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Abstract

The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small 

molecule substrates using a conserved activated serine nucleophile. The mammalian central 

nervous system (CNS) express a diverse repertoire of serine hydrolases that act as 

(phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal 

neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided 

evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and 

neurodegenerative disorders. This review briefly summarizes recent progress in understanding the 

biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the 

mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The 

development and application of specific inhibitors for an individual serine hydrolase, if available, 

are also described.

1. Introduction

The mammalian central nervous system (CNS) exhibits a distinct lipid composition 

compared to other organs and tissues. This unique lipid composition is regulated and 

sustained by numerous lipidmetabolizing enzymes that are highly expressed in the CNS. 

One such superfamily are serine hydrolases, a class of enzymes that possesses the α/β 
hydrolase motif and a nucleophilic serine residue embedded in a Ser-His-Asp or Ser-Ser-Lys 

catalytic triad to enable cleavage of ester, amide, or thioester bonds of protein, peptide, and 
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small molecule substrates [1]. Among more than 200 enzymes that belong to serine 

hydrolase, approximately half of the family are classified as metabolic serine hydrolases, 

whose substrates are generally small molecules including lipids. Several metabolic serine 

hydrolases are implicated in neurologic and psychiatric disorders [2]. Thus, these enzymes 

and their metabolic substrates or products play essential roles for the normal functions and 

development of the mammalian CNS.

Endocannabinoids [2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamine (AEA; 

also called anandamide)] are bioactive lipids that serve as endogenous ligands for the 

cannabinoid receptors CB1 and CB2, which are the molecular targets for the psychoactive 

agent THC (Δ9-tetrahydrocannabinol). Activation of these G protein-coupled receptors 

(GPCR) by endogenous (2-AG, AEA) and exogenous (e.g. THC) cannabinoids regulate a 

plethora of neuro-(patho)physiological processes. Recent advances in chemoproteomic 

technologies including activity-based protein profiling (ABPP [3]) led to identification and 

characterization of several serine hydrolases that play central roles in the biosynthesis and 

degradation of these lipid signaling molecules. These techniques also enabled development 

of a suite of mechanism-based covalent inhibitors that block serine hydrolase activity with 

high selectivity and potency in vitro and in vivo. Studies using serine hydrolase inhibitors 

have supported their potential therapeutic benefits on pathophysiological diseases and 

conditions of the CNS.

In this review, we summarize recent discoveries on metabolic serine hydrolases that regulate 

the biosynthesis and degradation of two major endocannabinoids, AEA and 2-AG. We also 

summarize other lipid-metabolizing serine hydrolases that are highly expressed in the CNS 

and implicated in CNS disorders.

2. Serine hydrolases involved in AEA synthesis and degradation

2.1 PLA2G4E

AEA is the first discovered endogenous ligand of the cannabinoid receptors, and is a 

member of the N-acyl ethanolamine (NAE) family of lipids. The first step of the NAE 

synthetic pathway is synthesis of N-acyl phosphatidylethanolamine (NAPE) by enzymatic 

reactions that transfer an acyl chain to the free amino nitrogen of phosphatidylethanolamine 

(PE) (Fig. 1). This enzymatic activity was first described in dog heart and brain tissues [4, 

5], and was thereafter shown to be enriched in the rodent brain [6]. Biochemical analyses 

revealed that this enzyme requires calcium for its activity, and that it transfers the fatty acid 

attached to the sn-1 position of phosphatidylcholine (PC) to the amine of PE. Since this 

calcium-dependent N-acyltransferase (Ca-NAT) activity is sensitive to serine hydrolase 

inhibitors [7], it has been thought that this enzyme belongs to the serine hydrolase family. 

Many attempts to identify this enzyme have failed due potentially to its localization to the 

membrane, its low abundance, and its sensitivity to various kinds of detergent and separation 

methods using column chromatography.

Recently, Ogura et al. found that this enzyme can be solubilized with a detergent IGEPAL 

CA-630, and that the enzyme activity can be separated and enriched by a sucrose gradient 

[8]. The subsequent ABPP and global correlation analysis between the quantity of serine 
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hydrolases and the Ca-NAT activity in each fraction identified PLA2G4E (also known as 

cPLA2ϵ) as the long-soughtafter Ca-NAT [8]. PLA2G4E is a member of a cytosolic 

phospholipase A2 (cPLA2) family, and was originally characterized as an enzyme with 

considerably weaker PLA2 activity toward phospholipids compared to other members such 

as cPLA2α [9–11]. Consistent with previous research, the Ca-NAT activity of recombinant 

PLA2G4E was enhanced by addition of calcium ion and DTT, and was inhibited by serine 

hydrolase inhibitors and probes. Overexpression of PLA2G4E in HEK293T cells led to 

massive accumulation in NAPEs and the downstream N-acylated lipids such as 

glycerophospho (GP)-NAEs (GP-NAEs) and NAEs. Ionomycin treatment dramatically 

increased production of these N-acylated lipids in PLA2G4E-expressing cells. PLA2G4D 

(also known as Cpla2δ), the closest homolog of PLA2G4E with 43% sequence identity, did 

not show Ca-NAT activity. These results indicate that PLA2G4E is the bona fide Ca-NAT in 

the mouse brain. Recently, PLAAT (phospholipase A/acyltransferase) family enzymes have 

been shown to possess a calcium-independent NAPE-forming PE N-acyltransferase activity 

[12]. The contribution of PLA2G4E and the PLAAT family enzymes to endogenous levels 

of AEA and other NAEs in vivo should be determined by generating knockout animal 

models or pharmacological inhibition of these enzymes. Of note, a recent study suggested 

that single nucleotide variants in the human PLA2G4E gene may be linked to the risk of 

panic disorder [13]. Knockout animal models and inhibitors of PLA2G4E will be a new tool 

to uncover the physiological roles of NAPEs and their downstream lipids.

2.2 ABHD4

Multiple enzymatic pathways mediate the synthesis of NAEs from NAPEs (Fig. 1). NAPE-

PLD, an enzyme that belongs to the zinc metallohydrolase family of the β-lactamase fold, 

exhibits a phospholipase D activity toward NAPEs and directly converts NAPEs into NAEs 

[14] (Fig. 1). Brains from Nape-pld−/− mice exhibit dramatic reductions in NAE species that 

contain saturated or monounsaturated fatty acids with more than 18 carbon chains such as 

C20:0, C22:0, C24:1, and C24:0; however, only modest reductions in major NAEs (~2-fold 

or less), including C16:0, C18:0, C18:1, and C20:4 NAEs, were observed, suggesting the 

existence of other metabolic pathways for NAE synthesis from NAPEs [15, 16]. A candidate 

pathway is the sequential hydrolysis of sn-1 and sn-2 ester bonds by PLA1/2 enzymes to 

yield lyso-NAPE and GP-NAE intermediates, followed by the removal of lysophosphatidic 

acid (LPA) and glycerol 3-phosphate [17] (Fig. 1). Protein purification combined with 

ABPP technique identified the serine hydrolase ABHD4 as the PLA1/2 (i.e., PLB) enzyme 

that cleaves both sn-1 and sn-2 O-acyl chains of NAPEs [18]. In mice, ABHD4 is highly 

expressed in the CNS and the testis, and moderately in other tissues such as the liver and the 

kidney [18, 19]. Recombinant ABHD4 protein exhibits both NAPE- and lyso-NAPE-lipase 

activity [18]. Abhd4−/− mouse brains show moderate reductions in lyso-NAPEs and GP-

NAEs, and marked reductions in plasmalogen-type lyso-NAPEs (lyso-pNAPEs) [19]. 

