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Abstract

Correlated data are commonly analyzed using models constructed using population-averaged 

generalized estimating equations (GEEs). The specification of a population-averaged GEE model 

includes selection of a structure describing the correlation of repeated measures. Accurate 

specification of this structure can improve efficiency, whereas the finite-sample estimation of 

nuisance correlation parameters can inflate the variances of regression parameter estimates. 

Therefore, correlation structure selection criteria should penalize, or account for, correlation 

parameter estimation. In this manuscript, we compare recently proposed penalties in terms of their 

impacts on correlation structure selection and regression parameter estimation, and give practical 

considerations for data analysts.
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1 Introduction

The need to analyze correlated data arises in a variety of research settings. In general, we 

have N independent clusters, with the ith cluster contributing ni, i = 1, …, N, correlated 

outcomes denoted by Y i = [Y i1, …, Y ini
]T. A common example is correlated repeated 

measures collected in longitudinal studies in which independent subjects contribute 

outcomes over time. If a marginal model is desired, generalized estimating equations (GEE) 

(Liang and Zeger, 1986) are commonly used for the data analysis. Although working 

marginal variances and a correlation structure must be selected, this approach often yields 

valid statistical inference as long as the mean structure is correct.

Examples of popular working correlation structures include independence, exchangeable, 

AR-1, the least parsimonous Toeplitz, and unstructured. For simplicity of example, suppose 

each subject in a balanced longitudinal study contributes n repeated measures. We note, 
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however, that this is not a requirement and the results of this manuscript are generalizeable 

for an unequal number of measurements per subject. With these working correlation 

matrices, the element in the jth row and kth column is equal to the working form for 

Corr(Y i j, Y ik). If j = k, Corr(Y i j, Y ik   ) = 1. Otherwise, exchangeable and AR-1 each use one 

parameter, α, such that Corr(Y i j, Y ik   ) = α and Corr(Y i j, Y ik   ) = α j − k , respectively, 

whereas Corr(Y i j, Y ik   ) = 0 with independence. For the least parsimonous Toeplitz version, 

denote the n − 1 correlation parameters by αl, l = 1,…, n − 1, such that Corr(Y i j, Y ik   ) = αl

for l = |j − k|. For unstructured, each distinct correlation element is allowed to differ such 

that Corr(Y i j, Y ik   ) = α jk, resulting in the need to estimate n(n−1)/2 different correlation 

parameters.

To improve efficiency for the estimation of regression parameters, accurate modeling of the 

working correlation structure is desired (Liang and Zeger, 1986; Wang and Carey, 2003). 

Therefore, multiple correlation selection criteria have been proposed. As a quick reference, 

we refer the reader to Westgate (2014), who summarized and studied the performances of 

many criteria. In short, the ‘correlation information criterion’ (CIC) (Hin and Wang, 2009), 

gaussian pseudolikelihood (GP) (Carey and Wang, 2011), and the ‘trace of the empirical 

covariance matrix’ (TECM) (Westgate, 2014) work well.

Unfortunately, the estimation of any nuisance correlation parameters can increase the finite-

sample variances of regression parameter estimates (Westgate, 2013, 2015).This increase in 

variances was shown with the unstructured working correlation matrix in Westgate (2013), 

and an approximation for the covariance inflation was derived. Furthermore, Westgate 

(2015) demonstrated variance inflation and the utility of the covariance inflation 

approximation when GEE incorporates structured working correlation matrices. Due to this 

variance inflation the estimation of correlation parameters should be accounted for, or 

penalized, when selecting a working structure. Besides comparing the performances of many 

correlation structure selection criteria, Westgate (2014) showed that utilizing Westgate’s 

(2013) covariance inflation approximation as a penalty to be applied toward the unstructured 

working correlation matrix can improve the performances of criteria. Furthermore, Westgate 

(2015) showed that use of this particular penalty can be applied toward any working 

correlation structure, thus improving selection accuracy even further. We note that 

Westgate’s penalty can be applied with any criterion that incorporates an empirical estimate 

for the covariance matrix of the regression parameter estimates. Without such a penalty, 

selection criteria can overselect less parsimonous correlation structures such as the 

unstructured and least parsimonous Toeplitz matrices, potentially resulting in less precise 

regression parameter estimation (Barnett et al., 2010; Hardin and Hilbe, 2012; Shults and 

Hilbe, 2014; Westgate, 2014, 2015). This position of Westgate (2014, 2015) on the need to 

utilize correlation structure selection penalties is the position we take in this manuscript.

Other correlation structure selection penalties have recently been proposed that were not 

studied by Westgate (2014, 2015), and that have not been directly compared in terms of their 

advantages, disadvantages, and ultimately their impact on selection accuracy. Specifically, 

Hardin and Hilbe (2012) and Shults and Hilbe (2014) proposed penalties for use with the 
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well-known ‘quasi-likelihood under the independence model criterion’ (QIC) (Pan, 2001), 

which we later extend for use with the CIC. Also, penalties based on the AIC (Akaike, 1974) 

and Bayesian information criterion (BIC) (Schwarz, 1978) have been proposed for use with 

both the GP criterion (Xiaolu and Zhongyi, 2013) and a method proposed by Chen and 

Lazar (2012) that utilizes empirical likelihood (EL) (Owen, 1988; Qin and Lawless, 1994).

