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Abstract

This article proposes a Bayesian computing algorithm to infer Gaussian directed acyclic graphs 

(DAG’s). It has the ability of escaping local modes and maintaining adequate computing speed 

compared to existing methods. Simulations demonstrated that the proposed algorithm has low 

false positives and false negatives in comparison to an algorithm applied to DAG’s. We applied the 

algorithm to an epigenetic data set to infer DAG’s for smokers and non-smokers.
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1 Introduction

There is an increasing attention on learning Directed Acyclic Graphs (DAG’s), or Bayesian 

networks, which have an appealing property of encoding conditional independence relations 

by graphs explicitly. By definition, a graph is a DAG if all the links (edges) are directed, but 

there are no directed loops (circles). Conditional independence means each variable in the 

graph is conditionally independent of its non-descendants given its parent set. Two DAG’s 

are Markov equivalent if they represent the same set of conditional independence. To 

characterize the class of DAG’s with the same set of conditional independence, a partially 

directed acyclic graph (CPDAG) is introduced, which may be with both directed links and 

undirected links. One can refer to Andersson et al. (1997); Chickering (2002) for details. It 

still remains a challenge for inferring Bayesian networks due to network complexity and the 

existence of multiple local maximums. A number of algorithms are devoted to estimate 

Bayesian networks, including greedy local search (Heckerman and Chickering, 1995), 

Optimal Reinsertion search (Moore and keen Wong, 2003), Max-Min Hill-Climbing 

(Tsamardinos et al., 2006), genetic algorithm (Larranaga et al., 1996; Lee et al., 2010), 

dynamic programming (Eaton, 2007), branch-and-bound algorithm (de Campos et al., 2011), 

Markov Chain Monte Carlo (MCMC) approaches (Madigan et al., 1995, 1996; Giudici and 

Green, 1999; Friedman and Koller, 2003; Ellis and Wong, 2008; Zhou, 2011; Han et al., 
2014). The PC algorithm, proposed by Spirtes et al. (2000) becomes very popular to infer 

DAG’s by detecting the conditional independence, then orienting the links as long as there 

are no directed circles in the resulting network. It is worthy noting that the PC algorithm 

finds completed partially directed acyclic graphs, not single DAGs. Subsequently related 

work include Kalisch et al. (2007); Kalisch and Bhlmann (2008); Harris and Drton (2013).
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Among these, Friedman and Koller (2003) made an important improvement in inferring 

Bayesian networks by introducing graph order MCMC and previous work include Bouckaert 

(1994). Assuming the order is known, Shojaie and Michailidis (2010) proposed an efficient 

penalized likelihood method for estimation of adjacent matrix of directed graphs; Altomare 

et al. (2013) proposed an objective method for DAG inference. Even with order MCMC, it is 

sill difficult to capture the underlying distributions because of the common problem of 

multiple local maximums, as experimentally demonstrated by Ellis and Wong (2008). To 

improve sampling efficiency, Ellis and Wong (2008) suggests the use of advanced sampling 

technique-single queue Equi-Energy sampler, a variant of the Equi-Energy sampler proposed 

by Kou et al. (2006) to obtain more reliable posterior samples.

However, most efforts, although stated applicable to continuous variables, focus on discrete 

networks in which each node is a categorical variable such as in the work by Ellis and Wong 

(2008); Liang and Zhang (2009); Zhou (2011); Balov (2013), and among others. In 

biomedical studies, to utilize these methods, continuous variables have to be transformed 

into discrete variables. This discretization manipulation may induce the risk of losing some 

meaningful information, for instance the dependence relationships among variables. 

Furthermore, some data sets are continuous in nature and discretizing them may practically 

be meaningless. In this work, these limitations motivate us to investigate the structure of 

Bayesian networks from continuous data.

Section 2 presents the model, including an introduction to Bayesian network, priors and 

posteriors for parameters. The posterior computing, e.g., the proposed algorithm, is given in 

section 3. Simulation studies and a real data application are included in section 4. It ends 

with summary and discussion in section 5.

