively; Fig. S1) were cloned
into the pRK5 vector using ClaI/SalI (Astn1) and BamHI/XbaI
(Astn2) sites. The DNA was then transferred to the pGEMI
vector (Promega) at XbaI/SmaI sites together with a preceding
Kozak sequence (29), as described previously (13). To create
truncations in Astn1, deletions were made between amino acid
position 1–78 and 1–160, and stop codons were introduced at
positions 382, 452, 471, and 729. Astn2 truncations were cre-
ated in the same way, with a deletion between 1–161 and a stop
codon at 483. The Astn1 and Astn2 cDNAs were amplified by
PCR using the Phusion DNA polymerase with appropriate
primers, and site-specific mutagenesis was performed using
the QuikChangeTM site-directed mutagenesis kit from Strat-
agene. All mutants were confirmed by sequencing of plasmid
DNA at Eurofins MWG Operon and BM Labbet AB (Furu-
lund, Sweden).

In vitro expression

All Astn constructs cloned in pGEMI and pRK5 were tran-
scribed and translated in an in vitro the TNT® SP6 Quick Cou-
pled System from Promega. 150 –200 ng DNA template, 1 �l of
[35S]-Met (5 �Ci) and 0.5 �l column-washed dog pancreas
rough microsomes (RMs) (tRNA Probes, US) (30) were added
to 10 �l of reticulocyte lysate at the start of the reaction, and the
samples were incubated for 90 min at 30 °C (21).

Proteinase K treatment

PK treatment was performed by adding 1 �l of CaCl2 (200
mM) and 0.2 �l of Proteinase K (4.5 units/�l) to the translation
reaction. After incubation on ice for 30 min, 1 ml of PMSF (20
mM ethanolic solution) was added to inactivate PK, and samples
were further incubated on ice for 5 min (21).

Endo-H treatment

For endoglycosidase H (Endo-H) treatment, 9 �l of the TNT
reaction product was mixed with 1 �l of 10� glycoprotein
denaturing buffer. Following addition of 1 �l of Endo-H
(500,000 units/ml; New England Biolabs), 7 �l of distilled H2O
and 2 �l of 10� G3 reaction buffer, and the sample was incu-
bated at 37 °C for 1 h (31). Mock controls were identical but
lacked Endo-H.

SPI treatment

To demonstrate cleavage by signal peptidase, the inhibitor
SPI (N-methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone,
Sigma) was dissolved in dimethyl sulfoxide (DMSO) and added
to the translation mixture at a final concentration of 1.4 mM as
described previously (14, 23, 31–33).

Analysis and quantitation

Translation products were analyzed under reducing con-
ditions by SDS-PAGE, and proteins were visualized in a Fuji
FLA 9000 PhosphorImager (Fujifilm, Tokyo, Japan) using
the Image Reader FLA 9000/Image Gauge V 4.23 software
(Fujifilm).
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