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Abstract

Although object-related areas were discovered in human parietal cortex a decade ago, surprisingly 

little is known about the nature and purpose of these representations, and how they differ from 

those in the ventral processing stream. In this article, we review evidence for the unique 

contribution of object areas of dorsal cortex to three-dimensional (3-D) shape representation, the 

localization of objects in space, and in guiding reaching and grasping actions. We also highlight 

the role of dorsal cortex in form-motion interaction and spatiotemporal integration, possible 

functional relationships between 3-D shape and motion processing, and how these processes 

operate together in the service of supporting goal-directed actions with objects. Fundamental 

differences between the nature of object representations in the dorsal versus ventral processing 

streams are considered, with an emphasis on how and why dorsal cortex supports veridical (rather 

than invariant) representations of objects to guide goal-directed hand actions in dynamic visual 

environments.
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1. Introduction

A core framework for our understanding of visual cognition is the division of cortical 

processing into two anatomically and functionally distinct pathways. In an initial 

conceptualization of the two visual pathways, which was based on lesion studies in 

monkeys, Mishkin & Ungerleider (1982) described a posterior-to-anterior hierarchical flow 

of visual information from early visual cortex that bifurcated into a ventral pathway 

extending anteriorly along lateral and ventral temporal cortex, and a dorsal pathway 

extending into posterior parietal cortex (PPC). According to this scheme, the ventral 

pathway is dedicated to processing object shape and identity (i.e., the ‘what’ pathway), and 

the dorsal stream is dedicated to processing the spatial position of objects (i.e., the ‘where’ 

pathway). Goodale and Milner (1992; Milner & Goodale, 1995) argued for a reformulation 

of this framework in which the emphasis was shifted from distinctions between visual inputs 

(i.e., cortical processing of visual object properties such as shape, versus object location), to 

distinctions between how visual information is used: for perception versus goal-directed 

action. In this framework, the dorsal stream must register accurate, in-the-moment, 

information about object shape, size and position and transform it into visuospatial 

coordinates appropriate for acting upon the object with the relevant effectors, such as the 

arm and hand. For the purpose of the current review, the important point is that in Goodale 

and Milner’s framework, object properties such as size and shape are computed in dorsal 

cortex in the service of controlling actions, rather than for guiding perception. For example, 

in their 1992 monograph entitled “Separate visual pathways for perception and action”, 

Goodale and Milner noted that damage to the dorsal stream “can impair the ability of 

patients to use information about the size, shape and orientation of an object to control the 

hand and fingers during a grasping movement, even though this same information can still 

be used to identify and describe the objects” (p. 21). In line with this framework, 

dissociations between perception-versus action-related processes have been reinforced by 

over 30 years of convergent evidence from human psychophysics, neuroimaging, and lesion 

studies. In particular, the existence of object-selective perceptual representations in the 

ventral processing pathway has been documented extensively, from studies using 

neuroimaging (Grill-Spector et al., 1999; Kourtzi & Kanwisher, 2000; Kourtzi, Erb, Grodd, 

& Bülthoff, 2003; Malach et al., 1995), to studies of neuropsychological patients with visual 

agnosia, who, following lesions to ventral cortex, show severe and lasting deficits in their 

ability to recognize images of objects (Farah, Monheit & Wallace, 1991; Goodale, Milner, 

Jakobson, & Carey, 1991; Riddoch & Humphreys, 1987). Likewise, there has been 

widespread support for the notion that dorsal cortex supports vision for action. In addition to 

neuropsychological evidence (e.g., Bálint, 1909; Holmes, 1918; Jakobson, Archibald, Carey, 

& Goodale, 1991; Karnath & Perenin, 2005; Pierrot-Deseilligny, Rivaud, Gaymard, & Agid, 

1991; Ratcliff & Davies-Jones, 1972), the role of the dorsal pathway in mediating vision for 

action has been extensively corroborated by neuroimaging (Clower et al., 1996; Culham, 

Cavina-Pratesi, & Singhal, 2006; Grafton, Arbib, Fadiga, & Rizzolatti, 1996; Kawashima et 

al., 1996) and monkey neurophysiology (Colby, Duhamel, & Goldberg, 1993; Grefkes & 

Fink, 2005; Johnson, Ferraina, Bianchi, & Caminiti, 1996; Murata, Gallese, Luppino, 

Kaseda, & Sakata, 2000; Sakata, Taira, Kusunoki, Murata, & Tanaka, 1997) studies.
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Since Goodale and Milner’s original work, object-selective representations were discovered 

in PPC of the dorsal processing pathway, first in non-human primates (Denys et al., 2004; 

Lehky & Sereno, 2007; Murata et al., 2000; Sereno & Maunsell, 1998; Taira, Mine, 

Georgopoulos, Murata, & Sakata, 1990), and later in humans (Denys et al., 2004; Fang & 

He, 2005; Konen & Kastner, 2008; Mruczek, von Loga, & Kastner, 2013). Interestingly, 

these dorsal visual object areas appear to be recruited independently of attention, and 

irrespective of whether a grasping movement was planned or initiated by the observer. In 

one of the first detailed studies of object representations in human dorsal cortex, Konen and 

Kastner (2008) used an fMRI-adaptation paradigm to measure the selectivity profile of 

different regions of human cortex to object shape, as well as to object size and viewpoint. 

Observers passively viewed black-and-white computerized images of objects, such as 

silhouettes of basic geometric shapes, line-drawings of everyday familiar objects and tools, 

and images of objects whose 3-D shape was defined by monocular depth cues such as 

shading, specular highlights and occlusion. Within the ventral stream, neural populations 

selective for shape included intermediate (e.g., V4) and higher-level areas such as the lateral 

occipital complex (LOC). Importantly, object-selective responses were also observed within 

topographically-defined areas along the dorsal pathway, including V3A, MT, and V7, as 

well as in ventral regions of PPC in the intraparietal sulcus (IPS), in IPS1 and IPS2. 

Moreover, both LOC and IPS1 and IPS2, responded similarly, despite changes in the size 

and orientation of the images, suggesting that object areas in inferotemporal cortex and PPC 

share a pattern of increasing invariance (or generalization) across changes in viewing 

conditions. Based on these results, Konen and Kastner (2008) argued that basic information 

about object shape, size and viewpoint, are represented in the ventral and dorsal pathways, 

and that the representations in each stream appear to be strikingly similar.