Our focus in this manuscript is therefore to compare the previously mentioned penalties in 

terms of their practical implications on correlation structure selection and ultimately 

regression parameter estimation. In Section 2, we briefly describe GEE and relevant 

correlation selection criteria. In Section 3, we discuss properties of different penalties for 

data analysts to consider. Penalties and corresponding selection criteria are then contrasted 

via a simulation study in Section 4 and an application example in Section 5. Concluding 

remarks, including practical recommendations, are given in Section 6.

2 GEE and Correlation Selection Criteria

2.1 Generalized Estimating Equations

Established in (Liang and Zeger, 1986), a consistent estimate of the regression parameters, 

β = β0, β1, …, βp − 1
T

, is obtained by solving 

∑i = 1
N Di

TVi
−1(Yi − μi) = ∑i = 1

N Di
T Ai

−1/2Ri
−1(α)Ai

−1/2(Yi − μi) = 0. Here, for the ith cluster,

Di = ∂ μi/ ∂ βT, Vi = Ai
1/2Ri(α)Ai

1/2 is the working covariance structure for Yi, Ri(α) is the 

working correlation matrix for Yi composed of parameters given by α, Ai is a diagonal 

matrix of working marginal variances for Yi, and E(Yi) = µi with link function f such that 

f μi j = Xi j
T β for xi j = 1, x

1i j
, …, x

p − 1 i j

T
 Assuming the nuisance correlation parameters 

are known, Cov(β) ≈

∑ = ∑
i = 1

N
Di

TVi
−1Di

−1
∑
i = 1

N
Di

TVi
−1Cov(Yi)Vi

−1Di ∑
i = 1

N
Di

TVi
−1Di

−1
. (1)

We denote a consistent estimator for Σ as Σ . For instance, this could be the popular Liang 

and Zeger (1986) empirical, or robust, estimator which replaces Cov(Yi) with 

Y i − μi Y i − μi
T, i = 1, …, N,, in Equation (1). In small-sample settings, this estimator can be 

biased because the residual matrices incorporated within these empirical covariances tend to 

be too small (Mancl and DeRouen, 2001). Therefore, multiple corrections for this bias have 

been proposed. For instance, see Kauermann and Carroll (2001); Mancl and DeRouen 

(2001); Fay and Graubard (2001); Morel et al. (2003); McCaffrey and Bell (2006); Fan et al. 

(2013). We also note that the correlation matrices may fail to be consistent if they do not 

model the true structure, in which case these empirical covariance estimators may also fail to 

be consistent (Crowder, 1995; Sutradhar and Das, 1999).
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2.2 Correlation Selection Criteria

We give focus to the CIC, TECM, and GP for correlation structure selection because these 

criteria were found by Westgate (2014) to notably outperform the well-known QIC (Pan, 

2001) and criteria motivated by the work of Rotnitzky and Jewell (Rotnitzky and Jewell, 

1990; Hin et al., 2007; Shults et al., 2009; Carey and Wang, 2011). We also give focus to 

criteria based upon empirical likelihood versions of the AIC and BIC that were proposed by 

Chen and Lazar (2012). The CIC is taken from the QIC. The unpenalized QIC for a given 

working correlation structure, R, is given by 

QIC(R) = − 2Q(β, ϕ) + 2tr( ΣI
−1 Σ ) = − 2Q(β, ϕ) + 2CIC(R). Here, Q(β, ϕ) is the quasi-

likelihood under the assumption that all outcomes are independent, and 

ΣI = ( Σi = 1
N Di

T Ai
−1Di)

−1
 is the model-based covariance matrix assuming independence. To 

improve upon the performance of the QIC, Hin and Wang (2009) proposed using the CIC, as 

only this last part of the QIC contains information about the correlation structure. The 

unpenalized TECM and GP are given by TECM(R) = tr Σ  and 

GP(R) = Σi = 1
N (Yi − μi)

TVi
−1(Yi − μi) + log( Vi ) , respectively. The structure that yields the 

smallest value for the given criterion is selected. We note that this form for the GP is based 

on the setup of Xiaolu and Zhongyi (2013), and Σ is utilized within each of these criteria 

except for the GP. As the Chen and Lazar (2012) criteria require a penalty, we discuss them 

in detail in the following section.

3 Correlation Selection Penalties

3.1 Penalties of Hardin & Hilbe and Shults & Hilbe

Hardin and Hilbe (2012) and Shults and Hilbe (2014) proposed penalized versions of the 

QIC given by

−2Q(β, ϕ) + 2CIC(R) + 2 p + r + m p + r + m + 1
N − p − r − m − 1 = QIC(R) + 2P(p, r, m, N) (2)

in which m = 0 and m = 1 for the Hardin and Hilbe (2012) and Shults and Hilbe (2014) 

penalties, respectively, and r is the number of estimated correlation parameters. These 

penalties are motivated by the adjusted Akaike information criterion (AIC) of Hurvich and 

Tsai (1989), who proposed adding a similar penalty to the AIC as a small-sample correction 

factor. The CIC has been shown to perform better than the QIC with respect to correlation 

selection, and therefore we note that these penalties can also be incorporated within the CIC. 

Specifically, −2Q(β, ϕ) in Equation (2) can be ignored, and multiplying by 2 has no impact. 

Therefore, the penalized CIC is given by CIC(R) + P(p, r, m, N).