However, NAE levels were not significantly altered compared to those in wild-type brains, 

probably due to the presence of redundant pathways in NAE synthesis. A non-targeted 

lipidomics analysis revealed that a novel class of lipids, N-acyl lysophosphatidylserine (lyso-

NAPS) was dramatically reduced in Abhd4−/− mouse brains [19]. Biochemical analyses 

verified that NAPS lipids are also ABHD4 substrates (Fig. 2). Although ABHD4 catalyzes 
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both PLA1 and PLA2 reactions in vitro, the results of the subsequent targeted lipidomics 

analysis indicated that it may mainly act as a PLA2 enzyme in vivo. While Abhd4−/− mouse 

brains showed dramatic reductions in lyso-NAPS species with O-saturated fatty acids, the 

levels of lyso-NAPSs with O-unsaturated fatty acids were not significantly affected. In 

general, saturated fatty acids are mainly found at sn-1 position of phospholipids, whereas 

unsaturated fatty acids are mainly attached to their sn-2 position. Thus, ABHD4 likely 

hydrolyzes the ester bond at sn-2 position more preferentially, where unsaturated fatty acids 

are attached, to produce sn-1-O-saturated lyso-NAPS species.

Taken together, ABHD4 regulates multiple classes of N-acyl phospholipids in the 

mammalian CNS (Fig. 2). Although ABHD4 is implicated in several pathophysiological 

events such as cancer and anoikis [20, 21], the contribution of its lipid metabolic activity in 

these events is not well understood. A study using competitive ABPP showed that several N-

hydroxyhydantoin carbamates, a versatile class of irreversible serine hydrolase inhibitors, 

inhibit ABHD4 activity with good potency and selectivity [22] (Table 1). Further 

optimization of ABHD4-selective inhibitors will greatly enable functional studies of this 

serine hydrolase in the CNS.

2.3 FAAH

FAAH (Fatty acid amide hydrolase) is an integral membrane serine hydrolase that is highly 

expressed in the mammalian brain, liver, kidney, and testis. FAAH is localized to the ER and 

several transporters that are able to transport AEA to FAAH have been identified [23–25]. 

While serine hydrolases largely use a Ser-His-Asp triad for catalysis, FAAH forms an 

unusual Ser-Ser-Lys catalytic triad that is characteristic of amidase signature (AS) family 

enzymes. In vitro, FAAH most preferentially hydrolyzes C20:4 NAE (AEA), followed by 

C18:1 NAE (N-oleoyl ethanolamine; OEA) and C16:0 NAE (N-palmitoyl ethanolamine; 

PEA). The genetic ablation or pharmacological inhibition of FAAH lead to dramatic 

accumulation of AEA and related NAE congeners in the rodent brain, indicating that FAAH 

is the major NAE-degrading enzyme in the mammalian CNS (Fig. 1). FAAH also 

hydrolyzes oleamide (cis-9,10-octadecanoamide), a sleep-inducing lipid [26], at an 

equivalent rate to AEA (Fig. 3). A non-targeted lipidomics analysis on Faah−/− brains also 

identified a new class of lipids, N-acyl taurines (NATs) as another endogenous substrate of 

FAAH [27] (Fig. 3). Compared to wild-type brains, Faah−/− brains show 10–40 fold 

accumulation of very long chain NATs (more than 22 carbons). Since the hydrolytic activity 

of FAAH toward NATs is considerably lower than that toward NAEs in vitro, massive 

accumulation of NATs in Faah−/− is likely due to the absence of other NAT-degrading 

pathways [28]. NAAA (N-acyl ethanolamine-hydrolyzing acid amidase), a lysosomal 

enzyme that belongs to the choloylglycine hydrolase family, also has been shown to 

hydrolyze NAEs, with a preference for C16:0 NAE [29] (Fig. 1). However, its expression is 

mainly in peripheral tissues, and its contribution in the CNS is not well understood.

In rodents, elevation of AEA levels by genetic or pharmacological disruption of FAAH leads 

to anxiolytic, anti-depressive, and analgesic phenotypes in a cannabinoid-receptor-dependent 

manner. FAAH blockade also leads to anti-inflammatory phenotypes in both a cannabinoid-

receptordependent and -independent manners, the latter of which may include accumulation 
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of PEA and OEA, endogenous agonists of peroxisome proliferator-activated receptor-α 
(PPARα) [30, 31]. A number of FAAH inhibitors have been developed and now under 

human clinical trials, and potential clinical efficacy of FAAH inhibition in pain and 

hyperalgesic has been reported [32] (Table 1). No severe side effects had been reported in 

these clinical trials, until the recent serious adverse events in a phase I clinical trial for BIA 

10–2474, which include a single case of death and serious neurological damage [32, 33]. 

However, these adverse events may be due to this drug’s off targets, as other clinically tested 

FAAH inhibitors such as PF-04457845 have not yielded such neurotoxicity, and a recent 

ABPP analysis revealed that BIA 10–2474 and its major metabolite BIA 10–2639 also 

inhibit several lipidmetabolizing serine hydrolases including PNPLA6, disruption of which 

causes neurotoxicity and neurodegenerative disorders as discussed below [34].

2.4 FAAH2

FAAH2 is a serine hydrolase with ~20% sequence identity to FAAH, and is conserved in 

higher placental mammals, but not in rodents. In human, FAAH2 is located on the X 

chromosome, and is highly expressed in the liver, kidney, lung, and prostate, but only 

moderately expressed in the brain [28]. FAAH2 exhibits a distinct substrate preference 

compared to FAAH; FAAH2 preferentially hydrolyzes oleamide and N-oleoyl ethanolamine 

(C18:1 NAE), but shows considerably less activity toward other NAEs (C16:0 and C20:4) 

and no activity toward C18:1 N-acyl taurine (NAT) (Fig. 1 and 3). Our understanding of the 

physiological roles of FAAH2 has lagged behind that of FAAH because of the lack of 

animal knockout models and FAAH2-specific inhibitors. Although some FAAH inhibitors 

such as URB597 or OL-135 show enhanced potency for FAAH2 versus FAAH [28], more 

selective inhibitors, such as WWL44 [35], may be required to investigate FAAH2-specific 

functions (Table 1). Recent studies have suggested that genetic defects of FAAH2 are linked 

to neurologic and psychiatric disorders, such as ataxia, seizure, intellectual disability, and 

autism [36–38], Thus, in addition to FAAH, FAAH2 seem to play pivotal roles for the 

functions of the human CNS.