2 The Model

Bayesian network is a directed acyclic graph which can be characterized by two 

components, a set of nodes X (random variables), and a collection of directed links, E. 

Throughout we assume there are n nodes, X = {X1,X2,··· ,Xn}, in the network, and the data 

are fully observed without any missing values. The joint distribution of X satisfies, by 

Markov property

P(X) = ∏
i = 1

n
P Xi |Pa Xi ,

where Pa(Xi) ⊂ X \{Xi} is the parent set of Xi. We assume each Xi is a Gaussian random 

variable with its mean as a function of its parents, i.e., Xi = βi0 + ∑
j: X j ∈ Pa Xi

βi jX j + ϵi, i = 

1,2,··· ,n. Parameters βij are coefficients and i is assumed to be Gaussian random noise with 

mean 0 and variance σi
2 . We have

Xi |Pa Xi N(μXi
, σi

2),
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where μXi
= βi0 + ∑

j: X j ∈ Pa Xi

βi jX j . Let θi be the set of parameters associated with node Xi, 

i.e., θi = {βi0,βi1,βi2,···, βiTi
, σi

2} and all parameters for the network are denoted by 

θ = ⋃i = 1
n θi , where Ti = |Pa(Xi)|, the number of parents for node Xi. In the following, we 

assume Ti ≤ 4, i.e., the maximum number of parents is no more than 4. The assumption of 

boundness on the number of parents is quite common and unavoidable in Bayesian network 

structure learning since graphs with overwhelmingly large number of links are usually 

preferred, resulting in over-fitting problem (Ellis and Wong, 2008; Zhou, 2011; Fu and 

Zhou, 2013).

Suppose there are M independent observations for each variable in the network, xih, i = 

1,2,··· ,n; h = 1,2,··· ,M. Let 𝕏 = {xih, i = 1, 2,··· ,n; h = 1, 2,··· , M}. Given the graph 𝒢 and 

the parameter associated with this graph, θ𝒢(θ𝒢 has the same definition as θ but is specific 

to graph 𝒢), we have

P(𝕏|𝒢, θ𝒢) = ∏
h = 1

M
∏

i = 1

n
P xih |Pa xih , θi

𝒢 .

Prior distributions

To infer the parameter θ𝒢, we use the fully Bayesian approach. We choose inverse gamma 

for the prior distribution of σi
2, i.e., σi

2 |δi, ψi ∼ Inv − Gamma(δi,ψi), with δi, ψi known and 

set the conditional priors for 𝜷i = (βi0,βi1,βi2,··· ,βiTi)T to be of the form 𝜷i| ∼ 

MVN(0, σi
2(Xi

PaT
Xi

Pa)
−1

), where “MV N” denotes multivariate normal distribution, Xi
Pa is an 

M × (Ti + 1) matrix and represents the observational data for the parents of node Xi. This 

prior allows us to obtain the posterior in closed form in (1).

The prior distribution over structures is commonly chosen to be uniform distribution 

(Heckerman, 1999; Friedman and Koller, 2003), and the sparse network is usually preferred. 

In our approach, similar to Ellis and Wong (2008), we consider structure priors as a function 

of the number of links as P(𝒢) ∝ γ
∑i = 1

n |Pa𝒢 Xi |
, for some 0 < γ < 1.

Posterior distributions

The joint posterior distribution of θ𝒢, 𝒢  is

P θG, 𝒢 |𝕏 ∝ P θ𝒢, 𝒢 × P(𝕏|θ𝒢, 𝒢)

By integrating out the parameters, the marginal posterior distribution of 𝒢 is
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P(𝒢|𝕏) ∝ ∏
i = 1

n
γ

Ti[π
Ti + 1

2 |Xi
PaT

Xi
Pa|

− 1
2 ×

Γ M
2 + δi

ψ i − 1
4 Xi

PaT
Xi

T
ηi + 1

2 Xi
TXi

M
2 + δi

], (1)

where Xi
Pa is an M × (Ti + 1) matrix with the hth row 1, xh1

(i), ⋯, xhTi
(i) , h= 1,2,⋯,M, Xi = 

(xi1,xi2,⋯,xiM)T, i = 1,2,⋯,n, an M × 1 observation vector for node Xi, and 

ηi = Xi
PaT

Xi
Pa

−1
Xi

PaT
Xi . The derivation is given in Appendix. When Xi has no parent, i.e. 

|T i| = 0, Xi
Pa = (1, 1, ⋯, 1)T, Xi = (xi1,xi2,··· ,xiM)T . Thus

P Xi; Pa Xi = ∅ = π
M

Γ M
2 + δi

[ψi −
∑h = 1

M xih
2

4M + 1
2 ∑h = 1

M xih
2]

M
2 + δi

.