As N increases, any inflation of the variances of the regression parameter estimates, and 

therefore the needed penalty value, reduces in magnitude because correlation parameters are 

estimated more precisely. The use of these penalties is therefore intuitive because 

P(p, r, m, N) 0 as N ∞ , given p, r ≤ c < ∞ for some constant c. However, this penalty 

could still use greater theoretical justification (Shults and Hilbe, 2014). Furthermore, Hardin 
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and Hilbe (2012) and Shults and Hilbe (2014) found their penalties, when used with the 

QIC, tended to favor simpler structures and over-select independence, particularly for 

smaller N in the Hardin and Hilbe (2012) study. In short, P (p, r, m, N ) can over-penalize, 

although this overpenalization diminishes as N increases.

In practice, the data analyst should consider that P (p, r, m, N ) may favor structures with 

fewer, or no, correlation parameters. This property can be advantageous when simpler 

structures, such as exchangeable or AR-1, perform better than less parsimonous structures. 

However, this property can be disadvantageous if the true structure is not independence and 

ignoring the correlation leads to a loss in small sample efficiency, such as described in 

Fitzmaurice (1995), Mancl and Leroux (1996), and Wang and Carey (2003). Therefore, the 

analyst may not want to consider independence for selection in some instances. We also 

point out that P (p, r, m, N ) has a practical advantage in that it is simple to calculate and 

therefore does not need to be incorporated within existing software in order to be easily 

used.

3.2 Westgate Penalty

The need to penalize correlation parameter estimation arises because this estimation 

potentially increases the estimation variability of GEE, thus inflating Cov(β) (Westgate, 

2013, 2015). Specifically, Westgate (2013) showed that when accounting for correlation 

estimation, Cov(β) ≈ (Ip + G) Σ (Ip + G)T, where Ip is a p × p identity matrix and 

G = (G0, G1, …, Gp − 1),

Gr = − Σ
i = 1

N

Di
TVi

−1Di

−1

Σ
i = 1

N

Di
T Ai

−1/2Ri
−1 ∂Ri α β)

∂βr
Ri

−1Ai
−1/2 Y i − μi β .

We note that although Westgate (2013) focused on the use of an unstructured working 

correlation matrix, Westgate (2015) demonstrated that Cov β   ≈   Ip  +  G Σ Ip  +  G T for 

any working correlation structure given by Ri, i = 1,… , N , within G. Therefore, Westgate 

(2014, 2015) proposed penalizing the estimation of correlation parameters by using 

Ip + G Σ Ip + G T
 in place of Σ , the estimator that had been historically utilized to estimate 

Cov(β) within correlation selection criteria. As a result, versions of the CIC and TECM that 

incorporate this penalty are given by CICw(R) = tr ΣI
−1 (Ip + G) Σ (Ip + G)T  and 

TECMw(R) = tr (Ip + G) Σ (Ip + G)T  respectively. We note that G is an estimate for G in 

which β is replaced with β.

Westgate’s penalty has a natural advantage over other penalties in that it directly accounts 

for the inflation of Cov(β) that arises from the estimation of nuisance correlation parameters. 

If we were able to show Cov(β) = (Ip + G)Σ(Ip + G)T, and then utilize 

(Ip   + G) Σ (Ip   + G)T within correlation selection criteria, then this penalty would be ideal. 

Unfortunately, this is not the case. Specifically, Cov(β) ≈ (Ip + G) Σ (Ip + G)T, and so we can 
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only approximate the covariance inflation. Furthermore, Westgate’s penalty is an estimate, 

as G must be used in place of G. As N decreases, the magnitude of the covariance inflation 

can increase, whereas the precision of G decreases. Therefore, Westgate’s penalty can be 

less reliable for smaller N , which is when the penalty is needed most. For instance, a 

resulting consequence can be that Westgate’s penalty sometimes selects less parsimonious 

structures simply because the corresponding covariance inflation is underestimated. 

Although this selection may be advantageous when less parsimounous structures lead to the 

least variable parameter estimates, it will be disadvantageous when simpler structures work 

best.

3.3 Penalties for Empirical Likelihood and Gaussian Pseudolikelihood

The method proposed by Chen and Lazar (2012) uses EL forms of the AIC and BIC given 

by EAIC(R) = − 2logELR(β, α) + 2(p + r) and EBIC(R) = − 2logELR(β, α) + (p + r)log(N), 
respectively. With this approach, a maximal correlation structure is assumed, and this 

structure and nested structures are possibly assumed to be under consideration for selection. 

In short, any given structure under consideration is compared with the maximal structure via 

the empirical likelihood ratio (ELR). Although Chen and Lazar (2012) assumed this 

maximal structure to be the stationary, or least parsimonous Toeplitz correlation matrix, we 

feel this is too restrictive relative to other criteria. In this manuscript, we use the unstructured 

working correlation as the maximal model. We refer the reader to Chen and Lazar (2012) for 

technical details. Xiaolu and Zhongyi (2013) took the same penalization approach and 

applied it with the GP criterion, resulting in penalized versions given by 

AGP R = GP R + 2 p + r  and BGP R = GP R + p + r log N  We note that Fu et al. (2015) 

also utilized this penalty when focusing on quantile regression.

