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The use of aseptic technique is essential to prevent transmis-
sion of microbial organisms into sterile tissues below the skin 
surface, thus minimizing the risk of infection during rodent 
surgeries.3 Many components of aseptic technique—including 
preparation of the patient and surgeon, appropriate personal 
protective equipment, sterilization of equipment, and correct 
surgical technique—work together to reduce microbial con-
tamination to the lowest practical level. The Guide for the Care 
and Use of Laboratory Animals states that principles of aseptic 
technique should be followed for all survival surgeries and that 
failure to do so may have negative consequences on surgical 
success, animal welfare, and research results.9 Accordingly, most 
animal care and use programs have developed guidelines to 
help researchers meet requirements for asepsis during rodent 
survival surgery activities.

The use of sterile drapes to create a barrier between the 
surgical site and potential sources of contamination is a critical 
element of aseptic technique for many procedures. Current 
options for rodent sterile draping include purchasing prepack-
aged sterile drape or autoclaving inhouse bulk drape or other 
material such as stockinette. More recently, some institutions 
have allowed the use of commercial cling film (CF; Press’n Seal 
cling film, Glad Products, Oakland, CA) as rodent draping ma-
terial. Benefits to using CF include that it is widely available, 
inexpensive, allows for visualization of the patient, adheres 
to diverse surfaces, and traps heat to aid in thermoregulation. 
Importantly, in our experience, the ease of its use increases inves-
tigator compliance to rodent surgical requirements. In addition, 
rodent surgeries are commonly performed alone; therefore, 
application of CF to equipment such as anesthesia vaporizer 

dials, stereotaxic knobs, and light handles may minimize breaks 
in sterility during surgery.

Despite the many benefits to using CF as draping material, 
no peer-reviewed data have been published regarding its steril-
ity. In a 2017 CompMed listserv survey, 11 of 14 respondents 
reported using CF for rodent surgery at their institution; 4 of 
these 11 respondents described no microbial growth during 
inhouse analysis, and the remaining did not report testing.2 
In addition to anecdotal information, very few data have been 
published describing the bacterial culture of the product.17,20 
Correspondence with the manufacturer revealed that very high 
temperatures are used during the extrusion process, but steril-
ity of the final product cannot be guaranteed. Of late, ethylene 
oxide-sterilized boxes of CF have become available for purchase 
through laboratory supply vendors at markedly increased cost, 
and no published data have confirmed the sterility of the CF 
roll after this sterilization process.

The purpose of this study was to use ATP swabs and replicate 
organism detection and counting (RODAC) plates to evaluate 
the sterility of CF sold for food preparation, to help institutions 
make informed decisions regarding its use as a rodent surgi-
cal drape. We hypothesized that commercial CF would yield 
minimal to no microbial growth on opening of the box and for 
28 d thereafter.

Materials and Methods
Drape materials. This study tested 10 boxes of commercial CF 

(100 ft2 roll, Press’n Seal, Glad Products) representing several 
manufacturer lot numbers. The boxes were stored on a shelf or 
countertop in areas of an animal research facility with regular 
human and laboratory animal activity. Between sampling time 
points, the tops of the boxes were left ajar, according to the 
natural conformation of the box. The boxes were handled with-
out gloves when moved to accommodate room activities or for 
sampling purposes. Daily conventional rodent work and well 
as occasional large animal activities occurred near the boxes. 
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Sections of CF were removed only during sampling. In addition, 
5 individually wrapped sterile drapes (catalog no. 89534, Sterile 
Half Drape, Halyard Health, Alpharetta, GA) were tested in this 
study and are referred to as ‘traditional drapes’.

RODAC testing. RODAC plates (BBL Trypticase Soy Agar 
with Lecithin and Polysorbate 80, Becton Dickson, Franklin 
Lakes, NJ) were used to detect bacterial growth (Figure 1 A). 
After sampling, plates were incubated at 35 °C for 72 h. Plates 
were checked for growth at 24, 48, and 72 h after sampling, 
and plates with any observable growth at the 72-h time point 
were submitted to Ohio Department of Agriculture Animal 
Disease Diagnostic Laboratory (Reynoldsburg, OH) for bacte-
rial identification.