3 Posterior Computing

3.1 Adjusted Single Queue Equi-Energy sampler (ASQEE)

Many algorithms for network structure inference are available, as described in Section 1. 

Learning Bayesian networks is known to be NP hard (Chickering et al., 2004) and it poses 

great challenge on many traditional learning algorithms using MCMC on individual network 

structures (Madigan et al., 1995, 1996; Giudici and Green, 1999; Grzegorczyk and 

Husmeier, 2008). Another difficulty in network inference stems from the non-regular 

posterior distribution of the networks of interest. Friedman and Koller (2003) made a 

substantial improvement by focusing on graph orders (i.e., treating graph ordering as a 

random variable), rather than on individual network structures, to build a Markov chain since 

the space of orders is experimentally verified to be much smaller and more regular than the 

space of structures. In stead of inferring graphs using (1), we follow the idea of Friedman 

and Koller (2003) to estimate the orders and construct the graphs based on inferred linked 

edges.

Given a directed acyclic graph, there exist at least one total ordering, 𝒪 (an ordering of n 
variables, X1,X2,··· ,Xn), in which Xi proceeds Xj if Xi ∈ Pa(Xj). On the other hand, if Xi 

proceeds Xj in order 𝒪, directed links from Xj to Xi are prohibited in all of its consistent 

graphs, imposing an restriction on network structures. One advantage of graph orders is that 

it is not necessary to perform acyclicity checking, which is commonly required when 

updating individual network by edge addition, deletion or reversal. In Friedman and Koller 

(2003), a Markov chain on graph orders 𝒪 and its posterior probability is obtained using all 

consistent graphs,
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P(𝒪 |𝕏) ∝ P(𝒪) × ∑
𝒢:𝒢O

P(𝕏|𝒢, 𝒪)P(𝒢|𝒪),

where 𝒢𝒪 are all consistent graphs with order 𝒪. However, the enumeration of all consistent 

graphs becomes practically intractable for large networks. Instead of sampling all consistent 

graphs, Ellis and Wong (2008) suggested sampling a number of distinct consistent graphs 

such that

∑
i = 1

k
P 𝒢i |𝒪 > 1 − ϵ,

where ϵ is a pre-specified small positive number, 𝒢i, i = 1,2,··· ,k are distinct consistent 

graphs. However, P 𝒢i |𝒪  is usually known up to a normalization constant, and calculation 

of the exact probability is practically impossible. To bypass this difficulty, given an order, we 

propose to sample a number of consistent graphs and only use the one with highest 

probability.

Even with smaller space of orders, the problem of local maximum is still severe. To avoid 

being trapped at local maximums when drawing posterior samples of 𝒪, we propose to use 

the Single-Queue Equi-Energy sampling (SQEE) proposed by Ellis and Wong (2008), a 

variant of the Equi-Energy (EE) sampler (Kou et al., 2006). The EE sampling proceeds as 

follows. The first step is to define a sequence of temperatures 1 = T1 < T2 < ··· < TW , where 

W is the number of chains. Then a sequence of energy levels are introduced, i.e., H1 < H2 < 
··· < HW where H1 ≤ min

x
H(x), HW ≤ ∞ . Based on these energy levels, the tempered 

distributions are defined as πl(x) = exp
−max H(x), Hl

Tl
l = 1, 2, ⋯, W , which is the target 

distribution of lth chain and the energy rings are constructed as Dl = {x|H(x) ∈ [Hl,Hl+1), l = 