Penalties are either 2(p + r) or (p + r)log(N). Although these seem intuitive with respect to the 

form of the AIC and BIC, they are not truly representative of the need for correlation 

penalization. Specifically, the magnitude of the penalty should decrease as N increases, 

whereas 2(p + r) does not depend on N and (p + r)log(N) gives a harsher penalty toward less 

parsimonous structures as N increases. However, because EL and GP do not incorporate an 

estimate for Cov β , the impacts of these penalties are not as clear as for the previously 

discussed penalties. We note that the simulation study of Xiaolu and Zhongyi (2013) 

potentially suggests that these penalties may overly favor simple structures. However, we 

will show in our simulation study that the impact of these penalties rely upon the utility of 

the given method, EL or GP.

4 Simulation Study

4.1 Study Description

We now demonstrate in a simulation study the impacts of the different penalties, and 

inherently the criteria that incorporate these penalties, on correlation structure selection 

frequencies and ultimately regression parameter estimation. Because penalties may 

overselect a certain type of structure, depending on parsimony, we gave focus to three 

scenarios. In each scenario, we assumed the analyst was interested in selecting one of 

multiple working structures. In one scenario, interest was in independence, exchangeable, 
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AR-1, Toeplitz, and unstructured. In another scenario, these same structures except for 

independence were considered, avoiding over-selection of independence. Finally, only 

independence, exchangeable, and AR-1 were considered, avoiding over-selection of the least 

parsimonous structures.

Data were generated from a multivariate normal distribution such that 

E(Y i j) = β0+β1x1i j+β2x2i j;  j = 1,…,n, where β = [0, 0.3, 0.3]T, outcomes had unit marginal 

variance, and both covariates were independently generated across all observations from 

Uniform(0, 1). We note that this model setup is similar to settings used in Hin et al. (2007), 

Hin and Wang (2009), and Westgate (2015). The true structures were either AR-1 with 

correlation value of 0.5 or unstructured with Corr(Y i1,  Y i2) = 0.8, Corr(Y i1, Y i3) = 0.3, and 

Corr(Y i2, Y i3) = 0.6 Corresponding to true AR-1 settings, either 20 or 100 subjects each 

contributed 4 repeated measurements. Alternatively, to ensure stable empirical standard 

deviations (ESDs) were produced by the unstructured working correlation matrix, we only 

present results for settings in which 100 subjects each contributed 3 repeated measurements 

when unstructured was the true structure. Simulations were conducted in R version 2.13.1 (R 

Development Core Team, 2011), and outcomes were generated using

rmvnorm

of the

mvtnorm

package (Genz et al., 2013; Genz and Bretz, 2009)

In Tables 1–3, we present the number of times out of 1,000 replications that each working 

structure under consideration was selected. These frequencies are given for each scenario 

and each of the following selection criteria and penalties: the TECM criterion with Westgate 

penalty (TECMW ), the CIC with Westgate penalty (CICW ), the CIC with Hardin and Hilbe 

penalty (CICHH ), the CIC with Shults and Hilbe penalty (CICSH ), the EAIC and EBIC with 

unstructured as the maximal structure, and the AGP and BGP. ESDs of β2 are also presented. 

We note that results with respect to β1 were very similar because values for both covariates 

were generated in the same manner.

Direct comparison of penalty values is only meaningful when these penalties are used with 

the same criterion. Three different penalties are available with the CIC. Therefore, the 

Westgate, Hardin and Hilbe, and Shults and Hilbe penalties are explicitly demonstrated in 

Table 4. Specifically, empirical means of the unpenalized CIC, CICW , CICHH , and CICSH 

are presented. Furthermore, the empirical mean of Westgate’s penalty, along with the Hardin 

and Hilbe and Shults and Hilbe penalties, are given and are equal to the difference between 

the empirical means of the corresponding penalized and unpenalized CIC. We note that the 

mean of Westgate’s penalty should be approximately equal to the optimal penalty. We 

utilized the empirical covariance matrix estimator that incorporates the Kauermann and 

Carroll (2001) correction for Σ within selection criteria, as it has been shown to work well 

Westgate and Burchett Page 7

Am Stat. Author manuscript; available in PMC 2019 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with respect to attaining valid inference (Westgate, 2015). However, other available 

corrections could alternatively be utilized. Fortunately, the performances of selection criteria 

are not sensitive to which of these corrections, if any, are utilized (Westgate, 2015).

4.2 Description of Results

As expected, using P (p, r, m, N ) as a penalty with the CIC led to a high selection frequency 

of the independence structure when N = 20. Furthermore, because the Shults and Hilbe 

penalty is greater than the Hardin and Hilbe penalty, it selected independence even more 

often. ESDs show that independence is a poor choice in this setting. Therefore, it is 

advantageous to not even consider independence for selection here, in which case the CIC 

with these penalties actually works best. Alternatively, when N = 100, use of the CIC with 

these penalties selected independence one time at most. Furthermore, use of these penalties 

never resulted in unstructured being selected when AR-1 was the true structure, and Toeplitz 

was selected only twice by the Hardin and Hilbe penalty. Alternatively, when unstructured 

was the true structure, Toeplitz and unstructured resulted in the smallest ESDs, and use of 

both penalties resulted in either of these two structures being selected most often. However, 

they both favored the simpler Toeplitz structure.