2.5 AEA signaling in other animal models

AEA signaling and related enzymes are conserved in other lower animals such as 

invertebrates and fish. Interestingly, these enzymes have been shown to also play essential 

roles in nervous system functions. A variety of NAE species, including AEA, have been 

identified in Caenorhabditis elegans, and inhibits dietary-restriction-induced lifespan 

extension [39]. A genome-wide RNA interference (RNAi) screen identified faah-1, a C. 
elegans ortholog of FAAH, as a regulator of axon regeneration [40]. The faah-1 deletion 

mutant shows a defect in axon regeneration after laser axotomy most likely due to the 

accumulation of endogenous AEA and eicosapentaenoyl ethanolamide (EPEA) [40], and 

this defect is suppressed by a deletion mutation of NAPE-PLD homologs [41]. The effects of 

these NAEs on axon regeneration are mediated by G protein-coupled receptors that couple to 

Goα and possess amino acid residues highly conserved or functionally important in human 

CB1/2 receptors [41] As mentioned earlier, FAAH2 is not conserved in rodents, which makes 

it difficult to investigate the physiological roles of FAAH2 in vivo. On the other hand, 

FAAH2 is conserved in non-rodent vertebrates such as zebrafish [42–44]. Krug et al. [45] 

generated a mutant line of faah2a, one of two zebrafísh FAAH2 paralogs, and found that 
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these faah2a zebrafish mutants exhibited reduced stressassociated behavioral response, 

which is similar to the phenotypes observed in Faah−/− mice [46, 47]. Thus, these non-rodent 

animal models may serve as alternative tools to investigate the roles of AEA signaling and 

related enzymes in the CNS.

3. Serine hydrolases involved in 2-AG synthesis and degradation

3.1 DAGLα and DAGLβ

Diacylglycerol lipase-alpha and -beta (DAGLα and DAGLβ) are ~120 and ~70 kDa, 

respectively, serine hydrolases that hydrolyze AA (arachidonic acid)-esterified 

diacylglycerols (DAGs) to produce 2-AG (Fig. 4) [48, 49]. In vitro, DAGLs preferentially 

hydrolyze DAGs at the sn-1 position, can be stimulated with calcium, and have negligible 

activity against other lipids including monoacylglycerols and phospholipids [48]. DAGLs 

show high conservation between humans and mice (97% and 79% identity for alpha and 

beta, respectively [48]) but surprisingly low homology between isoforms within a given 

species (~20% sequence identity for human and mouse DAGLs, https://www.uniprot.org). 

Mammalian DAGLs are expressed as transmembrane proteins composed of a 4-

transmembrane domain region at the N-terminus followed by a canonical α/β hydrolase 

domain (containing the nucleophilic serine residue). The C-terminal tail largely 

differentiates DAGLα and DAGLβ with the former isoform showing a more pronounced 

domain region. Activated calcium/calmodulin dependent protein kinase II (CaMKII) has 

been shown to phosphorylate the C-terminal domain of DAGLα (serine 782 and 808 of 

mouse DAGLα) to inhibit DAGLα activity in regulation of 2-AG metabolism and signaling 

in vivo [50]. The role of the C-terminal tail of DAGLβ is currently unknown. Several reports 

have identified cysteine palmitoylation of DAGLβ, which may serve as a novel 

posttranslational modification (PTM) to regulate function [51, 52]. Future studies aimed at 

studying posttranslation regulation of DAGL activity in vivo will be important to understand 

cross-talk between lipid and protein signaling pathways.

3.1.1 DAGL lipid metabolism and signaling—In addition to differences in domains 

and PTMs, DAGL function is segregated by tissue- and cell type-specific expression (Fig. 4 
and 5). DAGLα is expressed predominantly in central tissues (brain, spinal cord) and 

pancreas while DAGLβ expression is enriched in liver and immune cells including 

macrophages and microglia [53–56]. Consistent with gene expression profiles, lipid analyses 

of Dagla−/− mice showed 80–90% reductions in brain 2-AG as well as the downstream 

product arachidonic acid (AA) [53, 54, 57]. Daglb−/− mice showed 90% reductions in liver 

2-AG and negligible effects on brain 2-AG and AA, although one report demonstrated 

modest changes in brain 2-AG [53].

DAGL activity is further regulated by expression and activity within individual cell types of 

the brain (Fig. 5) [57]. Lipid profiles of neurons, astrocytes, and microglia revealed 

substantial reductions in 2-AG and AA (60–90%) in Dagla−/− neurons and astrocytes with 

negligible changes in these lipids measured in microglia. In contrast, lipid profiles of Daglb
−/− neurons were not impacted; in contrast, Daglb−/− microglia showed ~50% reductions in 

2-AG, AA, and prostaglandins (PGE2 and PGD2) compared with wild-type counterparts 
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[57]. Astrocytes showed a mixed lipid profile with significant reductions in 2-AG, AA, and 

PGE2/D2 in Dagla−/− cells. Disruption of DAGLβ resulted in a modest (~20%) but 

significant reduction in astrocyte 2-AG. Taken together, these metabolomics findings 

illustrate the importance of DAGL expression and activity across tissues and individual 

celltypes of tissues to fine-tune 2-AG metabolism and signaling [57].

In the context of 2-AG signaling, disruption of DAGLα results in functional antagonism of 

CB1 through depletion of 2-AG available for CB1 signaling. Consistent with this hypothesis, 

Dagla−/− mice recapitulate many of the metabolic (lean, hypophagic, improved glycemic 

control in obesity) and behavior phenotypes (anxiety, depression) observed in CB1 knockout 

mice [58, 59]. In addition, reductions in adult neurogenesis were observed in Dagla−/− mice 

[53, 60]. Localization of DAGLα at the postsynaptic density [61], potentially through 

protein-protein interactions of its C-terminal tail with postsynaptic Homer adaptor proteins 

[62] and CaMKII [50], positions this lipase for regulation of synaptic plasticity (e.g. DSI and 

DSE) via retrograde signaling at presynaptic CB1 [53, 54]. In summary, the comparable 

phenotypes of knockout mice and complementary localization of DAGLα and CB1 supports 

a key role for DAGLα in regulating 2-AG signaling in the CNS [53, 60].

3.1.2 DAGLβ regulates macrophage and microglia inflammatory signaling—
DAGLβ disruption does not result in the same metabolic and behavioral phenotypes 

observed in Dagla−/− mice [53, 54, 63]. Chemoproteomic studies have shown enrichment of 

DAGLβ activity in macrophages and microglia (brain macrophage subset) immune cells [55, 

57]. Consistent with its activity profile, disruption of DAGLβ results in accumulation of AA-

esterified DAGs (specifically the C18:0/C20:4 DAG species) and depletion of 2-AG, AA, 

and prostaglandins (PGE2 and PGD2) in macrophages [55] and microglia [57]. Regulation of 

both 2-AG and AA by DAGLβ revealed important cross-talk between endocannabinoid and 

eicosanoid signaling in macrophages. Disruption of DAGLβ in macrophages and microglia 

also attenuated proinflammatory cytokine (TNF-α) signaling in response to 

lipopolysaccharide stimulation [55, 57]. Thus, DAGLβ is a complementary pathway to 

classical cPLA2α pathways [64] for regulation of AA pools utilized by COX1/2 to generate 

lipid mediators of macrophage inflammatory responses (see section 4.1 for additional 

details).