Since these early reports of shape processing in the dorsal stream, research into the nature of 

object-related processing in dorsal cortex has been burgeoning. There has been a rapid 

increase in studies documenting the cortical organization of object-related representations 

using fMRI (Chandrasekaran, Canon, Dahmen, Kourtzi, & Welchman, 2007; Erlikhman, 

Gurariy, Mruczek, & Caplovitz, 2016; Ludwig, Kathmann, Sterzer, & Hesselmann, 2015) 

and the temporal aspects of dorsal object processing using EEG (Wokke, Scholte, & Lamme, 

2014; Zaretskaya & Bartels, 2015; Zaretskaya, Anstis, & Bartels, 2013). Others have 

emphasized the involvement of dorsal cortex (in additional to ventral stream areas) in 

processing particular classes of objects, such as man-made tools (e.g., Chao and Martin, 

2000; Lewis, 2006; Macdonald and Culham, 2015). However, the extent to which these 

dorsal object representations reflect ‘toolness’ versus other attributes of the stimuli, such as 

their elongation, is still a subject of debate (Almeida et al., 2014; Chen, Snow, Goodale, & 

Culham, 2017; Sakuraba, Sakai, Yamanaka, Yokosawa, & Hirayama, 2012). These recent 

neuroimaging studies have been complimented by case studies in neuropsychological 

patients, for whom aspects of object processing remain intact despite the fact that 

contributions to object processing from the ventral stream are reduced or eliminated due to 

brain damage (Freud, Rosenthal, Ganel, & Avidan, 2015). The data from these 

neuropsychological patients (Freud et al., 2015) suggest that dorsal cortex may process 

shape during perception, in addition to action-related tasks (Milner et al., 1991; Goodale et 

al., 1991). Nevertheless, in line with Goodale and Milner’s (1992) two visual systems 
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model, this shape processing was insufficient to support conscious awareness because the 

agnosia patients in Freud et al.’s (2015) study were unable to perform explicit shape-related 

judgments above-chance. A recent study using the continuous flash suppression approach, 

which effectively suppresses object processing in the ventral-but not the dorsal pathway, 

further supports these earlier patient findings by demonstrating that 3-D shape 

representations computed in the dorsal pathway can contribute to perceptual decisions (Fang 

& He, 2005; Freud, Robinson, & Behrmann, in press).

Although much has been learned about dorsal cortex over the past 20 years, there remain a 

number of outstanding questions and controversies. The functional significance of dorsal 

stream object representations is unclear, and a detailed account of object processing in dorsal 

cortex is lacking (Freud, Plaut, & Behrmann, 2016; Kravitz, Saleem, Baker, & Mishkin, 

2011). Important unresolved questions include whether object information is computed 

directly within neural populations in parietal cortex (or is relayed to dorsal cortex, perhaps 

via areas V3 and/or V4), what types of object properties are processed along the dorsal 

pathway, and the extent to which the dorsal and ventral pathways represent redundant or 

unique object information (Konen and Kastner, 2008). Despite Milner and Goodale’s (1992) 

emphasis on the fact that the output requirements for visually-guided actions with objects 

requires constant in-the-moment updating of object properties and spatial position in 

egocentric space, research in the domain of 3-D shape processing, and spatiotemporal 

integration, in dorsal cortex has unfolded largely in parallel. For example, with respect to 

what types of object properties are processed in the dorsal pathway, some have argued that 

dorsal cortex is critically involved in processing 3-D geometric shape information, such as 

surface curvature, size, and location relative to the observer (Farivar, 2009; Freud et al., 

2016; Janssen, Verhoef, & Premereur, 2018; Orban, 2011). A separate branch of research 

has focused on the involvement of dorsal cortex in motion processing and form-motion 

interactions (Galletti & Fattori, 2018; McCarthy, Erlikhman, & Caplovitz, 2017). In the 

sections below, we relate research outcomes in 3-D shape representation and form-motion 

integration in dorsal cortex, with respect to their contribution to action-related object 

processing. We also revisit the ways in which dorsal object processes differ in fundamental 

ways from the known properties of object areas along the ventral processing stream (DeYoe 

& Essen, 1988; Goodale & Milner, 1992). A synthesis of recent research in each of these 

domains will foster a more complete understanding of the nature of object processing in the 

dorsal visual stream, and serve as a guide to future research in the field.

2. Hallmarks of object-related representations in dorsal cortex

Naturalistic behavior in real-world environments is a computationally demanding task that 

involves not only perceiving and recognizing objects, but also grasping and interacting with 

those objects. Consider the example of a coffee cup sitting on a cluttered desk (Fig. 1). To 

recognize the cup and tell it apart from other objects sitting on the desk, its shape must be 

computed, together perhaps with information about its relative size (Konkle & Oliva, 2012), 

and material properties (Cant & Goodale, 2006). In fact, discriminating a cup from other 

objects (such as a pen or a key) is a perceptual task that can be achieved with surprisingly 

impoverished visual inputs, such as when only a silhouette outline of the object is available 

due to low illumination. However, in order to determine whether, when, and how, to pick it 

Erlikhman et al. Page 4

Conscious Cogn. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



up and what to do with it afterward, additional visual metrics are required – ones that are 

fundamentally different from those required for recognition (Goodale & Milner, 1992; 

Milner & Goodale, 1995, 2008; Thaler & Goodale, 2010). For example, a distinct 3-D 

volumetric representation of the shape, size and orientation of the cup is necessary to plan 

how best to open one’s hand and shape the fingers for a grasp. There also needs to be 

information about the cup’s location in egocentric space (i.e., its position in 3-D space 

relative to the observer) to know where to reach, as well as its position in depth relative to 

other objects on the table to avoid knocking them over when making a movement toward the 

cup. Importantly, the objects we interact with in naturalistic environments often change 

position and move with variable velocity over time. As dynamic objects (and observers) 

move through the environment, their relative positions also differ with respect to retinotopic 

(eye-centered), ego-centric (body-centered) and world-based coordinate reference frames 

(Colby & Goldberg, 1999; Galletti & Fattori, 2018). Below, we review converging evidence 

from studies in monkeys and humans that has identified a network of areas in dorsal visual 

cortex that are sensitive to many of these 3-D shape-, position- and velocity-related 

properties that are necessary to successfully interact with objects in our environment.