1, 2,··· , W}. By definition, the larger the value of l, the more flatten distribution the lth chain 

gets, enhancing the ability of the chain jumping across different modes. Specifically, when l 
= 1, π1(x) is the target distribution and π1(x) = exp(−H(x)). This illustrates the relation 

between energy function and the distribution. That is H(x) = −log(π1(x)) = −log(P(O)). One 

can refer to Kou et al. (2006) for detailed discussions. The SQEE sampler is the same as the 

EE sampler, except for the sampling of orders at each chain. The construction of the l-th 

chain in the EE sampler is only based on the (l + 1)-th chain. The SQEE sampler, on the 

other hand, uses information from any of previous higher order chains, l + 1, l + 2, ··· ,W, 

which makes a better communications between different chains.

Due to the use of a single graph in the SQEE sampler for a given order, we name the sampler 

as the adjusted single queue equi-energy sampler (ASQEE). Admittedly, the use of only one 

representative graph with highest posterior probability may result in bias in calculating the 

posterior probability of an order. However, it significantly reduces the computing difficulty 
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in Ellis and Wong (2008). Our simulations discussed later indicate that this approximation is 

applicable and produces reasonably good result.

3.2 Ordering proposal

As discussed in earlier sections, graph ordering is a random variable. Order proposal plays a 

crucial role in building the Markov chain. We still follow the “cylindrical shift” operation 

(Ellis and Wong, 2008). To improve the convergence of Markov chain, the number of nodes 

to be flipped in proposing orders is adjusted in a dynamic way for each single chain. 

Specifically, the number of flipping nodes decreases as the number of iterations grows. That 

is, at the beginning of MCMC, we expect the chain to move fast from the current stage, 

while when the MCMC reaches a relatively stable state, then we expect it to move forward 

slowly. This will help the MCMC chain reach a more reliable stationary distribution quickly. 

Metropolis-Hastings (Hastings, 1970) algorithms is applied to determine whether the newly 

proposed ordering will be accepted or not, which is the standard local Metropolis-Hastings 

move. Thus the graph order is random and to be updated in the MCMC. The detailed 

algorithm is presented in Algorithm 1.

3.3 Performance Evaluation

Our interest is on directed links of the network, e.g., the link Xi → Xj, and the associated 

posterior probabilities. Given a collection of a number of order samplers, 𝒪1, 𝒪2, ⋯, 𝒪K the 

posterior probability of a directed link f can be calculated

P( f |𝕏) = ∑
k

P f , 𝒪k |𝕏

= ∑
k

P 𝒪k |𝕏 × P( f |𝒪k, 𝕏)

= ∑
k

[P 𝒪k |𝕏 × ∑
i

P( f |𝒢i
𝒪k𝒪k, 𝕏)P(𝒢i

𝒪k |𝒪k, 𝕏)],

(2)

where 𝒢i
𝒪k are consistent graphs sampled for order 𝒪k. By using (2), for a set of links of 

interest, the posterior probabilities can be calculated. Given a threshold, a positive number 

between 0 and 1, a set of directed edges could be collected with posterior probability greater 

than the threshold. Further more, false positives and false negatives can be obtained as well 

for different threshold for the purpose of comparing between different methods in Bayesian 

network inferences.

Algorithm 1

Adjusted Single Queue Equi-Energy algorithm (ASQEE)

Assign X1
(W)

 an initial ordering, set Dl = ∅ , l = 1, 2, ⋯, W .

For n = 1,2,···

For l = W,W − 1,··· ,1
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  1: if n > (W − l)(B + N) (B is the burn in period) then

  2:     do

  3:     if l = W or if D
I Xn − 1

(i) ≠ ∅ then

  4:         Perform local M-H move to update Xn − 1
(l)

 by Xn
(l)

 with target distribution πl

  5:     else if l < W AND if D
I Xn − 1

(l) ≠ ∅ then

  6:         Generate μ ∼ U(0,1)