3.1.3 DAGL inhibitors—Discovery of first-generation in vivo-active DAGL inhibitors 

(Table 1) was enabled by ABPP assays tailored for detection and quantitation of native 

DAGL activity [55, 65]. In addition to enhanced sensitivity, the DAGL-tailored activity-

based probe HT-01 allowed rapid evaluation of potency and selectivity of DAGL inhibitors 

directly in complex proteomes in vitro and in vivo [55]. Using ABPPguided medicinal 

chemistry, the 1,2,3-triazole urea covalent inhibitor KT109 emerged as the first in vivo-

active DAGLβ inhibitor suitable for cell (IC50 ~ 10 nM) and animal studies (EC50 ~10 mg 

kg−1 in animal pain models) [55, 57, 66]. A structurally analogous, DAGL-inactive negative 

control inhibitor KT195 was also developed to distinguish DAGLβ-specific from non-

specific serine hydrolase inhibition [55, 67]. Liposomal encapsulation of KT109 (i.e. 

liposomal KT109) enabled targeted delivery of DAGLβ inhibitors to macrophages and 
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dramatically reduced compound amounts required to elicit anti-inflammatory effects in 

animal pain models [68].

KT172, a structural analog of KT109, was developed as a dual DAGLα and DAGLβ 
inhibitor [55] (Table 1). Further medicinal chemistry around the KT172 scaffold produced 

the CNS-active variants, DH376 and DO34, which permitted in vivo analysis of DAGL 

biology in the brain [56]. DH376 and DO34 were used along with a negative-control probe 

(DO53) to demonstrate that acute blockade of DAGLs in mouse brain rapidly altered lipid 

profiles to impact synaptic plasticity, neuroinflammatory responses (50 mg kg−1) [56], and 

fasting-induced refeeding behavior (50 mg kg−1) [69]. Exploration of reversible DAGL 

inhibitors, as opposed to covalent irreversible 1,2,3-triazole ureas, identified the α-

ketoheterocycle LEI104 (previously reported as a FAAH inhibitor) as a potential scaffold for 

developing DAGLα inhibitors [70] (Table 1). Future studies aimed at defining key structure-

activity relationships that differentiate inhibitory activity against DAGLα versus DAGLβ, as 

well as common serine hydrolase off-targets (e.g. ABHD6), will help guide development of 

DAGLα-selective inhibitors suitable for in vivo use in the CNS.

3.2 MGLL

3.2.1 Principal 2-AG hydrolytic enzyme in the CNS—Monoacylglycerol lipase 

(MGLL or MAGL) is a ~33 kDa serine hydrolase that adopts an α/β hydrolase fold 

composed of an eight β-strand core (containing the conserved GXSXG motif) enclosed on 

two sides by α-helices; eight in the case of the human MGLL [71, 72]. MGLL was extracted 

and purified from rat adipose tissue where it displayed hydrolytic activity towards a diverse 

set of monoglyceride substrates [73]. MGLL was demonstrated to possess lipase activity 

with equal specificity for 2- and 1-monoglycerides and a preference for longer and more 

unsaturated MAG species [74, 75]. MGLL shows a strong preference for MAG versus other 

neutral lipids including DAGs and triacylglycerols (TAGs) in vitro [76]. In the context of 

brain lipid metabolism, MAGL accounts for roughly 85% of total 2-AG hydrolytic activity 

in mouse brain proteomes (Fig. 4 and 5), supporting this serine hydrolase as a critical 

regulator of endocannabinoid signaling in the CNS [77].

3.2.2 MGLL inhibitors—Competitive ABPP and medicinal chemistry enabled 

development of the O-aryl carbamate JZL184 as a potent and selective MGLL inhibitor 

(IC50 ~10 nM, Table 1) [78]. JZL184 treatments reduced 2-AG hydrolysis activity by >80%, 

resulting in an eight-fold enhancement in brain 2-AG without altering AEA in treated mice 

[78]. JZL184-treated mice showed a broad range of CB1-dependent behavioral effects 

including hypothermia, analgesia, and hypomotility. Long-term elevations in brain 2-AG 

from chronic MGLL blockade (Mgll−/− mice or JZL184 chronic treatments) desensitizes and 

downregulates brain CB1 receptors, further validating a key role of MGLL in regulating 2-

AG-CB1 signaling in the CNS [79, 80]. In support of 2-AG as a primary source for AA in 

the CNS, disruption of brain MGLL with JZL184 treatments resulted in substantial 

decreases in AA and AA-derived prostaglandins (Fig. 4) [81]. The latter metabolic effect 

suppressed neuroinflammation and provided neuroprotection in a mouse model of 

Parkinson’s disease [81]. Thus, the positive effects of MGLL blockade, i.e. enhanced 2-AG 
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signaling and suppression of inflammatory prostaglandins, has opened new therapeutic 

avenues for targeting this enzyme in neurodegeneration, inflammation, and pain [2].

While highly selective, JZL184 showed partial blockade of FAAH in brain and 

carboxylesterases in peripheral tissues of treated mice [78]. To improve selectivity in vivo, 

exploration of carbamate inhibitors bearing a hexafluoroisopropanol (HFIP)-leaving group 

produced KML29, which inactivated MGLL in vitro (IC50 ~15 nM) and in vivo with 

excellent potency and enhanced selectivity against FAAH [82] (Table 1). Recently, 

exploration of a trifluoromethyl glycol leaving group improved drug-like properties 

(solubility, chemical liability) of covalent MGLL inhibitors compared with HFIP 

counterparts (PF-06795071, Table 1) [83]. Following these discoveries, additional MGLL 

inhibitors have been pursued including novel compounds that block activity via a reversible 

mechanism [84].

3.2.3 Therapeutic potential of MGLL

3.2.3.1 Inflammation and pain: MGLL inactivation using JZL184 and KML29 

attenuated inflammatory and neuropathic pain through enhanced brain 2-AG and activation 

of cannabinoid receptors CB1 and CB2 [85, 86]. Chronic treatments with high dose JZL184 

or KML29 resulted in tolerance due to cannabinoid receptor downregulation and 

desensitization. However, repeated low dose administration of these compounds, to avoid 

functional antagonism of CB receptors [79], blocked pathogenic pain states without 

evidence of tolerance. Use of JZL184 and KML29 along with cannabinoid receptor 

knockout mice and antagonists supported differential involvement of cannabinoid receptor 

subtypes in the different pain models; the anti-allodynic effects of MGLL inhibitors require 

both CB1 and CB2 while only CB1 is necessary for neuropathic pain [85, 86]. Importantly, 

KML29 provided beneficial effects in mouse pain models without eliciting cannabimimetic 

effects (catalepsy, hypothermia and hypomotility) that are characteristic of full agonists of 

CB1 and CB2 like THC [87]. These results highlight the differential pharmacology of 

blocking a single endocannabinoid catabolic enzyme versus dual MGLL/FAAH inhibition, 

which elevates both 2-AG and AEA to elicit THC-like cannabimimetic effects [86].