As found in Westgate (2014, 2015), his penalized versions of the TECM and CIC worked 

similarly, although selection frequencies were notably different when unstructured was the 

true structure. Use of these criteria and penalties, relative to other criteria and penalties with 

the exception of the EL methods, tended to select Toeplitz and unstructured more often 

when AR-1 was the true structure. This may be viewed as over-selection of less parsimonous 

structures. When N = 20, these structures did not perform as well, i.e. ESDs for β2 were 

larger, as AR-1 due to notable variance inflation from the estimation of additional 

correlation parameters. Therefore, not allowing the TECM and CIC with Westgate’s penalty 

to select these two structures resulted in slightly smaller ESDs. However, when N = 100, the 

variance inflation is much smaller, and considering these structures was not detrimental.

Table 4 shows that, when incorporated with the CIC, the Hardin and Hilbe and Shults and 

Hilbe penalties are larger than the average Westgate penalty. We point out that the former 

penalties actually have a penalty value for independence, whereas the Westgate penalty is 0 

because no covariance inflation occurs with this structure. Therefore, penalty comparisons 

must take this into account. For instance, Westgate’s average penalty toward the 

exchangeable structure is 0.06 when N = 20. Alternatively, the Hardin and Hilbe (Shults and 

Hilbe) penalties toward independence and exchangeable are 0.75 (1.33) and 1.33 (2.14), 

respectively, for a difference of 0.58 (0.81), which is notably larger than the 0.06 difference 

with the Westgate penalty. Therefore, the Hardin and Hilbe and Shults and Hilbe penalties 

result in the over-selection of independence, and simpler structures in general.

In short, relative to the Hardin and Hilbe and Shults and Hilbe penalties, Westgate’s penalty 

resulted in smaller ESDs when N = 20 and independence was allowed to be selected. 

However, when independence was not considered, but Toeplitz and unstructured were 

options, these former penalties resulted in slightly smaller ESDs. Finally, when N = 100, no 

notable differences were observed in ESDs resulting from the use of these three penalties.
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The EAIC and EBIC over-selected Toeplitz and unstructured when N = 20, and 

corresponding ESDs were unacceptably higher than ESDs produced from the use of any 

other criterion and penalty. Alternatively, not allowing Toeplitz and unstructured to be 

selected by the EAIC and EBIC reduced ESDs to acceptable levels. Furthermore, when N = 

100, selecting less parsimonous structures was not detrimental, and no notable differences in 

ESDs were notable across criteria and penalties.

The AGP and BGP worked very well and similarly to the TECM and CIC with Westgate’s 

penalty in terms of resulting ESDs. When AR-1 was the true structure, the AGP and BGP 

did not over-select independence, Toeplitz, or unstructured, and they had high frequencies of 

correctly selecting AR-1. Alternatively, when unstructured was the true structure, the AGP 

and BGP selected Toeplitz and unstructured most often, as did the other criteria and 

penalties.

5 Application

We now demonstrate the penalties in the context of the Prevention of Alzheimer’s Disease 

by Vitamin E and Selenium (PREADViSE) clinical trial (Caban-Holt et al., 2012). We have 

yearly global cognitive status data, measured using the Consortium to Establish a Registry 

for Alzheimer’s Disease (CERAD) T-score (Chandler et al., 2005; Mathews et al., 2013; 

Caban-Holt et al., 2012), from fifty men. Larger scores indicate higher cognitive status. Each 

subject came in for an annual assessment for either three or four sequential years. The 

number of assessments simply depended on when the subject was recruited into the study. 

Available predictors of the continuous T-score include baseline age and estimated full-scale 

IQ (Boekamp et al., 1995).

Our working marginal model, based on the application of Westgate (2014), centers age and 

IQ at values near their corresponding sample medians and means. Specifically, 

E(Y i j) = β0   + β1timei j + β2(IQi   − 110) + β3(Agei − 70) + β4(Agei   − 70)2; j = 1, …, ni ,

where ni = 3 or 4, timeij = j − 1 is years since baseline, and Yij is the ith subject’s T-score in 

their jth year.

Table 5 presents results from using independence, exchangeable, AR-1, Toeplitz, and 

unstructured working correlation matrices with GEE to fit the above model. Specifically, for 

each working structure, parameter estimates, their corresponding estimated standard errors, 

and penalized correlation selection criterion values are presented. We also give unpenalized 

values for the TECM and CIC to illustrate the degree of penalizations. We note that because 

some subjects contribute only three observations we are unable to use the EL criteria.

The TECM and CIC, when not penalizing for correlation estimation, select unstructured. We 

note that Toeplitz could also have been chosen by the unpenalized TECM. For these criteria 

Westgate’s penalty is small for exchangeable and AR-1 and increases in magnitude for 

Toeplitz and especially for unstructured. The reason for this is because the estimated 

covariance inflation was negligible (notable) when estimating one (multiple) correlation 

parameter(s). We note that Westgate’s penalty is more apparent with the CIC. When utilizing 
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this penalty, the TECM and CIC select Toeplitz and AR-1, respectively. However, this does 

not result in a practical problem, as use of these structures resulted in similar values for β
and corresponding SE estimates. The Hardin and Hilbe and Shults and Hilbe penalties with 

the CIC are larger than Westgate’s penalties, as expected. Furthermore, they select 

independence. Alternatively, if we did not consider independence for selection, then these 

penalties select AR-1. Finally, the AGP and BGP both select exchangeable.