2.1. Information about static objects

2.1.1. 3-D shape selectivity—There are many visual cues, including stereopsis, 

texture, shading, and motion, that the visual system uses to recover depth information from 

the input on the retina, in the service of reconstructing 3-D shape information (for more 

detailed reviews see Todd, 2004, and Orban, 2011). Cortical areas sensitive to 3-D depth 

cues form a broad neural network that extends across the cortical mantle, including early 

visual areas (V1-V3) where individual features such as luminance, stereopsis, and texture 

are locally detected, intermediate ventral visual areas such as V4 where they likely begin to 

be integrated, as well as areas farther along the ventral processing stream, such as the lateral 

occipital cortex (LOC) and ventral temporal cortex (Grill-Spector & Weiner, 2014). Dorsal 

cortex in particular appears to be intimately involved in processing higher-level second-order 

(i.e., slant) and third-order (i.e., curvature) depth information about 3-D object structure. 

Areas that encode higher-order depth features of objects in dorsal cortex include hMT+, 

MST, V3A/B, V6, V7, and regions along the intraparietal sulcus (IPS) (Alizadeh, Van 

Dromme, Verhoef, & Janssen, 2018; Georgieva, Peeters, Kolster, Todd, & Orban, 2009; 

Janssen, Vogels, & Orban, 2000; Katsuyama, Usui, Nose, & Taira, 2011; for reviews see 

Anzai & DeAngelis, 2010; Freud et al., 2016; Janssen et al., 2018; Orban, 2011; Theys, 

Romero, van Loon, & Janssen, 2015; Tsao, Conway, & Livingstone, 2003; Tsao, Vanduffel, 

et al., 2003; Tsutsui, Taira, & Sakata, 2005). For example, in monkeys the caudal part of the 

intraparietal area (CIP), which corresponds to VIPS, V7/IPS0, or V7A in humans (Konen, 

Mruczek, Montoya, & Kastner, 2013; Orban, 2016), is involved in representing 3-D 

curvature (Alizadeh et al., 2018; Georgieva et al., 2009; Janssen et al., 2000; Katsuyama et 

al., 2011). Stereoscopically defined pairs of 3-D shapes that differ only in their sign of 

curvature (i.e., concave versus convex) selectively activate individual neurons in this area 

(Janssen et al., 2000). In an fMRI study in humans using the same stimuli, Georgieva et al. 

(2009) found that such surfaces preferentially activate dorsal areas V3A, V7, IPS as well as 

the posterior inferior temporal gyrus, compared to flat and monocularly viewed surfaces 

without 3-D structure. Furthermore, temporary inactivation of area CIP in monkeys leads to 

Erlikhman et al. Page 5

Conscious Cogn. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impairments in perceiving depth structure and 3-D curvature, attesting to its critical role in 

representing those 3-D object properties (Van Dromme, Premereur, Verhoef, Vanduffel, & 

Janssen, 2016). Other studies suggest that CIP may also be a locus where different types of 

depth cues are integrated (Ban, Preston, Meeson, & Welchman, 2012; Murphy, Ban, & 

Welchman, 2013; Tsutsui, Jiang, Yara, Sakata, & Taira, 2001). CIP may be part of a larger 

object-processing network. In monkeys, CIP projects to anterior regions of the intraparietal 

area (AIP) –an area involved in object grasping, and which in turn projects to premotor area 

F5 (for reviews, see Janssen et al., 2018; Theys et al., 2015). AIP, like CIP, is also sensitive 

to 3-D curvature and 3-D shape, (Durand, Celebrini, & Trotter, 2007; Durand, Nelissen, et 

al., 2007; Durand, Peeters, Norman, Todd, & Orban, 2009; Joly, Vanduffel, & Orban, 2009; 

Murata et al., 2000; Srivastava, Orban, De Mazière, & Kanssen, 2009; Verhoef, Vogels, & 

Janssen, 2010). In humans, detailed studies of isolated neural populations are lacking. 

However, neuropsychological evidence indicates that patients with ventral cortex damage 

show severe impairments in tests of explicit object recognition, they can nevertheless judge 

whether one part of a 3-D shape is nearer or farther away than another part of the shape 

(Freud et al., 2015).

2.1.2. Sensitivity to object size and distance—In addition to recovering detailed 

information about the 3-D geometric depth structure of objects, object-related areas in dorsal 

cortex appear to be unique (compared to ventral cortex) with respect to their coding of object 

size. The physical size of an object is likely to be important, not only for planning and 

executing actions with objects, but also for assessing action affordances even when there is 

no explicit plan to grasp (Gomez, Skiba, & Snow, 2017; Tucker & Ellis, 2001). Convergent 

evidence for the notion that dorsal cortex is involved in the size coding of graspable objects 

comes from human neuroimaging and monkey neurophysiology. Murata et al. (2000) 

recorded from cells in the anterior intraparietal area (AIP) while monkeys either passively 

viewed or grasped solid 3-D objects. The objects were small, medium or large in size. More 

than half of the ‘visually-responsive’ neurons responded when the monkey fixated the object 

(‘object-type’ neurons), and most of these cells were tuned for both the shape and size of the 

object. Importantly, however, the visual-motor neurons in AIP were intermixed with motor-

dominant and visuo-motor neurons, suggesting a role for this area in visuo-motor 

transformations (Jeannerod, Arbib, Rizzolatti, & Sakata, 1995; Sakata, Tsusui, & Taira, 

2005). In humans, topographic representations of object size have been identified in bilateral 

human parietal cortex using ultra-high-field (7T) functional MRI (Harvey, Fracasso, 

Petridou, & Dumoulin, 2015). Levels of GABA (the primary inhibitory neurotransmitter in 

the human brain) in parietal cortex have also been shown to selectively influence size 

perception (Song et al., 2017).

To accurately represent the size of an object for the purpose of grasping, it is also necessary 

to have accurate metrics of the object’s distance, since objects of different sizes can project 

the same 2-D image on the retina, depending on the distance at which they are viewed 

(Murray, Boyaci, & Kersten, 2006). Dorsal cortex plays a unique role in representing an 

object’s position in depth. One of the most powerful cues to position in depth is stereoscopic 

disparity (Howard & Rogers, 1995). In addition to early visual areas, several regions of 

monkey parietal cortex, including LIP and AIP, are sensitive to disparity information and 
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subtle changes in the apparent depth of a stimulus (Gonzalez & Perez, 1998; Janssen, 

Srivasta, Ombelet, & Orban, 2008; Theys et al., 2015). In humans, depth processing is 

localized to a number of areas including V3A (Backus, Fleet, Parker, & Heeger, 2001; 

Berryhill & Olson, 2009; Tsao, Conway, et al., 2003; Tsao, Vanduffel, et al., 2003), V7/IPS0 

(Brouwer, van Ee, & Schwarzbach, 2005), and other areas along the caudal intraparietal 

sulcus (Rutschmann & Greenlee, 2004). It should perhaps not be surprising that the same 

areas that are sensitive to 3-D shape information in both monkeys and humans as discussed 

in the previous section are also implicated in the processing of relative 3-D information.