3.2.3.2 Neurodegenerative diseases: Amyotrophic lateral sclerosis (ALS) is a fatal 

neurodegenerative disease that is marked by progressive deterioration of upper and lower 

motor neurons typically onset as an adult [88]. Mutations in superoxide dismutase 1 (SOD1) 

constitutes a substantial fraction of familial ALS and mutant SOD1 mice are capable of 

recapitulating clinical hallmarks and behaviors of ALS [89]. Using mutant (SOD1G93A) 

mice, researchers discovered accumulation of AEA and 2-AG in spinal cord at early 

symptomatic and late stage ALS, which may represent a neuroprotective mechanism to 

counteract disease progression [90, 91]. In support of this hypothesis, treatment of ALS 

SOD1G93A mice with KML29 (10 mg kg−1) resulted in accumulation of brain and spinal 

cord 2-AG, and delayed the onset of disease and extended life span up to 24 days [92]. 

KML29 treatments also reduced proinflammatory cytokines and enhanced brain-derived 

neurotrophic factor (BDNF) expression levels in the spinal cord, which is a major site of 

neurodegeneration in ALS [92].
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3.3 ABHD12

3.3.1 Alternative 2-AG hydrolase in microglia—α/β-hydrolase domain-containing 

protein 12 (ABHD12) is expressed as a ~45-kDa membrane glycoprotein predicted to 

contain a single-pass transmembrane domain and face the extracellular/luminal cellular 

space [1]. From a functional proteomic study, ABHD12 was discovered to contribute ~9% of 

total 2-AG hydrolytic activity in mouse brain proteomes [77] (Fig. 4 and 5). However, mass 

spectrometry metabolomics studies of Abhd12−/− mice did not show changes in bulk levels 

of brain 2-AG [93]. Within individual brain cell types, ABHD12 contributed to substantial 2-

AG metabolism in microglia but not neurons and astrocytes, suggesting a cell-type specific 

role for this lipase in brain 2-AG signaling (Fig. 5) [57]. Specifically, secreted 2-AG was 

much higher from Abhd12−/− microglia and unaltered in Mgll−/− microglia compared to 

wild type counterparts. These data support a primary role for ABHD12 in regulating 

extracellular 2-AG pools and is consistent with its luminal/extracellular orientation [77]. The 

enhanced 2-AG secretion in Abhd12−/− microglia increased cannabinoid receptor-dependent 

signaling as evidenced by ERK1/2 phosphorylation [57]. Abhd12−/− microglia did not show 

differences in AA or prostaglandins (either basal or LPS stimulated), supporting its minor 

role in regulation of 2-AG pools utilized for prostaglandin production [57].

3.3.2 Principal lysophosphatidylserine hydrolyzing enzyme in PHARC—The 

neurodegenerative disease polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, and 

cataract (PHARC) is caused by mutations in the Abhd12 gene in humans. Five distinct 

ABHD12 mutations have been identified in PHARC patients; all mutations are expected to 

result in complete loss of ABHD12 expression [94, 95]. Recently, untargeted lipidomics was 

performed in mouse brain tissues fromAbhd12−/− mice to discover that ABHD12 is a 

principal lysophosphatidylserine (lysoPS) lipase in the mammalian brain [93]. Specifically, 

Abhd12−/− mice showed massive accumulation of a rare subset of long chain lysoPS lipids 

that are implicated in Toll-like receptor 2 signaling.

Biochemical assays confirmed that recombinant ABHD12 protein can robustly hydrolyze 

synthetic lysoPS, and this lysoPS hydrolytic activity is substantially reduced in Abhd12−/− 

brain proteomes. Brain lysoPS accumulation in Abhd12−/− mice occurs early in life followed 

by age-dependent increases in microglial activation and auditory and motor defects akin to 

behavioral phenotypes of human PHARC patients. Thus, a molecular model for PHARC 

emerges where ABDH12 disruption leads to aberrant lysoPS metabolism and accumulation 

of lysoPS, which has been shown to activate toll-like receptor (TLR)2 signaling of innate 

immune cells [96] and may promote pathogenic microglial and neurobehavioral alterations 

[93]. Further studies are needed to determine whether lysoPS accumulation results in 

microglial activation involved in neuroinflammation. Recently, ABHD16A was annotated as 

a phosphatidylserine (PS) lipase that generates lysoPS in mammalian systems and thus 

establishes a ABHD16A-ABHD12 metabolic axis for study and treatment of 

neuroimmunological disorders [97].

3.3.3 ABHD12 inhibitors—New pharmacological probes of ABHD12 are needed to 

complement the cell biology and animal physiology discovered using Abhd12−/− mice. To 

date, widely used ABHD12 inhibitors lack selectivity to enable functional studies in vivo. 
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The lipase inhibitor tetrahydrolipstatin (THL, Table 1) is capable of inactivating ABHD12 

but also shows cross-reactivity against other serine hydrolases including ABHD6 and 

pancreatic lipases [77]. In addition to THL, additional natural products including triterpenes 

have been shown to reversibly block ABHD12 activity with moderate selectivity against 

other serine hydrolases detected in mouse brain proteomes [98]. Future studies aimed at 

developing potent, selective, and in vivo-active inhibitors will continue to advance our 

understanding of ABHD12 function in physiology and PHARC pathogenesis.

3.4 ABHD6

3.4.1 Alternative 2-AG hydrolysis at the site of biosynthesis—ABHD6 is an 

~30-kDa integral membrane protein that adopts the canonical α/β hydrolase fold containing 

the GXSXG motif that houses the serine nucleophile [1, 99]. Functional proteomics 

demonstrated that ABHD6 contributes to ~4% of total brain 2-AG hydrolysis activity in the 

mouse brain (Fig. 4). Short hairpin RNA (shRNA) knockdown of ABHD6 in BV-2 

microglia cells reduced 2-AG hydrolysis activity in BV-2 lysates by ~50% [100]. ABHD6 

knockdown also increased the efficacy of 2-AG-CB2 mediated cell migration. In Neuro2A 

cells, which lack MGLL, blockade of ABHD6 with a selective inhibitor resulted in 

accumulation of 2-AG in live cells [55]. In adult mouse cortex, ABHD6 is localized 

postsynaptically and has been shown to regulate 2-AG degradation and signaling in murine 

primary neurons and cortical slices [100]. Taken together, these findings support a role for 

ABHD6 in regulation of 2-AG metabolism and signaling.

3.4.2 Alternative lipid substrates of ABHD6—Antisense oligonucleotide (ASO) 

knockdown of ABHD6 in peripheral tissues of mice fed a high-fat diet resulted in protection 

against diet-induced body weight gain [101]. Liquid chromatography-mass spectrometry 

(LC-MS) metabolomics uncovered liver accumulation of lysophospholipids and 

phospholipids as a potential protective mechanism; lysophosphatidylglycerol (LPG) and 

phosphatidylglycerol (PG) lipid species showed the most prominent accumulation [101]. 