We point out that our analyses of this dataset extend the analyses of Westgate (2014). First, 

Westgate (2014) did not apply the Kauermann and Carroll (2001) correction because N = 50 

is not small and in order to stay consistent with previous articles on correlation selection that 

did not use this correction. However, we do apply this correction because we found that it 

had small but notable impact on some standard error estimates. Second, the current 

manuscript allowed Toeplitz to be considered for selection, whereas Westgate (2014) did 

not. Although Westgate (2014) concluded that the AR-1 structure may be preferred, this 

manuscript demonstrates that Toeplitz is also a viable choice when utilizing the TECM with 

Westgate’s penalty. Finally, we point out that Westgate’s TECM and CIC penalties for the 

exchangeable and AR-1 structures were negligible and therefore not actually needed in this 

setting.

6 Concluding Remarks

When estimating a population-averaged GEE model, a working correlation structure must be 

selected. To do so, a criterion that penalizes the estimation of correlation parameters can be 

utilized. The goal of this manuscript was to describe and contrast different penalties, and 

inherently the criteria that can incorporate these penalties, in order to make data analysts 

aware of important aspects to consider as to which penalty and criterion combination will 

ultimately result in the least variable regression parameter estimates via accurate correlation 

structure selection. In summary, the penalized Gaussian Pseudolikelihood criteria work well, 

as do the TECM and CIC with Westgate’s penalty. Furthermore, if the analyst is willing to 

not consider independence as a selection option due to its potential inefficiency, the Hardin 

and Hilbe (2012) and Shults and Hilbe (2014) penalties with the CIC can also work well, 

and these penalities have a practical advantage in that they can be easily calculated and used 

regardless of the software that is employed. Finally, the empirical likelihood criteria of Chen 

and Lazar (2012), when utilizing unstructured as the maximal structure, were found to not 

work well when the number of subjects was small.

As seen in our simulation study, the smaller the number of independent clusters, or subjects 

in a longitudinal study, the more notable the difference between distinct penalty and criteria 

combinations in terms of the resulting variances of estimated regression parameters. 

Alternatively, if the sample size is not small, differences may be negligible. However, what 

constitutes a small or large sample size may not be clear, and the analyst should consider the 

implications of different criteria and penalties.

In our experience with small-sample settings, we have had difficulty finding true Toeplitz or 

unstructured correlation matrices for generating outcomes in simulation studies such that the 

incorporation of corresponding working structures within GEE results in smaller variances 
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of regression parameter estimates relative to the incorporation of simpler structures such as 

exchangeable or AR-1. For instance, the AR-1 working structure resulted in the smallest 

empirical standard deviations of regression parameter estimates in simulation results (not 

shown) from the setting in which the true structure was unstructured, but for N = 20. The 

reason for this result is because notable covariance inflation arises from the estimation of the 

nuisance correlation parameters, and therefore it is difficult to find a realistic, non-

parsimonous structure that has an efficiency gain that more than offsets the corresponding 

variance inflation in small-sample settings. Therefore, if N is small, the analyst may want to 

over-penalize, or even not consider, structures such as Teoplitz or unstructured. To over-

penalize, we recommend the use of the Hardin and Hilbe or Shults and Hilbe penalty with 

the CIC, or use one of these penalties in addition to Westgate’s penalty. We briefly note that 

the relative performances, in terms of resulting empirical standard deviations of regression 

parameter estimates, of the different criteria and penalty combinations from the simulation 

setting in which the true structure was unstructured and N = 20 were similar to those that 

were observed when the true structure was AR-1 and N = 20.

We note that the inflation of the variances of regression parameter estimates is often 

negligible for structures such as AR-1 and exchangeable that require only one correlation 

parameter to be estimated, as can be seen in the simulation study of Westgate (2015). As a 

result, Westgate’s penalty will often be negligible with such structures, as is apparent in 

Tables 4 and 5. As a practical result, there often is no need to penalize one parameter 

correlation structures except possibly for when N is very small (Westgate, 2015). However, 

the definition of very small is vague here, and ideally the data analyst will still apply an 

appropriate penalty method which can deterimine an adequate penalty value. Furthermore, 

the use of one parameter working correlation structures can result in the need to estimate 

multiple correlation parameters, for instance, when the analyst allows correlation parameters 

to vary across groups such as trial arms. In such a case, use of a penalty may very well be 

beneficial.

Our use of correlation selection criteria and penalties focuses on obtaining the least variable 

regression parameter estimates. However, other aspects should be considered. Therefore, we 

refer the reader to Ziegler and Vens (2010) for an informative discussion. Furthermore, we 

suggested that the analyst may want to consider disregarding independence as a selection 

option, as it is often no more or less efficient relative to other working structures. We note 

that independence is a special case of all other structures, and if the estimated correlation 

values are approximately zero, then independence is still available to the analyst. In 

situations where independence cannot lose a notable amount of efficiency, an alternative 

argument may be to simply use independence and ignore any other possible structures 

(Dahmen and Ziegler, 2004). We refer the reader to articles such as Fitzmaurice (1995), 

Mancl and Leroux (1996), Wang and Carey (2003), and Dahmen and Ziegler (2004) for 

details. Additionally, there are situations in which independence should be used, or at least 

preferred, and we refer the reader to the manuscript by Dahmen and Ziegler (2004) that 

summarizes such findings.
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Table 1:

Correlation structure selection frequencies and empirical standard deviations(ESD) of β2 for the setting in 

which the true structure is AR-1 (ρ = 0.5) and 20 subjects each contribute 4 observations.