ATP testing. ATP swabs (UltraSnap ATP Surface Test Swab, 
Hygiena, Camarillo, CA) and a luminometer (SystemSURE 
PLUS ATP Measurement System, Hygiena) were used to meas-
ure bioluminescence from the reaction of ATP with luciferase, 
which is reported in relative light units (RLU; Figure 1 A). The 
ATP swabs were analyzed according to the manufacturer’s 
recommendations and within 30 min of completing microbial 
sampling.

Microbiologic sampling procedure. Microbiologic testing (ATP 
and RODAC) was performed when the box (CF) or package 
(traditional drape) was opened (day 0). Additional testing was 
performed on the CF boxes at 14 and 28 d after opening. All CF 
testing results (days 0, 14, and 28) were compared with the day 
0 results from the traditional drapes.

The boxes were held open while a person wearing sterile 
gloves (Criterion Powder-Free Latex Surgical Gloves, Henry 
Schein, Melville, NY) pulled out and cut a 25-cm segment of 
CF by using sterile scissors, carefully avoiding contact of the CF 
with the box or cutting surface (Figure 1 B); the circumference 
of an unused CF roll was 25 cm, and this first cut section was 
discarded. Next, another 25-cm segment was sterilely pulled 
from the roll and held exposed for sampling. A RODAC plate 
was applied for 5 s of contact time at 5 locations on the front and 
5 locations on the back of CF; a 2-cm margin around the edges 
of the sampling area was avoided (Figure 1 C). Then, the same 
segment of CF was sampled by using an ATP swab in a zigzag 
pattern on the front and then back of the CF (Figure 1 D). Once 
sampling was complete, the exposed segment was removed 
from the roll, and each box was returned to its storage location. 
Sterile gloves were changed between samples. Negative control 
testing was executed by mimicking the actions and duration of 
CF testing but not touching the ATP swab or RODAC plate to 
the CF surface (n = 5).

Microbiologic sampling of the traditional drapes (n = 5) was 
accomplished in a similar fashion. Each drape was sterilely 
removed from the package and held open by using sterile 
gloves. A 25 cm × 25 cm region in the center of the drape was 
tested on both sides by using an ATP swab and RODAC plate, 
as described earlier.

Statistical analysis. All data were analyzed by using Prism 
7 statistical software (GraphPad Software, La Jolla, CA). ATP 
levels are reported as group means ± SEM. Standard one-way 
ANOVA was used for statistical comparison of ATP testing 
between groups. Where appropriate, post hoc analysis was 
performed by using the Tukey multiple comparisons test. For 
all analyses, a P value of 0.05 or less was considered statisti-
cally significant.

Results
ATP analysis. Traditional drapes (n = 5) had a mean ATP 

bioluminescence of 1.6 ± 0.51 RLU. ATP levels from CF (n = 10) 

were comparable to those of the traditional drapes on days 0 
(2.3 ± 0.91 RLU) and 14 (3.5 ± 0.91 RLU) but higher (P = 0.007) 
on day 28 (6.4 ± 0.54 RLU; Figure 2 A. ATP bioluminescence 
was at or below 10 RLU for all samples tested during this study. 
Negative control testing detected 0 RLU for all samples (n = 5). 
ATP testing of a RODAC plate (n = 1) detected 29 RLU after 
passing the swab once over the plate surface.

RODAC plate analysis. All traditional drapes (n = 5) had no 
growth after 72 h of incubation. However, some of the CF sam-
ples yielded bacterial growth (Figure 2 B, Table 1). On day 0, 3 of 
the 10 CF boxes had visible growth on RODAC plates, with 1, 5, 
and 6 cfu (0.004, 0.024, and 0.020 cfu/cm2 sampled); organisms 
were identified as Kocuria rhizophila, Neisseria spp., Streptococcus 
parasanguinis, Streptococcus spp., and Rothia mucilaginosa. On day 
14, none of the 10 CF boxes had visible growth, and on day 28, 
1 of the 10 CF boxes yielded 12 cfu (0.048 cfu/cm2 sampled); 
these organisms were identified as Staphylococcus epidermidis 
and Staphylococcus pasteuri. Negative control samples (n = 5) 
had no growth after 72 h of incubation.