Candidate lipid substrates identified by metabolomics were validated by biochemical 

substrate assays using purified ABHD6. Recombinant ABHD6 displayed substantial lipase 

activity toward lysophospholipids (LPG, LPA, and LPE), but negligible activity against their 

major phospholipid counterparts (i.e. PG, phosphatidic acid (PA), and PE) [101]. The 

highest activity was observed using LPG as a substrate, matching the substrate preference 

for LPG observed in metabolomics experiments.

ABHD6 has also been implicated in hydrolysis of bis(monoacylglycero)phosphate (BMP) 

[102]. Treatment with ABHD6-specific inhibitor lowered BMP hydrolysis in both brain 

lysates and cultured cells revealing that ABHD6 is responsible for ~90% and ~40% of the 

BMP hydrolase activity detected in liver and brain, respectively [102]. Collectively, these 

data show that ABHD6 can hydrolyze 2-AG as well as broad range of lipids to regulate 

diverse mammalian biology.

3.4.3 ABHD6 inhibitors—Using ABPP, the carbamate inhibitor WWL70 was identified 

as a potent and selective ABHD6 inhibitor [103] (IC50 ~70 nM, Table 1). Competitive 

ABPP screening of a carbamate library resulted in discovery of an additional carbamate 
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ABHD6 inhibitor WWL123 that showed lower potency (IC50 ~400 nM) but higher 

selectivity against other brain serine hydrolases [35]. Optimization of (2-substituted)-

piperidyl-1,2,3-triazole urea inhibitors (KT182 and KT203, Table 1) resulted in the first in 
vivo-active ABHD6 inhibitors that were both potent (IC50 ~ 0.2 nM in live cells) and 

selective (negligible activity against >50 serine hydrolases) [104]. KT182 and KT203 serve 

as central and peripherally-restricted ABHD6 inhibitors, respectively, in treated mice (>90% 

inhibition at 1 mg kg−1). KT185 was discovered as an orally-bioavailable ABHD6 inhibitor 

(complete blockade of brain ABHD6 at 40 mg kg−1) that displayed excellent selectivity 

against other brain and liver serine hydrolases in vivo [104].

3.4.4 Therapeutic potential of ABHD6

3.4.4.1 Epilepsy: Pharmacological inhibition of ABHD6 (WWL123) decreased 

pentylenetetrazole (PTZ)-induced generalized tonic-clonic and myoclonic seizure incidence 

and severity. Effects were observed in cannabinoid receptor knockout mice (CB1 or CB2) but 

blocked by picrotoxin, a GABAa receptor antagonist, which suggests a GABAA-mediated 

mechanism [105]. Use of the tailored activity-based probe HT-01, which targets DAGLs and 

ABHD6 [55, 65, 104], enabled assessment of target engagement and validation of WWL123 

selectivity in animal studies. One possible explanation for the observed pharmacology is that 

ABHD6 localizes to postsynaptic neurons, which places this serine hydrolase in an ideal 

location to regulate GABAA receptors through catalytic [105] and non-catalytic activity 

[106]. Chronic blockade of ABHD6 (daily WWL123 treatments for 5 weeks) did not 

produce tolerance as well as signs of motor or cognitive impairments. Collectively, these 

results suggest that ABHD6 inhibitors might show favorable safety profiles and be amenable 

to long-term use for the treatment of seizures.

3.4.4.2 Diabetes: ABHD6 is a key lipase in generating lipid signals that regulate glucose-

stimulated insulin secretion (GSIS) of pancreatic β islet cells [107]. In β cells, glucose 

stimulation results in production of lipolysis-derived long-chain saturated 1-MAGs (C16:0 

and C18:0 MAGs) and these lipid signals are enhanced with the ABHD6 inhibitor WWL70 

[108]. Effects observed for 1-MAGs in β cells were not due to cannabinoid receptor 

signaling because inhibitors of CB1 and CB2 did not affect GSIS. Whole body and β cell-

specific ABHD6 knockout mice show enhanced GSIS (islets showed 1-MAG accumulation 

and enhanced insulin secretion in responses to glucose) and ABHD6 inactivation of diabetic 

mice restored GSIS and improved glucose tolerance [108]. ABHD6 effects are partly 

explained by the role of MAGs in binding the C1 domain of Munc13–1 to enhance plasma 

membrane localization, which is an important step in insulin granule exocytosis [108]. 

Collectively, these studies support ABHD6 as a negative modulator of insulin secretion and 

promising target for development of antidiabetic agents through regulation of MAG lipid 

signals in pancreatic β islet cells.

3.4.4.3 Diet-induced obesity: ABHD6 disruption (ASO knockdown) protects against 

high-fat-diet-induced obesity, due in large part to a reduction in adipose tissue; effectively 

lowering body fat mass without altering lean body mass [101]. ABHD6 knockdown protects 

against metabolic disorders induced by high-fat feeding, such as hyperglycemia, 

hyperinsulinemia, hypercholesterolemia, and improved both glucose and insulin tolerance. 
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ABHD6 knockdown increased and decreased expression of the serine hydrolases adipose 

triglyceride lipase (ATGL; TAG lipase; putative role in lipid metabolism at brain barriers 

[109]) and hormone-sensitive lipase (HSL; DAG lipase; putative role in hypothalamus lipid 

metabolism [110]), respectively, in the liver; the first two metabolic enzymes in the lipolysis 

pathway [101]. The authors also observed a downregulation of genes involved in de novo 
fatty acid synthesis in ABHD6 ASOtreated mouse liver with the in vivo rate of de novo fatty 

acid synthesis being reduced by ~60% [101]. Importantly these results demonstrate that 

following ABDH6 knockdown, mice were protected from high-fat-diet-induced hepatic 

steatosis and associated insulin resistance, canonical of type II diabetes [101].

4. Other serine hydrolases in the mammalian CNS

4.1 cPLA2α

Cytosolic phospholipase A2 (cPLA2α; gene name of PLA2G4A) is a ~85 kDa cytosolic 

enzyme that is a member of a larger phospholipase A2 superfamily that directly hydrolyze 

AA from the sn-2 position of membrane phospholipids [111, 112]. Cell activation results in 

localization of cPLA2α to the membrane and release of free AA, which are further converted 

to bioactive eicosanoid lipids that includes PGE2 [113]. cPLA2α preferentially hydrolyzes 

phosphatidylcholine (PC) with AA at the sn-2 position while still showing activity against 

PE and phosphatidylinositol (PI) [114–116]. The unique substrate specificity of cPLA2α can 

be partly explained by molecular dynamics (MD) simulations of cPLA2α-PAPC (1-

palmitoyl-2-arachidonoyl-PC) interaction, which show a deep channel binding pocket that 

confers cPLA2α substrate specificity through π-π stacking unlike group VIA Ca2+-

independent PLA2 (iPLA2β; gene name of PLA2G6), which exhibits little specificity for 

sn-2 specific hydrolysis [117].