Selection Frequencies

Structures
of Interest

Criterion Independence
(ESD=0.40)

Exchangeable
(ESD=0.35)

AR-1
(ESD=0.33)

Toeplitz
(ESD=0.35)

Unstructured

(ESD=2.94
**

)

Criterion

ESD
*

IEATU

TECMW 49 163 569 177 42 0.34

CICW 55 153 587 181 24 0.35

CICHH 420 47 533 0 0 0.36

CICSH 597 24 379 0 0 0.37

EAIC 8 56 304 212 420 0.45

EBIC 15 84 394 209 298 0.43

AGP 3 110 801 82 4 0.34

BGP 15 115 841 28 1 0.34

IEA

TECMW 58 187 755 0.34

CICW 61 184 755 0.34

CICHH 420 47 533 0.36

CICSH 597 24 379 0.37

EAIC 93 193 714 0.34

EBIC 100 189 711 0.34

AGP 4 115 881 0.34

BGP 15 115 870 0.34

EATU

TECMW 186 591 180 43 0.34

CICW 180 614 181 25 0.34

CICHH 167 833 0 0 0.33

CICSH 167 833 0 0 0.33

EAIC 59 308 213 420 0.45

EBIC 89 399 211 301 0.43

AGP 110 804 82 4 0.34

BGP 115 855 29 1 0.34

*
empirical standard deviations (ESD) of β2 resulting from use of the given criterion and penalty

**
There was instability with the unstructured working correlation for the analysis of some simulated datasets

TECMW - trace of the empirical covariance matrix with Westgate penalty

CICW - correlation information criterion with Westgate penalty

CICHH - correlation information criterion with Hardin and Hilbe penalty

CICSH - correlation information criterion with Shults and Hilbe penalty

EAIC - empirical likelihood AIC-based criterion with penalty
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EBIC - empirical likelihood BIC-based criterion with penalty

AGP - AIC-based gaussian pseudolikelihood criterion with penalty

BGP - BIC-based gaussian pseudolikelihood criterion with penalty

IEATU - All 5 structures are considered for selection

IEA - Only independence, exchangeable, and AR-1 are considered for selection

EATU - All structures except for independence are considered for selection
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Table 2:

Correlation structure selection frequencies and empirical standard deviations (ESD) of β2 for the setting in 

which the true structure is AR-1 (ρ = 0.5) and 100 subjects each contribute 4 observations.

Selection Frequencies

Structures
of Interest Criterion Independence

(ESD=0.18)
Exchangeable

(ESD=0.15)
AR-1

(ESD=0.14)
Toeplitz

(ESD=0.14)
Unstructured
(ESD=0.15)

Criterion
ESD*

IEATU

TECMW 0 19 643 227 111 0.14

CICW 0 16 664 226 94 0.14

CICHH 0 21 977 2 0 0.14

CICSH 1 22 977 0 0 0.14

EAIC 0 2 728 162 108 0.14

EBIC 0 6 959 31 4 0.14

AGP 0 1 866 115 18 0.14

BGP 0 4 989 7 0 0.14

IEA

TECMW 0 32 968 0.14

CICW 0 25 975 0.14

CICHH 0 22 978 0.14

CICSH 1 22 977 0.14

EAIC 0 10 990 0.14

EBIC 0 10 990 0.14

AGP 0 4 996 0.14

BGP 0 4 996 0.14

EATU

TECMW 19 643 227 111 0.14

CICW 16 664 226 94 0.14

CICHH 21 977 2 0 0.14

CICSH 22 978 0 0 0.14

EAIC 2 728 162 108 0.14

EBIC 6 959 31 4 0.14

AGP 1 866 115 18 0.14

BGP 4 989 7 0 0.14

*
empirical standard deviations (ESD) of β2 resulting from use of the given criterion and penalty

TECMW - trace of the empirical covariance matrix with Westgate penalty

CICW - correlation information criterion with Westgate penalty

CICHH - correlation information criterion with Hardin and Hilbe penalty

CICSH - correlation information criterion with Shults and Hilbe penalty

EAIC - empirical likelihood AIC-based criterion with penalty

EBIC - empirical likelihood BIC-based criterion with penalty
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AGP - AIC-based gaussian pseudolikelihood criterion with penalty

BGP - BIC-based gaussian pseudolikelihood criterion with penalty

IEATU - All 5 structures are considered for selection

IEA - Only independence, exchangeable, and AR-1 are considered for selection

EATU - All structures except for independence are considered for selection
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Table 3:

Correlation structure selection frequencies and empirical standard deviations (ESD) of β2 for the setting in 

which the true structure is Unstructured and 100 subjects each contribute 3 observations.