  7:         if μ > pee then

  8:             Perform local M-H move to update Xn − 1
(l)

 by Xn
(l)

 with target distribution πl

  9:         else if μ ⩽ pee then

  10:             Uniformly pick a state y from D
I Xn − 1

(l) (D
I Xn − 1

(l)  is the union of all previ-ous energy rings with 

similar energy level) and Xn
(l) y with probability min 1,

πl(y)Q y; Xn − 1
(l)

πl Xn − 1
(l) Q Xn − 1

(l) ; y
(Q( . , . ) is the transition 

kernel function; Xn
(l) Xn − 1

(l)
 with the remaining probability

  11:         end if

  12:     end if

  13:     if n > (W − l)(B + N) + B then

  14:         D
I Xn

(l) D
I Xn

(l) + Xn
(l)

  15:     end if

  16: end if

In simulations, P 𝒪k |𝕏  is estimated using its relative frequency over all sampled orders after 

burn in. Similarly, we estimated P f , 𝒢i
𝒪k |𝒪k, 𝕏  by using the relative frequency of related 

consistent graphs over all sampled consistent graphs of the order.

4 Numerical Studies

4.1 Simulated Experiments

Simulation scenarios—In this section, networks with 10 nodes are considered. An order 

of these 10 nodes is generated via random rearrangement of r1,r2,··· ,r10 with ri ∈ {1,2,··· ,

10}, i.e., 𝒪*: r1,r2,··· ,r10,ri ∈ {1,2,··· ,10}. Generation of a consistent graph proceeds in the 

following way, similar to Ellis and Wong (2008). For each node ri, select the number of its 

parents, ni, between 0 and min{(i − 1), R}, R is the maximum parents allowed, then assign ni 

parents to node ri chosen from i − 1 proceeding nodes. The nodes and the parents of each 

node consist of the whole network structure. The network structure used to simulated data 

sets is presented in Fig 1. Given this order and network structure, multiple data sets are 
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generated with the following parameters: ϵi N 0, σi
2 ; βi MVN μβi

, Σβi
; μβi

MVN(μ, Σ), where 

μ is a (Ti +1)×1 vector with all entries being 2, Σ, and Σβi
 are both diagonal matrix with all 

elements being 0.1. To evaluate the effect of sample size, we set M = 100, 500, 1000. The 

impact of variance of the inference of network is also considered; σi is considered at two 

levels, σi = 0.5, 1.0.

To the best of our knowledge, FK algorithm (Friedman and Koller, 2003) is the only order 

based sampling approach which can make a fair comparison with the proposed ASQEE. 

Another Bayesian approach by Altomare et al. (2013) focuses on the situation with the order 

known, which is different from our case. Both FK and ASQEE are tested on generated data 

sets. To implement FK, an initial order is randomly generated and the total number of 

iterations is set at 20,000 with the first 10,000 as the burn-in period. To reduce the 

autocorrelations within the chain, order samples are collected every 200 iterations after burn-

in. Thus 50 order samples are collected in the final analysis. To make the result from 

ASQEE comparable to that from FK, the top 50 order samples from ASQEE in terms of 

posterior probability are used to make the final inference.

Result—We applied both the ASQEE and FK algorithm on 10 simulated data sets 

generated following each of the simulation scenarios. The averaged number of false positive 

and false negatives with different parameter settings is reported in Figures 2, 3, respectively. 

For the ASQEE approach, at a given level of noise, increasing sample size will result in 

better inference as indicated by smaller number of false positives and false negatives 

(Figures 2(d) and 3(d)). Higher level in noise seemed to weaken the quality of the 

inferences, but they are improved as the sample size gets larger. However, for the FK 

method, in general, it has higher false positives and false negatives. This may be due to its 

weak ability of escaping local modes. Overall, regardless of the sample size and the level of 

noise, ASQEE performs better than FK in terms of the averaged number of false positives 

and false negatives in both scenarios (Figures 2(a)-(c) and Figures 3(a)-(c)).

The findings are as expected. ASQEE has a better ability of escaping local maximum traps 

but the FK does not. Our simulations also indicate that using all consistent graphs result in a 

smaller bias compared to using one single consistent graph in calculating the posterior 

probability of an order. For small networks (n < 10) where enumerating all consistent graphs 

is possible, it is still recommended to use as many consistent graphs as possible. However, 

for large networks (n ≥ 10), selecting one consistent graph with highest posterior probability 

using M-H is likely to be a good choice.