Discussion
This study investigated the sterility of commercial CF (Press’n 

Seal, Glad Products) to critically evaluate its use as rodent surgi-
cal draping material. Here we demonstrated that ATP detection 
from all 10 boxes of CF tested was at or below 10 RLU for as long 
as 28 d after opening. ATP detection is fast and easy to perform, 
but there are several limitations to consider when interpreting 
the results. Notably, ATP bioluminescence systems measure 
cellular material, specifically ATP, regardless of viability.5,18 
Thus, sources of extracellular ATP such as dead cells, organic 
material, and debris from the packaging or environment can 
generate positive ATP readings but lack infectious potential. 
In the current study, we performed ATP testing after RODAC 
sampling and, consequently, residue from the plates could have 
been detected. ATP swabbing the surface of a RODAC plate in 
a single pass produced 29 RLU, indicating that positive ATP 
results due to RODAC plate residue is a valid concern. These 
additional sources of ATP or variation in sampling conditions 
may account for why the mean ATP reading of CF at day 28 
was significantly higher than from traditional drapes without 
a corresponding increase in colony counts. Nonetheless, ATP 
detection was at or below 10 RLU for all CF samples, a common 
threshold for acceptable ATP levels on sterilized surfaces.14 
Other benchmarks created by using the same testing system in 
hospital settings recommend higher thresholds, such as 50 to 
100 RLU, to prevent nosocomial infections.4,13,21

Tryptic Soy Agar RODAC plates are designed to aid in 
quantification of live microorganisms on a surface. These plates 
identified only minimal growth on several of the CF boxes (3 of 
the 10 boxes on day 0 and 1 on day 28). Importantly, each plate 
made contact with 10 discrete locations, to test a larger surface 
area than the conventional sampling method. Even so, growth 
on the positive plates from day 0 was below the threshold of 
10 cfu per plate (0.4 cfu/cm2) that is used at our institutions 
to delineate adequate sterilization. This threshold is adapted 
from APHA Guidelines, literature from hospital settings, and 
inhouse testing.11,13,19 Notably, the 12 colonies on the day 28 
plate were arranged in a ring around the edge of the plate. 
Due to the raised agar conformation and parallel sampling 
technique, the side of the agar was unlikely to directly contact 
the CF. We are highly suspicious that this bacterial growth was 
contamination from contact with the lid during the recapping 
process. Overall, microbial growth declined sharply after the 
initial testing on day 0, suggesting that discarding a larger 
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piece of CF initially may greatly reduce the risk of microbial 
contamination of the material; further research is needed to 
confirm this recommendation.

Streptococcus spp., Neisseria spp., and Rothia mucilaginosa were 
identified from the CF samples on day 0 and are commensal 
flora of human mucosal surfaces. These ubiquitous organisms 

Figure 1. (A) ATP luminometer, ATP swab, and RODAC plate used for microbiologic testing. (B) Close up of the box, demonstrating avoidance 
of the cutting surface (white arrow) with any other box surfaces while unrolling the product. (C) The RODAC plate was applied for 5 s of contact 
to 5 positions on the front (blue dots) and then 5 positions on the back of the CF sampling area. (D) After RODAC testing, the same sampling area 
was swabbed with an ATP swab in a zigzag pattern on the front and back of the material. For both RODAC and ATP testing, an approximately 
2-cm margin around the testing region was avoided.
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could have been introduced during any point during manu-
facturing, storage, or sampling. Moreover, the identification 
of Kocuria rhizophila on day 0 was particularly interesting. This 
soil-dwelling bacterium is commonly used in the food industry 
for quality control and antimicrobial testing.16 Accordingly, this 
organism likely originated from the manufacturing facility. On 
day 28, Staphylococcus epidermidis and Staphylococcus pasteuri— 
commensal flora of human skin— were identified on the single 
positive plate. Due to potential contact of the RODAC plate lid 
with skin, this identification supports our suspicion that lid 
contamination was responsible for the growth. Although most of 
these bacteria are either not reported or known to be pathogenic 
in rodents, their pathogenic potential in immunocompromised 
animals should be considered.1,8,10,12,15