Although such relative distance information can serve as a cue to object size, knowing the 

absolute distance of an object from the body (i.e., egocentric distance) is critical for an 

active observer to determine whether the object lies within reach of the effector (Jeannerod, 

1981) and to determine the appropriate hand configuration for grasping (Castiello, 2005; 

Jeannerod, 1986; Smeets & Brenner, 1999). In both primates and humans, parietal cortex is 

tiled with areas that are specialized for actions within the co-ordinate frames of different 

effectors, including the eyes, arms, and hands (Andersen & Buneo, 2002; Andersen, Snyder, 

Bradley, & Xing, 1997; Colby & Goldberg, 1999; Gallivan & Culham, 2015). Some of the 

dorsal areas tuned to stereo-depth in humans show greater sensitivity to egocentric rather 

than allocentric distance, that is, to distance between the observer and the object rather than 

the distance between objects or surfaces in the environment (Neggers, Van der Lubbe, 

Ramsey, & Postma, 2006; Neri, Bridge, & Heeger, 2004). The region of space around the 

body that lies within reach (often known as peripersonal space) is prioritized in many areas 

of dorsal (Duhamel, Bremmer, Ben Hamed, & Graf, 1997; Galletti, Battaglini, & Fattori, 

1993) and frontal (Fogassi et al., 1996) cortex. Intuitively, this makes sense because our 

arms and hands can only operate within a certain anatomical range.

In humans, an area within the dorsal pathway, known as the superior parieto-occipital sulcus 

(SPOC), responds strongly to solid reachable 3-D objects, even when participants are not 

required to perform a reaching movement to the object (Cavina-Pratesi et al., 2018). SPOC 

in humans most likely corresponds with areas V6 and V6A in the monkey which, in turn, 

project to dorsal premotor cortex (Galletti & Fattori, 2018; Galletti, Kutz, Gamberini, 

Breveglieri, & Fattori, 2003). Responses to solid objects in SPOC are also modulated by the 

egocentric distance of the object. Using fMRI, Gallivan, Cavina-Pratesi, and Culham (2009) 

presented right-handed human observers with small Lego shapes on a platform. The stimuli 

were positioned on the platform so that they fell either within or outside of reach of the 

observer. On some trials, participants were asked to view the objects without touching them, 

while on other trials their task was to reach to touch or grasp the objects. fMRI activation in 

SPOC in the left hemisphere (contralateral to the dominant hand) was significantly higher 

for passively-viewed objects that were positioned within versus outside of reach. Given that 

SPOC responded to reachable objects, even when no action was required, the authors argued 

that activation in SPOC reflects automatic processing of motor affordances (Gibson, Owsley, 

Walker, & Megaw-Nyce, 1979). Interestingly, SPOC appears to represent more than just 

egocentric distance, but also previous visuomotor experience and manual predispositions. 

Such predispositions are commonplace in everyday life, as evidence by the motor behaviors 

of left-versus right-handers. Left handers typically use both hands to manipulate objects, 

whereas right-handers tend to rely on the dominant, right hand alone (Gonzalez & Goodale, 

Erlikhman et al. Page 7

Conscious Cogn. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2009). Constraints from action, such as hand preference, can influence attentional selection 

of objects, even when there is no explicit plan to grasp the stimulus (Gomez & Snow, 2017; 

Humphreys et al., 2010). Accordingly, Gallivan, McLean, and Culham (2011) compared 

fMRI responses to graspable objects in left- and right-handed observers, and found that for 

right-handed observers, SPOC responded most strongly for objects that were within reach of 

the right hand. Conversely, for left-handers, SPOC responded to objects within reach of both 

the right and left hands. Convergent evidence for a role of dorsal cortex in encoding objects 

within egocentric space comes from EEG studies of desynchronization of the µ (‘mu’) 

rhythm. Mu rhythms are neural signatures of sensorimotor processing recorded over centro-

parietal electrodes; desynchronization of the µ rhythm is understood to reflect neural 

processes involved in automatic action preparation (Pineda, 2005). Using realistic stimuli 

presented in the context of virtual reality, Wamain, Pluciennicka, and Kalenine (2014) 

reported significantly stronger µ desynchronization for objects that were positioned within 

versus outside of reach. Critically, the effect of distance on µ desynchronization was only 

apparent when the stimulus formed a coherent shape, but not when the image depicted a 

scrambled version of the object.

The finding that occipito-parietal areas may be the locus of egocentric distance, size, and 3-

D shape information integration is supported by a report of a patient with bilateral occipito-

parietal damage (Berryhill, Fendrich, & Olson, 2009). This patient was unable to use either 

stereo or monocular cues such as occlusion, shading and linear perspective to recover the 

shapes of objects. For example, in displays with two overlapping simple shapes, like a 

square and a circle, she had difficulty in saying which one was closer. When shown pictures 

of volumes and 2-D shapes, she described cubes as squares, cylinders as circles, and 

pyramids as triangles. This patient also had difficulty in both estimating the distance to 

nearby objects and in placing those objects at specific distances, especially if the objects 

were unfamiliar; however, she showed relatively little impairment when asked to estimate 

the distance between objects or to place one object at a certain distance from another. That 

is, her egocentric distance perception was impaired, but her allocentric or relative distance 

perception remained intact. In addition to impairments in perceiving shape and distance, she 

also exhibited impairments in size perception. For example, she was slightly impaired in 

comparing the size of objects that were matched for retinal size, and greatly impaired in 

comparing objects that were matched in physical, but not retinal size, often reporting that the 

object with larger retinal size were physically larger. When either retinal or physical size was 

held constant, she had difficulty in reporting relative distance between the objects. The 

impairment was stronger when she viewed the stimuli monocularly. For this patient, 

relatively restricted, bilateral occipito-parietal lesions simultaneously impaired 3-D shape 

perception, egocentric distance perception, and size perception.