To further test the better ability of the proposed method in identifying true links, we 

simulated data sets based the graph in Figure 1, but added two additional noisy nodes 

generated from normal distribution with mean 0 and variance 0.25. These two nodes are 

isolated, i.e., without any links to the true graph or between each other. For the purpose of 

demonstration, we focus on the case where M = 100,σi = 0.5. Small sample size (M = 100) 

is considered since when sample size is large, the impact of noisy nodes is expected to be 

reduced. Given a threshold within interval (0,1), a set of directed links are collected with the 
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posterior probability higher than the cutoff. Based on the collection of directed links, a node 

is said to be present if it is in the collection. Then we calculated the relative frequency of 

each node in the collection across 10 randomly generated data sets. The averages of relative 

frequency are displayed in Figure 4 for the true nodes and noisy nodes respectively. 

Consistent low frequencies indicate the the method is robust with respect to noisy nodes.

Large Network Inference—The above simulations are based on networks with 10 nodes. 

We further applied the ASQEE to networks with 50 nodes to assess its ability in dealing with 

larger networks. The simulation procedure follows the same way as previously stated except 

that we included four times more nodes in the networks. The averaged numbers of false 

positives and false negatives of ASQEE and FK are graphically presented in Figure 5 and 

Figure 6. The FK approach never reached high false positives and never reached low false 

positives either. On the other hand, the proposed approach (ASQEE) gives a much longer 

span on possible false positives and false negatives compared to the FK approach, 

emphasizing the weak ability of FK escaping local modes as noted earlier. Among 

comparable false positives and false negatives (the lower right corner of each plot in Figures 

5 and 6), apparently, our approach overall outperforms FK by observing lower false positives 

and false negatives.

Moreover, the computing time of FK is much longer than that of ASQEE. This is as 

expected, since the number of networks is growing exponentially as the number of nodes 

becomes larger and the FK approach estimates exact posterior probabilities instead of 

highest posterior probability as in the proposed method. Compared to the performance when 

dealing with smaller networks with 10 nodes, both ASQEE and FK do not perform equally 

well when working with larger networks, indicating a great need of developing inference 

algorithms for large networks.

4.2 An Application to A DNA Methylation Data Set

To illustrate the proposed method, we apply it to a set of 26 CpG sites in 10 genes which are 

related to maternal smoking (Joubert et al., 2012) and aim to explore the connections among 

them using networks. The relevant information for all 26 CpG sites are given in Table 1. 

DNA methylation data of 245 girls measured at age 18 is used in the analysis. These 245 

subjects are a random sample from the Isle of Wight birth cohort (Arshad and Hide, 1992). 

Among these 245 girls, 48 were exposed to maternal smoking during pregnancy.

To apply the proposed algorithm to the methylation data set, logit transformation is applied 

to transform the methylation data in the interval (0,1) to the whole real line domain. The 

multivariate assumption of the logit-transformed DNA methylation data was satisfied based 

on Shapiro-Wilk normality tests. We applied the ASQEE algorithm to the data of 197 

subjects not exposed and to the 48 exposed subjects. Five chains are run sequentially from 

high order to low, each with the total number of 3000 iterations and the first 2700 iterations 

are treated as burn in. Order samples are collected for final analysis. Given an order, 

Metropolis Hastings algorithm is applied to sample a number of consistent graphs and the 

one with highest posterior probability is used to construct the pool of directed links, each 
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with its posterior probability estimated by the frequency of the graph sampled in MCMC 

after convergence.

With different cutoffs on posterior probability, a varying number of directed links are 

obtained. So the choice of cutoffs becomes crucial in building the finally inferred network. 

We follow the rule that a cutoff should be chosen such that the resulting network is of 

moderate size (“moderate size” means most of the nodes appearing and the number of links 

is approximately two or three times of the number of nodes) and captures the important 

information on the connections between genes. The finally inferred graph is then built upon 

the selected directed links. The result networks for nonsmokers and smokers are presented in 

Figures 7 and 8, respectively, inferred based on similar thresholds.