Selection Frequencies

Structures
of Interest

Criterion Independence
(ESD=0.21)

Exchangeable
(ESD=0.16)

AR-1
(ESD=0.13)

Toeplitz
(ESD=0.12)

Unstructured
(ESD=0.12)

Criterion
ESD*

IEATU

TECMW 0 0 60 260 680 0.12

CICW 0 0 155 348 497 0.12

CICHH 0 0 232 671 97 0.12

CICSH 0 0 326 626 48 0.12

EAIC 0 0 8 359 633 0.12

EBIC 0 0 69 566 365 0.12

AGP 0 0 26 346 628 0.12

BGP 0 0 48 419 533 0.12

IEA

TECMW 0 0 1000 0.13

CICW 0 0 1000 0.13

CICHH 0 0 1000 0.13

CICSH 0 0 1000 0.13

EAIC 0 0 1000 0.13

EBIC 0 0 1000 0.13

AGP 0 0 1000 0.13

BGP 0 0 1000 0.13

EATU

TECMW 0 60 260 680 0.12

CICW 0 155 348 497 0.12

CICHH 0 232 671 97 0.12

CICSH 0 326 626 48 0.12

EAIC 0 8 359 633 0.12

EBIC 0 69 566 365 0.12

AGP 0 26 346 628 0.12

BGP 0 48 419 533 0.12

*
empirical standard deviations (ESD) of β2 resulting from use of the given criterion and penalty

TECMW - trace of the empirical covariance matrix with Westgate penalty

CICW - correlation information criterion with Westgate penalty

CICHH - correlation information criterion with Hardin and Hilbe penalty

CICSH - correlation information criterion with Shults and Hilbe penalty

EAIC - empirical likelihood AIC-based criterion with penalty

EBIC - empirical likelihood BIC-based criterion with penalty
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AGP - AIC-based gaussian pseudolikelihood criterion with penalty

BGP - BIC-based gaussian pseudolikelihood criterion with penalty

IEATU - All 5 structures are considered for selection

IEA - Only independence, exchangeable, and AR-1 are considered for selection

EATU - All structures except for independence are considered for selection
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Table 4:

Empirical means of CIC values and corresponding penalties.

Setting
Working
Structure

Mean of
Unpenalized CIC

Mean of
CICW

Mean of
CICHH

Mean of
CICSH

Mean of
Westgate’s

Penalty
Hardin & Hilbe

Penalty
Shults & Hilbe

Penalty

1

Independence 4.05 4.05 4.80 5.38 0.00 0.75 1.33

Exchangeable 3.62 3.68 4.96 5.77 0.06 1.33 2.14

AR−1 3.32 3.41 4.65 5.46 0.09 1.33 2.14

Toeplitz 3.24 3.94 6.47 7.90 0.70 3.23 4.67

Unstructured* − − − − - 9.00 12.22

2

Independence 4.05 4.05 4.17 4.26 0.00 0.13 0.21

Exchangeable 3.62 3.63 3.83 3.94 0.01 0.21 0.32

AR-1 3.33 3.35 3.54 3.65 0.02 0.21 0.32

Toeplitz 3.31 3.37 3.76 3.92 0.06 0.45 0.61

Unstructured 3.29 3.45 4.29 4.53 0.16 1.00 1.24

3

Independence 4.13 4.13 4.25 4.34 0.00 0.13 0.21

Exchangeable 3.32 3.33 3.53 3.64 0.01 0.21 0.32

AR−1 2.80 2.81 3.01 3.12 0.01 0.21 0.32

Toeplitz 2.62 2.75 2.94 3.07 0.13 0.32 0.45

Unstructured* − − − − - 0.45 0.61

*
Due to instability in some simulated CIC values, the resulting distorted empirical means are not given

Setting 1: True correlation structure is AR-1, and N = 20 subjects contribute 4 observations

Setting 2: True correlation structure is AR-1, and N = 100 subjects contribute 4 observations

Setting 3: True correlation structure is Unstructured, and N = 100 subjects contribute 3 observations

CICW - correlation information criterion with Westgate penalty

CICHH - correlation information criterion with Hardin and Hilbe penalty

CICSH - correlation information criterion with Shults and Hilbe penalty
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Table 5:

Parameter estimates, standard error estimates, and correlation selection criteria values and penalties from 

analyses of the PREADViSE trial data.

 Parameter

Ind
β  (SE)

Exch
β  (SE)

AR-1
β  (SE)

Toeplitz
β  (SE)

Un
β  (SE)

 β0 48.5 (1.42) 48.8 (1.42)  48.7 (1.38)  48.6 (1.35)  48.0 (1.51)

 β1 2.10 (0.38) 1.79 (0.37)  1.76 (0.40)  1.88 (0.39)  2.11 (0.50)

 β2 0.24 (0.16) 0.24 (0.16)  0.20 (0.16)  0.21 (0.16)  0.17 (0.16)

 β3 −0.57 (0.23) −0.55 (0.23)  −0.54 (0.23)  –0.53 (0.23)  −0.44 (0.27)

 β4 0.05 (0.03) 0.05 (0.03) 0.05 (0.03) 0.05 (0.03) 0.05 (0.03)

 Criterion

 TECM No Penalty 2.25 2.24 2.12 2.06 2.06

 TECMW 2.25 2.24 2.13 2.07 2.63

 CIC No Penalty 11.61 11.64 11.33 10.96 9.76

 CICW 11.61 11.66 11.47 11.49 12.94

 CICHH 12.29 12.62 12.31 12.72 13.23

 CICSH 12.59 12.97 12.66 13.21 13.98

 AGP 1,001 908 919 911 947

 BGP 1,011 920 930 926 968

Ind - independence; Exch - exchangeable; Un - unstructured

TECMW - trace of the empirical covariance matrix with Westgate penalty

CICW - correlation information criterion with Westgate penalty

CICHH - correlation information criterion with Hardin and Hilbe penalty

CICSH - correlation information criterion with Shults and Hilbe penalty

AGP - AIC-based gaussian pseudolikelihood criterion with penalty

BGP - BIC-based gaussian pseudolikelihood criterion with penalty
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