Taken together, these behavioral and neurophysiological findings point to a network of 

parietal and dorsal areas including V3A, V7/IPS0, IPS and SPOC (and the corresponding 

monkey homologs), that are involved in processing object properties that are important for 

manual interaction. The functions of these areas are likely to include the representation of 3-

D shape, object size, relative 3-D distance between the surfaces of an object, position in 

depth, and distance between the observer and the object, perhaps with special importance 

placed on objects that are within reach. One important feature of dorsal representations, 
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which we will return to in later sections, is their non-invariant nature. Unlike in the ventral 

visual processing stream, which can be characterized broadly as leading towards abstraction, 

categorization, and recognition of objects, these dorsal areas appear to represent veridical, 

metric information that is critical for planning and executing actions with objects.

2.1.3. Sensitivity to body position—To interact with 3-D objects in the environment, 

an active observer needs an accurate, on-line, representation of the configuration and 

volumetric properties of the body. This on-line representation of the volumetric and spatial 

properties of the body has traditionally been called the body schema (Head & Holmes, 1911; 

Longo, Azañon, & Haggard, 2010; Medina & Coslett, 2010). There is substantial evidence 

that coding of body position is instantiated in superior parietal cortex. For example, 

Parkinson, Condon & Jackson (2010) instructed participants to make reaches to targets 

defined relative to the participant’s body. They found that changes in limb position were 

primarily associated with activation in the superior parietal lobule (see also Pellijeff, 

Bonilha, Morgan, McKenzie, & Jackson, 2006). Individuals with superior parietal damage 

are unable to properly maintain an accurate representation of limb posture (Wolpert, 

Goodbody, & Husain, 1998). Homologous regions in non-human primates encode limb 

position in body-centered representations. Neurons in Brodmann area 5 encode changes of 

limb position (Graziano, Cooke, & Taylor, 2000; Shi, Apker, & Buneo, 2013) in body-

centered frames of reference (Lacquaniti, Guigon, Bianchi, Ferraina, & Caminiti, 1995).

Information from the body schema also needs to be integrated with representations of the 

size, shape, and position of 3-D objects in the environment (discussed earlier). To do this, 

information from motor commands that code information in intrinsic, effector-based frames 

of reference need to interact with extrinsic representations of both the entire body and 

objects in the environment. The complex interplay of information from various 

representations is most clearly demonstrated during grasping (Jeannerod et al., 1995). To 

grasp an object, information about the size and position of the effector and object need to be 

coordinated in order to reach. The anterior intraparietal sulcus (aIPS) has been consistently 

identified as a key region involved in grasping, as this region is active in fMRI studies of 

grasping (Begliomini, Wall, Smith, & Castiello, 2007; Binkofski et al., 1998; Culham et al., 

2003) and TMS of aIPS disrupts both unimanual (Tunik, Frey, & Grafton, 2005) and 

bimanual (Le, Vesia, Yan, Niemeier, & Crawford, 2013) grasping. Using fMRI, Cavina-

Pratesi, Goodale, and Culham (2007) examined both 3-D object perception and grasping in 

an experiment in which human participants were presented with two 3-D objects. 

Participants were instructed to either grasp or reach the object, or to complete a size or 

pattern discrimination task. Consistent with other studies on the 3-D representation of 

objects, the authors found greater activation in lateral occipital cortex (LOC) for the size 

versus pattern discrimination judgment. Conversely, significantly greater activation was 

observed in aIPS for grasping versus reaching. Given that representing object size and shape 

is necessary for grasping, but not for reaching, this provides convergent evidence that aIPS is 

involved in integrating 3-D object representations with representations of effector size and 

position.
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2.2. Information about moving objects

When studying shape, depth, and distance perception in the lab using unobstructed, static, 2-

D images, it is easy to overlook the fact that in natural environments we must often interact 

with 3-D, dynamic stimuli that are only partially visible at any given moment. In order to 

accurately recover the 3-D shape of dynamic objects in environments through which the 

observer themselves may be moving, the visual system must distinguish self-from object-

motion and integrate motion and form information over both space and time. Consider the 

case of a parent trying to pick their child who is running through a crowd. Information about 

the child’s 3-D shape, size, absolute position in depth, and their egocentric position, 

although critical, are likely to arrive piecemeal and be partial and incomplete given the busy 

scene and dynamic visual input. For example, as they move among the crowd only parts of 

the child may be visible at any moment, yielding a partial representation of overall shape, 

which itself is changing in position moment-to-moment. A consideration of the nature of 

shape processing in more complex, dynamic visual environments, together with the known 

properties of object-selective areas in ventral cortex (which are devoted primarily to 

invariant representations), suggests a role for dorsal cortex in representing both visual 

motion and shape as well as visuo-motor representations.

A critical, early step in processing object motion is to distinguish motion signals that arise 

from an object moving through space from those that are the result of self-motion. In the 

example of the parent chasing a child, the motion signals available at the retinae are a 

combination of signals that arise from the parent turning their head, moving their eyes, 

moving their body through the environment, and the motion of the child. Intriguingly, many 

regions of dorsal cortex that are implicated the coding of 3-D shape, such as V3A, V6, V6A 

and regions along IPS, are also known to be involved in global motion perception (for 

reviews, see Galletti & Fattori, 2018; Gilaie-Dotan, 2016; Kravitz et al., 2011; Zeki, 2015). 

In fact, there is a tight relationship between motion and shape processing (for a review, see 

Mather, Pavan, Marotti, Campana, & Casco, 2013). Consideration of such form-motion 

interactions is important for understanding the terminal goals of visual processing, such as 

recognition and action, because the extraction of both motion and shape information is a 

necessary intermediate step toward constructing veridical shape representations from 

dynamic information. Below, we consider two broad categories of form-motion interactions: 

influences of form on motion perception and influences of motion on form perception.

2.2.1. The effects of form-motion interactions on perception—Form and motion 

processes can mutually interact with each other to influence both if and how an object 

appears to move as well as the perceived shape of the object as it moves. Each of these can 

be revealed by a wide range of perceptual phenomena that reveal just how diverse these 

interactions are. One example of form influencing motion is Transformational apparent 

motion (TAM). In TAM observers see a sequence of static images that induce the experience 

of apparent motion (Hikosaka, Miyauchi, & Shimojo, 1993a, 1993b; Kanizsa, 1951; Tse & 

Caplovitz, 2006; Tse & Logothetis, 2002; Tse, Cavanagh, & Nakayama, 1998). Unlike most 

apparent motion displays, however, in TAM, the perceived motion is seen in a direction that 

preserves the continuity of their contours instead of to the spatiotemporally nearest 

positions. That is, how an object is perceived to move is determined by the relationship of its 
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contours at one position and time to the shape presented at another time, and not merely by 

where that shape appears.