4.1.1 Functional cross-talk of cPLA2α and 2-AG signaling pathways—Cross-

talk between cPLA2α and DAGLβ pathways in macrophage lipid metabolism and signaling 

were recently revealed in model systems of inflammation. Blockade of either cPLA2α or 

DAGLβ pathways resulted in partial reductions in cellular AA while dual blockade of 

cPLA2α/DAGLβ resulted in near-complete depletion of AA in macrophages [55]. These 

metabolic effects were complemented by similar regulation of cytokine signaling where 

cPLA2α/DAGLβ-dual blockade provided a synergistic enhancement in TNF-alpha 

production. These metabolic and cell biological findings support distinct and complementary 

pathways for supplying AA utilized for COX-mediated production of proinflammatory lipid 

signals. cPLA2α responds to calcium signaling by nature of its Ca2+ binding C2 domain, 

which promotes membrane localization and direct release of AA from phospholipids. 

DAGLβ hydrolyzes AA-esterified DAGs that likely arise from activation of phospholipase C 

(PLC) which releases DAG and IP3 during signal transduction [118, 119]. Thus, release of 

AA can occur through cPLA2α hydrolysis of phospholipids or a PLC-DAGL-MGLL 

sequential metabolic pathway. Given the role of DAGLβ in microglia biology[57], cross-talk 

with cPLA2α pathways likely exists in the CNS where disruption of 2-AG metabolism 

(biosynthesis and degradation) can affect neuroinflammation[57, 81].
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4.1.2 cPLA2α inhibitors—cPLA2α inhibitors are being pursued as novel anti-

inflammatory agents in the clinic [120]. Kinetic studies of trifuoromethyl ketone 

(AACOCF3, Table 1) showed these compounds are tight- and slow-binding reversible 

cPLA2α inhibitors [121]. Substitution of AA with a saturated lipid counterpart resulted in 

lower potency, which supports the importance of substrate recognition of this ω6-

polyunsaturated fatty acid (PUFA) [121]. To improve potency, trifluoromethyl ketones that 

substitute the methylene group β to the carbonyl group of the ketone with a sulphur atom to 

increase electrophilicity and potency. Further changes include substitution of AA for an ω3-

PUFA (docosahexaenoic acid, DHA) to generate structurally related analogs AVX001 and 

AVX002 (differ by a single cis/trans configuration) that functioned as potent cPLA2α 
inhibitors (IC50 ~100 nM) [122] (Table 1). AVX001 has been evaluated in the clinic for 

treatment of atopic dermatitis [120]. Additional trifluoromethyl ketone and AA analogs are 

being pursued as novel cPLA2α inhibitors [123]. Additional cPLA2α inhibitors include 

methyl arachidonyl fluorophosphonate (MAFP), a phosphonate analog of AA, have been 

used as a covalent cPLA2α inhibitor [124]. Pyrrophenone is also a widely used cPLA2α 
inhibitor [125, 126] that has been applied to studies of reactive oxygen species (ROS) and 

nitric oxide (NO) signaling [127] as well as inflammasome activation [128] (Table 1). 

Further selectivity studies are needed to determine the full target profile of pyrrophenone, 

which was recently shown to exhibit cPLA2α-independent effects [129].

4.2 DDHD1 and DDHD2 (DDHD Domain Containing 1 and 2)

DDHD1, DDHD2, and SEC23IP belong to the iPLA1 (intracellular phospholipase A1) 

family. This family enzymes possess the serine hydrolase consensus sequence GXSXG and 

DDHD domain, the latter of which serves as a lipid binding domain that affects their 

intracellular localization via binding to lipids such as phosphatidylinositol 4-phosphate 

(PI(4)P). SAM domain, which is only found in DDHD2 and SEC23IP, are also necessary for 

their lipid binding and localization to Golgi/endoplasmic reticulum (ER)-Golgi intermediate 

compartment (ERGIC) and ER exit sites, respectively [130].

DDHD1, also called PA-selective phospholipase A1 (PA-PLA1) or iPLA1α, was originally 

purified and characterized as an enzyme that exhibits PLA1 activity toward PA [131–133], 

but has been also shown to hydrolyze other phospholipids such as PI and thus may 

contribute to the production of 2-arachidonoyl lysoPI and the activation of its receptor 

GPR55 [134]. DDHD1 is ubiquitously expressed throughout human tissues including the 

brain, with highest levels in the testis [133]. DDHD1 regulates mitochondrial membrane 

dynamics possibly by modulating the balance between PA and LPA, which are cone- and 

inverted cone-shaped lipids that favor negative and positive curvature in membranes, 

respectively [135]. Ddhd1−/− mice show mitochondrial disorganization during 

spermatogenesis, resulting in sperm malformation and male subinfertility [135]. DDHD1 
was identified as the causative gene for a relatively non-complicated form of hereditary 

spastic paraplegia (HSP), type SPG28 [136–140]. However, a recent study reported that a 

patient harboring a novel homozygous mutation in DDHD1 presented a complex form of 

HSP with retinal dystrophy and neurodegeneration with brain iron accumulation (NBIA) 

[141]. DDHD1 is also implicated in juvenile amyotrophic lateral sclerosis (JALS) [142]. 
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Thus, DDHD1 appear to be involved in a broader spectrum of (patho)physiological 

processes.

DDHD2, also called KIAA0725p or iPLA1γ, is ubiquitously expressed in human and rodent 

tissues with relatively higher levels in the brain [143, 144]. Initial biochemical analyses 

showed that DDHD2 hydrolyzes phospholipids such as PA, PE, PS, and PI [143, 145]. 

Similar to DDHD1, mutations in DDHD2 cause a complex form of HSP, designated SPG54 

[144, 146–148]. This complex HSP subtype presents additional neurological symptoms such 

as intellectual disability, hypoplastic corpus callosum, and abnormal lipid accumulation 

[144]. Ddhd2−/− mice also showed cognitive and motor impairments that resemble complex 

HSP caused by DDHD2 mutations in human [149]. A nontargeted lipidomics analysis 

revealed that Ddhd2−/− mice exhibited drastic and selective elevations in TAG levels in the 

CNS, which led to ectopic lipid droplet (LD) accumulation in neuronal cell bodies [149]. 

Enzyme assays confirmed that DDHD2 is a principal TAG hydrolase in the mouse brain. In 

addition, DDHD2 may also hydrolyze DAGs [149–151]. Protein expression (TAG hydrolase 

activity) and the capacity to protect cells from LD accumulation was impaired in DDHD2 

containing HSP-related mutations [152]. Taken together, these data suggest that DDHD2 is 

indispensable for the clearance of pathogenic LDs and the maintenance of lipid homeostasis 

in the mammalian CNS. ABPP techniques and DDHD2-directed serine hydrolase probe 

HT-01 [55, 65] led to the identification of a DDHD2-selective in vivo active inhibitor 

KLH45 [149, 152] that should be useful for further elucidation of DDHD2 biology (Table 
1).

SEC23IP (Sec23p-Interacting Protein), also called p125 or iPLA1β, is another member of 

iPLA1 family that plays an important role in mouse spermiogenesis [153]. SEC23IP 

interacts with Sec23 and Sec31, components of the coat protein complex II (COPII), and is 

involved in the transport of vesicles from the ER membrane [154, 155]. Although SEC23IP 

belongs to iPLA1 family, its function as an enzyme, to the best of our knowledge, remains 

unknown. Recent exome sequence analyses suggested the potential involvement of SEC23IP 

in adult attention-deficit/hyperactivity disorder (ADHD) and neurodevelopmental disorders 

[156, 157]. Therefore, in addition to DDHD1 and DDHD2, SEC23IP may also play an 

important role in the mammalian CNS.