Negative control sampling (air sampling) encompassed 
performing the complete CF sampling method but avoiding 
contact of the ATP swab or RODAC plate with the material. This 
was implemented to identify whether contamination occurred 
during the sampling process. All of the control ATP results were 
0 RLU, and all of the control RODAC plates were negative for 
growth. However, further studies performing RODAC sampling 
in a biosafety cabinet would provide evidence that the bacterial 
growth we observed was truly due to sample on the CF surface 
rather than aerosolized contaminants in the room.

The use of traditional sterilized draping material is the 
‘gold standard’ for animal surgery; however, modifications in 
aseptic technique for rodent surgery may be permissible when 
they meet performance indices. Achieving true asepsis—the 
elimination of all bacteria, viruses, and other microorgan-
isms—is essentially impossible during any surgery. Instead, 
the goal is to limit microbial contamination to the lowest pos-
sible levels, to minimize effects on the immune systems and 
the risk of postsurgical infection.3,6,7 Experimental surgery 
on rodents is often performed by biomedical researchers of 
various backgrounds and is rarely done by veterinarians 
or physicians with formal aseptic surgical training. Indeed, 
creating attainable standards is essential for compliance with 
rodent surgical requirements.

Our results demonstrate that minimal ATP detection and bac-
terial growth occurred on a small percentage of CF boxes after 
opening. Because microbial detection was highest at the start of 
the roll, discarding a piece longer than 25 cm before using the 
roll may reduce risk of contamination. These results—coupled 
with many benefits including cost, availability, visualization, 
and thermoregulation—support the continued use of CF as 
rodent surgical drape and likely meet performance standards 
for rodent aseptic surgery as recommended in the Guide. Our 
institutions have begun using CF for rodent surgeries, and we 

Figure 2. (A) ATP bioluminescence (in RLU) for control (n = 5), traditional drapes (n = 5, white), and CF on days 0, 14, and 28 (n = 10, blue). 
The middle line represents the median, the bounds of the box represent the upper and lower quartiles, and the whiskers represent the lowest 
and highest ATP detection values for each group. †, P < 0.01 (one-way ANOVA) compared with traditional drape. (B) RODAC plate testing for 
control (n = 5), traditional drapes (n = 5), and CF (n = 10) on days 0, 14, and 28. Bars indicate the percentage of plates with growth after 72 h of 
incubation.

Table 1. ATP (no. of RLU) and RODAC (no. of cfu per plate, no. of cfu/cm2) testing results

CF box no.

Day 0 Day 14 Day 28

ATP RODAC ATP RODAC ATP RODAC

1 1 0, 0 5 0, 0 7 12, 0.048d

2 0 1, 0.004a 6 0, 0 8 0, 0
3 2 0, 0 2 0, 0 4 0, 0
4 8 0, 0 5 0, 0 7 0, 0
5 1 6, 0.024b 9 0, 0 5 0, 0
6 2 0, 0 1 0, 0 6 0, 0
7 7 5, 0.02c 4 0, 0 6 0, 0
8 0 0, 0 3 0, 0 6 0, 0
9 0 0, 0 0 0, 0 5 0, 0
10 2 0, 0 0 0, 0 10 0, 0
aOrganism identified as Kocuria rhizophila.
bOrganisms identified as Neisseria spp., Streptococcus parasanguinis, and Streptococcus species (mitis group).
cOrganisms identified as Neisseria spp. and Rothia mucilaginosa.
dOrganisms identified as Staphylococcus epidermidis and Staphylococcus pasteuri.
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have not appreciated any postsurgical complications. However, 
future studies evaluating surgical outcomes might be explored.
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