Another example of how form can influence motion is observed in the perceived speed of 

rotating object. Objects that are defined by distinctive form features like corners or regions 

of high curvature will appear to rotate faster than those that are not (Caplovitz, Hsieh, & Tse, 

2006; Caplovitz & Tse, 2007). The size of an object can also influence how fast it is 

perceived it move (Anstis & Kim, 2011; Kohler, Caplovitz, & Tse, 2009, 2014; Verghese & 

Stone, 1996). This size-speed interaction is quite complex. In some cases, for example, 

larger objects appear to move slower than smaller ones (Kohler et al., 2009, 2014; Verghese 

& Stone, 1996). However, in the case of rotational motion, the opposite is true: large object 

appear to rotate faster than small ones and moreover the degree to which size influences 

perceived rotational speed is itself mediated by the shape of the object (Blair, Goold, 

Killebrew & Caplovitz, 2014). The perceived speed of an object can also be influenced by 

its orientation relative to the direction of motion with objects elongated in the direction of 

motion appearing to move faster than ones moving in a perpendicular direction (Krolik, 

1934; McCarthy, Cordeiro, & Caplovitz, 2012; Metzger, 1936; Or, Khuu, & Hayes, 2010; 

Pavan, Bimson, Gall, Ghin, & Mather, 2017; Porter, Caplovitz, Kohler, Ackerman, & Peter, 

2011; Series, Georges, Frégnac, & Lorenceau, 2002). In all of these examples, the shape of 

the object has effects on its perceived velocity, which in turn may affect how an observer 

interacts with it (Medendorp, de Brouwer, & Smeets, 2018).

Just as form can influence motion perception, the reverse is also true. For example, eye 

movements may make tilted lines appear vertical (Bridgeman, Mayer, & Glenn, 1976). A 

moving background may change the apparent size, shape and position of briefly flashed 

objects (Anstis & Cavanagh, 2017). Movement speed can affect perceptual grouping and 

global shape (Anstis, 2005), and, in a now well-studied occluded-aperture stimulus, stimulus 

configuration can affect whether four bars appear to be a single object moving coherently in 

one direction or as four separate objects moving independently (Lorenceau & Alais, 2001; 

Lorenceau & Shiffrar, 1992; McDermott & Adelson, 2004; Shiffrar & Lorenceau, 1996; 

Tang, Dickinson, Visser, Edwards, & Badcock, 2015). Rotational motion in particular has 

been found to distort the perceived shape and size of objects (Anstis, Sturzel, & Spillmann, 

1999; Caplovitz & Tse, 2006; McDermott & Adelson, 2004; Meyer & Dougherty, 1990; 

Shiffrar & Pavel, 1991; Stanley, 1968; Weiss & Adelson, 2000). When a square rotates, for 

example, they can appear as pincushions with concave sides potentially caused by perceived 

compression along the curved motion path (Anstis & Kaneko, 2016). However, not all form-

motion interactions result in illusions or misperceptions of one or the other feature. In some 

cases, one of the features can be used to produce the other. For example, in the kinetic depth 

effect, the 2-D projection of the rotation of a wire-frame object produces a vivid perception 

of 3-D structure (Wallach & O’Connell, 1953). Similarly, in structure-from-motion, 

unconnected elements moving along a 3-D surface can lead to the perception of that surface 

(Ullman, 1979). Just as shading, texture, and stereopsis can provide 3-D shape information, 

motion signals from spatially sparse elements can be integrated over time to produce a 3-D 

shape representation.
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There is converging evidence that the neural correlates of form-motion interactions include 

several dorsal areas including V3A, V3B/KO, MT/V5, MST, and also IPS in humans (Beer, 

Watanabe, Ni, Sasaki, & Andersen, 2009; Murray, Olshausen, & Woods, 2003; Vanduffel et 

al., 2002). For example, transformational apparent motion (TAM) and rotational motion of 

trackable features have both been shown to activate area V3A (Caplovitz & Tse, 2007; Tse, 

2006). As these stimuli involve the perception of motion, it is perhaps not surprising that 

these cortical areas are also sensitive to motion and optic flow patterns (Könönen et al., 

2003; Sugihara, Murakami, Shenoy, Andersen, & Komatsu, 2002). However, when the 

motion signal is not just a field of moving dots, but can be used to define a form, as in 

structure-from-motion, V3A is more strongly activated and this activation gradually 

increases along the dorsal pathway along IPS (Caclin et al., 2012; Klaver et al., 2008; Orban, 

Sunaert, Todd, Van Hecke, & Marchal, 1999; Paradis et al., 2000; Peuskens et al., 2004; 

Vanduffel et al., 2002). In humans as compared to monkeys, areas V3A and IPS seem to be 

more involved in perceiving motion-defined shape, whereas other areas such as MT/V5 

respond to both structured motion stimuli and global motion patterns that lack form (Orban 

et al., 2003; Paradis et al., 2000). Similarly, cortical lesions in IPS lead to impairments in 

perceiving global motion patterns (Lestou, Lam, Humphreys, Kourtzi, & Humphreys, 2014), 

while TMS applied to IPS biases perception toward local motion over global grouping and 

motion (Zaretskaya et al., 2013) and disrupts global motion processing (Cai, Chen, Zhou, 

Thompson, & Fang, 2014). Perhaps, in addition to integrating depth and spatial information 

to produce observer-relative 3-D shape representations, these intermediate and dorsal areas 

such as IPS also perform temporal integration of shape information.

2.2.2. Spatiotemporal form integration—In the preceding section, we considered 

how the accurate recovery of shape, velocity, and position information may be affected by 

other object or scene properties. However, in most of our examples, we considered stimuli 

that were completely visible at any given time. In contrast, in natural environments, it is not 

uncommon to have our view of an object obstructed by an occluder. As we move through the 

world (or as other objects move), the input to our visual system is fragmented, both in space 

and time, so that at any given moment we may only see part of a shape. Therefore, in 

addition to processing 3-D object shape and motion, the visual system must also integrate 

spatiotemporally segregated information about object parts into coherent perceptual units 

(McCarthy et al., 2017; McCarthy, Strother, & Caplovitz, 2015; Palmer, Kellman, & Shipley, 

2006). A number of behavioral studies have demonstrated that the human visual system is 

capable of constructing whole object percepts from dynamic and partial visual information. 