4.3 PNPLA6 (Neuropathy Target Esterase)

PNPLA6, also called PLA2G6C, iPLA2δ, or neuropathy target esterase (NTE), is a serine 

hydrolase highly expressed throughout the mammalian brain [158, 159]. PNPLA6 

preferentially hydrolyzes lysophospholipids, but also hydrolyzes a variety of other 

endogenous and exogenous substrates, such as phospholipids, MAGs, acetylcholine, and 

phenyl valerate, indicating its broad substrate specificity [159–162]. In HeLa cells, 

knockdown of PNPLA6 impaired the turnover of phospholipids such as PC, PE, and PS 

[163]. Brain-specific Pnpla6 knockout mice show a variety of neuropathological symptoms 

including hippocampal and thalamic vacuolation, loss of Purkinje cells, and behavioral 

deficits [159]. PNPLA6 is the primary target of organophosphorus nerve agents [164, 165]. 

Exposure to organophosphorus compounds causes organophosphate-induced delayed 

neuropathy (OPIDN), characterized by axonal degeneration and lower limb paralysis. As 
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mentioned earlier, PNPLA6 may be the culprit off-target of the side effects observed with 

BIA 10–2474 [34] (Table 1).

PNPLA6 is a causative gene for a broad spectrum of neurologic disorders including HSP 

(type SPG39), Gordon-Holmes syndrome, Boucher-Neuhäuser syndromes, Laurence-Moon 

syndrome, Oliver-McFarlane syndrome, and Leber’s congenital amarosis, pure cerebellar 

ataxia [166–172]. However, how the metabolic pathways regulated by PNPLA6 protect the 

mammalian CNS integrity remains to be investigated.

5. Conclusions

Genetic and pharmacological studies using knockout mice and selective inhibitors, 

respectively, combined with enabling ABPP and mass spectrometry lipidomics technologies, 

have greatly expanded our understanding of the biochemical and (patho)physiological 

functions of individual lipid-metabolizing serine hydrolases in the mammalian CNS. 

Advances in genome sequencing have implicated mutations and gene variants of these serine 

hydrolases in neurologic, psychiatric, and neurodegenerative disorders. However, the 

molecular mechanisms that link dysregulated lipid metabolism to pathogenesis and 

progression of CNS disorders due to perturbation of serine hydrolase functions remains 

poorly understood. In this review, we provide several key examples of using an integrated 

genetic and chemical approach to elucidate how serine hydrolases regulate lipid biology 

involved in pathogenesis of CNS disorders (e.g. ABHD12 - PHARC; DDHD2 - HSP). We 

also summarized recent findings in support of targeting key serine hydrolases in 

(neuro)inflammation (MGLL and DAGLβ), metabolic disease (DAGLα and ABHD6), and 

neurodegenerative conditions (MGLL and ABHD6). Given that many of these serine 

hydrolases remain poorly annotated, further studies are needed to understand the roles of 

metabolic serine hydrolases in the lipid signaling networks essential for maintaining the 

function and integrity of the mammalian CNS in normal physiology and disease.
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Highlights

• Mammalian CNS express diverse serine hydrolases that act as 

(phospho)lipases

• Serine lipases regulate metabolism of bioactive lipids including 

endocannabinoids

• Genome sequencing have implicated mutations of serine lipases in CNS 

disorders

• The role of serine lipases in CNS physiology and disease remains ill-defined

• Chemoproteomics enable inhibitor discovery to probe serine lipase function 

in vivo
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Figure 1. Serine hydrolases involved in AEA synthesis and degradation.
PLA2G4E and PLAAT family enzymes (in human, PLAAT-1– 5; in mice, PLAAT-1, −3, and 

−5) transfer a fatty acyl chain at the sn-1 position of PCs to the free amino nitrogen of PEs to 

produce NAPEs. NAPEs are directly converted to NAEs by NAPE-PLD. The conversion of 

NAPEs to NAEs is also mediated by multiple metabolic enzymes including ABHD4. 

Glycerophosphodiesterase (GDE) family enzymes hydrolyze lyso-NAPEs or GP-NAEs to 

NAEs. NAEs are degraded by FAAH/FAAH2 and NAAA. Serine hydrolases and non-serine 

hydrolases are shown in blue and gray, respectively.
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Figure 2. ABHD4 regulates multiple classes of N-acyl phospholipids.
(A) ABHD4 exhibits both NAPE- and lyso-NAPE-lipase activity to sequentially produce 

lyso-NAPEs and GP-NAEs. (B) ABHD4 also hydrolyzes plasmalogen-type NAPEs 

(pNAPEs) to produce lysopNAPEs. (C) ABHD4 predominantly hydrolyzes the fatty acyl 

ester bond at the sn-2 position of NAPS to produce lyso-NAPS. Whether N-acyl serine 

(NAS) is synthesized from NAPs or lyso-NAPS is not known.
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Figure 3. Structure of FAAH/FAAH2 substrates.
(A) N-palmitoyl ethanolamine (PEA), (B)anandamide (N-arachidonoyl ethanolamine; 

AEA), (C) oleamide (cis-9,10-octadecanoamide), and (D) N-lignoceroyl (C24:0) taurine.
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Figure 4. Tissue expression and activity of 2-AG biosynthetic and hydrolytic serine hydrolases 
that regulate endocannabinoid metabolism and signaling.
Schematic depicting 2-AG (2-arachidonoylglycerol) biosynthetic and degradation pathways 

and their respective tissue expression that is important for regulation of endocannabinoid 

signaling. DAGLs (DAGLα and DAGLβ) preferentially hydrolyze sn-1 fatty acids from 

diacylglycerols (DAG) that contain arachidonic acid (AA) esterified at the sn-2 position to 

biosynthesize 2-AG. DAGLα expression and activity is enriched in the central nervous 

system while DAGLβ is found largely in macrophages and microglia. MGLL is the principal 

2-AG hydrolase in the central nervous system. In microglia and macrophages, DAGLβ 
produces 2-AG pools that are metabolized by downstream 2-AG hydrolases to release 

arachidonic acid (AA) utilized for production of proinflammatory lipids including 

eicosanoids. In microglia, MGLL, ABHD12, and ABHD6 have been show to function as 2-

AG hydrolases.
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Figure 5. Distribution of 2-AG biosynthetic/hydrolytic serine hydrolases across cell types in 
brain.
2-AG signaling in the central nervous system is regulated by differential expression of 

metabolic enzymes across cell types in the mammalian brain. DAGLα and MGLL activity is 

enriched in neurons, while DAGLβ, MGLL, and ABHD12 regulate 2-AG metabolism and 

signaling in microglia. Astrocytes show similar activity profiles as neurons with the 

exception of increased contribution of DAGLβ activity in this cell type.
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