For example, illusory edges and figures can be seen even when the luminance-defined edges 

that support them are only shown one at a time, or are gradually revealed through patterns of 

occlusion and disocclusion (Andersen & Cortese, 1989; Erlikhman & Kellman, 2016a, 

2016b; Gibson et al., 1979; Kaplan, 1969; Kellman & Cohen, 1984; Kellman & Loukides, 

1987; Kojo, Liinasuo, & Rovamo, 1993; McCarthy et al., 2015; Palmer et al., 2006; Shipley 

& Kellman, 1993, 1994, 1997; Stappers, 1989; Yonas, Craton, & Thompson, 1987).

McCarthy et al. (2015a) created a display that nicely demonstrates form-motion integration. 

The authors used a Kanizsa display in which four circles with sectors removed were 

arranged around the corners of a square. Classically, when this stimulus is shown in static 
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form, the percept is of an illusory white square on top of four black circles (Kanizsa, 1979). 

In McCarthy et al.’s (2015) study, the illusory square rotates by changing the angle of the 

cutout in the inducing elements from frame to frame. Critically, each of the four inducers did 

not appear simultaneously, but, rather, they appeared one at a time. McCarthy et al. found 

that, under these conditions, the perception is of a rigidly rotating square. This implies that, 

in between inducer presentations, the represented position of the square was updated to 

match the shape of the cutout of the next inducer to appear. In short, in order to accurately 

construct a percept of a rigidly rotating object from partial information, the visual system 

must (1) maintain position and velocity information of no-longer-visible object parts, (2) 

update their positions when they are no longer visible, and (3) integrate previously visible 

with currently visible surfaces (McCarthy et al., 2017; Palmer et al., 2006). These processes 

occur regularly in the recovery of shape information in dynamic environments and are 

critical if one aims to interact with moving objects in the world.

Several studies have isolated neural correlates of spatiotemporally dynamic stimuli in areas 

along the dorsal stream, including V3A, V3B/KO, hMT+, and the IPS, many of which are 

implicated in 3-D shape processing, spatial localization, and global motion processing 

(Erlikhman et al., 2016; Erlikhman & Caplovitz, 2017; McCarthy, Kohler, Tse, & Caplovitz, 

2015; Reichert et al., 2014; Zaretskaya et al., 2013; Zaretskaya & Bartels, 2015). For 

example, dynamic Kanizsa figures, such as the ones described above, activate area V3A only 

when those fragments are perceived as unified into a single object (McCarthy et al., 2015). 

Dynamically-defined form information (e.g. shape or overall orientation) can be decoded in 

both V3A and IPS from contours that are only revealed gradually over time, as when seen 

through an aperture (Erlikhman et al., 2016; Kuai, Li, Yu, & Kourtzi, 2016). These areas 

may be part of the same integrating network (Perry & Fallah, 2014): the perception of global 

structure in some classes of stimuli elicits rapid feedback from IPS to V3A 100–200 ms after 

stimulus presentation (Liu, Wang, Zhou, Ding, & Luo, 2017). Stimulation applied to V3B 

disrupts feedback to earlier visual areas and prevents such contour integration (Li, Wang, & 

Li, 2017). These same areas – V3A/B and IPS – have also been implicated in the 

maintenance of no-longer-visible object information (Erlikhman & Caplovitz, 2017; Fang & 

He, 2005; Weigelt, Kourtzi, Kohler, Singer, & Muckli, 2007), a key feature necessary for the 

construction of spatiotemporal representations.

3. Summary and conclusions

The accumulating empirical evidence indicates that object properties such as form and 

motion are represented in dorsal cortex. Importantly, although object information is 

represented across both visual streams, the representations in dorsal cortex are unlikely to be 

redundant with those in ventral cortex (Konen & Kastner, 2008). Rather, dorsal object-

representations are unique from those in ventral cortex in several fundamental respects. First, 

object processing in dorsal cortex follows an overarching posterior-to-anterior visual-to-

motor gradient, with more posterior areas (such as CIP) dedicated predominantly to analysis 

of visual properties such as 3-D curvature, while anterior areas (such as AIP) are 

increasingly concerned with computations related to potential motor interactions with the 

stimulus, such as encoding the object’s absolute object location in egocentric space, 

reaching trajectory, and hand preshaping (Culham and Valyear, 2006; Fabbri, Stubbs, 
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Cusack, & Culham, 2016; Shmuelof and Zohary, 2005; Stark & Zohary, 2008). In fact, this 

visual-to-motor gradient may not be limited to the rostro-caudal axis, but may also extend 

along a medio-lateral axis as well, reflecting the underlying connectivity patterns with the 

visual and motor cortices (Freud et al., 2016; Kravitz et al., 2011). Second, object-related 

areas of dorsal cortex appear to be devoted to computing veridical (rather than invariant) 

representations of objects. Whereas shape responses in areas of ventral cortex show a global 

pattern of increasing tolerance to changes in visual attributes such as object location and size 

(Ito, Tamura, Fujita, & Tanaka, 1995; Op de Beeck & Vogels, 2000; Schwartz, Desimone, 

Albright, & Gross, 1983; Vuilleumier, Henson, Driver, & Dolan, 2002), occlusion (Kovacs, 

Vogels, & Orban, 1995), and viewpoint (Dilks, Julian, Kubilius, Spelke, & Kanwisher, 2011; 

Grill-Spector et al., 1999; Grill-Spector, Kourtzi, & Kanwisher, 2001; James, Humphrey, 

Gati, Menon, & Goodale, 2002; Vuilleumier et al., 2002), this does not appear to be the case 

in dorsal cortex. Rather, as we have described above, neural populations across dorsal cortex 

are exquisitely sensitive to changes in features such as 3-D shape, orientation, slant, and 

absolute distance relative to the body and effectors. These populations are also sensitive to 

changes in an object’s position over time (Janssen et al., 2008; Theys et al., 2015). In other 

words, whereas ventral cortex is devoted to forming increasingly abstract representations of 

shape that remains stable across changes in the visual information on the retina, dorsal 

cortex supports a different representation of objects that is sensitive to minor stimulus 

transformations.

Although we have emphasized the unique role of dorsal cortex in representing 3-D shape, 

location, distance, and object motion, shape-selective regions within the ventral and dorsal 

pathways nevertheless seem to interact during shape perception (Galletti & Fattori, 2018; 

Janssen et al., 2018; Van Dromme et al., 2016; Wokke et al., 2014). A number of regions in 

dorsal cortex (such as AIP and CIP) share anatomical connections with object-selective 

areas in the ventral pathway (Borra et al., 2008; Liu et al., 2017; Premereur, Van Dromme, 

Romero, Vanduffel, & Janssen, 2015; van Polanen & Davare, 2015; Webster, Bachevalier, & 

Ungerleider, 1994; Yeatman et al., 2014). In humans, these large-scale networks may share a 

central hub in intermediate area V3A (Liu et al., 2017). Importantly, however, the extent to 

which ventral or dorsal areas are recruited during shape perception may be heavily task-

dependent. For example, when observers are asked to report a location change across 

multiple presentations of an object, both ventral (LOC) and dorsal (PPC) regions are also 

sensitive to simultaneous changes in the object’s shape and identity, even though location 

was the only task-relevant property (Zachariou, Kltazky, & Behrmann, 2014). In contrast, 

when the task is to notice a shape difference across repeated presentations and location is 

irrelevant, only dorsal areas show location sensitivity. Similarly, face stimuli defined by 

structure-from-motion activate both ventral and dorsal regions, but the ventral regions are 

activated only when observers are asked to perform a recognition task (Farivar, Blanke, & 

Chaudhuri, 2009; Kriegeskorte et al., 2003). Greater activation of dorsal areas during a 

recognition task has also been shown to predict activity in ventral areas (Sim, Helbig, Graf, 

& Kiefer, 2015).

The converging evidence for veridical (rather than invariant) object representations in dorsal 

cortex seems to contrast with early fMRI findings, in which object responses in dorsal cortex 

were thought to reflect a pattern of invariance, similar to that of ventral object areas such as 
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LOC (Konen and Kastner, 2008). However, it is important to consider the extent to which 

object-selective areas of dorsal cortex are sensitive to the visual cues that define an object. 

The shape of an object can be conveyed by pictorial cues such as texture gradients and 

occlusion, or by stereoscopic cues such as interocular disparity. Unlike ventral cortex, where 

neural responses to objects are similar irrespective of the cues that define the shape (known 

as ‘cue invariance’; Grill-Spector et al., 1999), this does not appear to be the case in dorsal 

cortex (Durand, Celebrini, et al., 2007; Durand, Nelissen, et al., 2007; Sakata et al., 1997; 

Sary, Vogels, & Orban, 1993). Given the unique selectivity of dorsal areas for object 

properties (including 3-D shape, absolute size, and egocentric distance), impoverished 

stimuli such as line drawings and silhouettes (such as those used by Konen and Kastner, 

2008) may be inadequate for exploring the underlying selectivity profiles of neural 

populations in dorsal cortex. Moreover, relying on images of objects to study object 

representations in dorsal cortex, whether defined by monocular cues or stereoscopic 

disparity, may not stimulate dorsal cortex as well as solids do, because images do not 

typically afford genuine motor interaction. Indeed, humans (as well as non-human primates) 

have evolved to perceive and interact with real objects in real environments, not images 

(Gibson et al., 1979). Although image displays permit fine control over stimulus parameters, 

presentation, and timing, the extent to which they adequately stimulate dorsal cortex, 

particularly more anterior areas linked with motor preparation and control, is a question that 

has been surprisingly overlooked in cognitive neuroscience (Gomez et al., 2017; Snow et al., 

2011). Although very few studies of dorsal object coding have been conducted with real 

objects in humans, in the monkey anterior areas such as AIP respond selectively to solids 

(Murata et al., 2000; Sakata, Taira, Murata, & Mine, 1995). We anticipate that the use of 

richer, graspable stimuli (i.e., Freud, Culham, Plaut, & Behrmann, 2017; Gomez et al., 2017; 

Romero, Compton, Yang, & Snow, 2017; Snow et al., 2011; Snow, Skiba, Coleman, & 

Berryhill, 2014; Squires, Macdonald, Culham, & Snow, 2015) will shed fundamental new 

insights into the nature of object coding in dorsal cortex.

Taken together, the available evidence argues in favor of unique, veridical object 

representations in dorsal cortex --representations that support precise goal-directed 

interactions in an ever-changing dynamic environment. Action-relevant stimulus properties 

are likely to be determined not only by the nature of the stimulus, but also the current goals 

and intentions of the observer. Accordingly, object-related responses across the ventral and 

dorsal streams are likely to be similar in some circumstances, but show striking uniqueness 

and mutual independence in others, depending on the stimuli and task (Galletti & Fattori, 

2018). It will be important in future studies to consider the type of stimuli used and their 

relevance for genuine goal-directed actions (Gomez et al., 2018; Snow et al., 2011), and 

which object properties are relevant for the task (Bracci, Daniels & Op de Beeck, 2017). 

Careful analysis of the nature of representational content, not only in posterior parietal areas 

(such as IPS1 and IPS2), but also in more anterior regions of dorsal cortex (such as aIPS), 

are also necessary to develop a more complete understanding of the role of different sub-

regions of dorsal cortex in object processing. Ultimately, however, it remains the case that a 

consideration of the overarching output requirements of the ventral (perception) versus 

dorsal (action) visual pathways remains a useful and fundamental guiding principle for 
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characterizing the nature of object representations in the brain (Goodale & Milner, 1992; 

Milner & Goodale, 1995).
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Fig. 1. 
The Dorsal Stream in Action. (A). Consider the challenges of performing a simple 

visuomotor task, such as pouring orange juice from a bottle on the table, into a glass. The 

observer must determine the location, distance, and size of the object relative to himself. 

Initiating a reach towards the object involves constant monitoring and updating of hand 

position to avoid knocking over other objects (i.e., obstacles) that may be in the way. He 

must also determine the 3-D geometric structure of the object, so that the fingers can be 

shaped appropriately to match the anticipated contact site. To do pour contents from (rather 

than simply move) the bottle effectively, he needs to apply a grip force that is commensurate 

with the object’s shape and weight. This weight estimate presumably requires information 

about the object’s size and material properties – information that needs to be recalibrated on-

the-fly, given that the object’s weight will change as liquid moves from the bottle to the 

glass. (B). These computations become even more complex when the objects we wish to 

interact with are in motion. For example, we may notice a cup falling from the table, and 

instinctively reach to grasp it. This action requires many of the dynamic computations 

described above (i.e., reaching in the right direction and adjusting the fingers to match the 

object’s shape), but now they must be applied to an object whose spatial position and 

distance from the observer are changing rapidly. Both 3-D structure, and form-motion 

integration, are required to interact with objects in dynamic real-world contexts. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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