The network inferred for the non-smokers (Figure 7) indicates a strong regulatory path from 

cg 05575921 (CpG index number 6; Table 1 ) in AHRR gene to CpG sites in genes GFI1, 

MYO1G, CNTNAP2, ENSG00000225718, CYP1A1, and HLA-DPB2. This is consistent 

with a recent finding on the AHRR gene related to its potential as a biomarker for smoking 

(Philibert et al., 2013). The dominance of cg 05575921 does not change in the network for 

smokers for cg 06338710 (index number 7) in gene GFI1 and cg 04180046 (index number 

3) in gene MYO1G. Although the direct control of cg05575921 to some CpG sites in the 

network for non-smokers disappeared in the network for smokers (Figure 8), indirect 

connection is still observed for most CpG sites shown in Figure 7. For instance, the 

regulatory function of cg05575921 to CpG sites cg10399789 (index number 10) and cg 

12876356 (index number 15) in gene GFI1 and cg 04598670 (index number 4) in gene 

ENSG00000225718. We postulate that maternal smoking is likely to impose stronger 

dependence between CpG sites compared to subjects not exposed to maternal smoking. The 

size of the network for subjects exposed to maternal smoking is larger than that for non-

exposed subjects. We do not expect this difference in network size is caused by sample size 

difference (197 v.s. 48). Random samples of size 48 chosen from the 197 non-smoking 

exposed girls resulted in networks with even smaller sizes, supporting the postulation of 

weaker dependence between CpG sites among non-smokers compared to smokers.

5 Summary and Discussion

In this paper, we propose a Bayesian computational algorithm to infer directed links or 

networks among variables of interest, together with posterior probability. This algorithm is 

based on a more advanced sampler, Equi-Energy sampler. Moreover, graph orders, of which 

the space is much smaller than space of networks are employed to build the Markov chain. 

The proposed algorithm has a better ability of escaping local traps and is expected to obtain 

more regular posterior distributions compared to existing FK algorithm.

It performs consistently well in terms of smaller number of false positives and false 

negatives, as seen in simulations. Furthermore, the proposed method has the potential to 

exclude noisy nodes which should not be in the network. This finding provides informative 

assistance in the interpretation of the estimated graphs using real data, in that some nodes 

are shown in the network for non-smokers, but absent in the network for smokers. One 

potential limitation of the EE or SQEE is the computing efficiency. Although the proposed 
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ASQEE improved the computing efficiency by use of one graph with a high probability, 

there is still a need to further reduce the computing time, and this is our ongoing work.

Acknowledgements

The project was supported by National Institutes of Health, NIH R01AI091905 (PI: W Karmaus) and NIH 
R21AI099367 (PI: H Zhang) for the work by H Zhang and W Karmaus, and the University of Memphis Center for 
Translational Informatics, FedEx Institute of Technology, and the Assisi Foundation of Memphis for the 
contribution of R Homayouni.

6: Appendix-Derivation of the marginal posterior of G

The joint posterior of θ𝒢, 𝒢 is, up to a normalizing constant,
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P θ𝒢, 𝒢 |𝕏 ∝ P θ𝒢, 𝒢 × P(𝕏|θ𝒢, 𝒢)

= ∏
i = 1

n
γ

Ti[
ψ i
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σi

2 −δi − 1
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−
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2

2πσi
2 −
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2
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σi
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= ∏
i = 1

n
γ
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2 −
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2 exp −
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2 η

i
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i
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i
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2 η
i
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2

× σi
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exp −
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2 Xi
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(3)

where ηi = Xi
PaT

Xi
Pa

−1
Xi

PaT
Xi . The last equality is because
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2βi
T Xi

PaT
Xi

Pa βi + Xi
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TXi
Paβi − βi
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By integrating out σi
2, 𝛽i, we get the marginal posterior distribution of 𝒢,

P(𝒢|𝕏) ∝ ∏
i = 1

n
γ

Ti∫
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(4)
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Figure 1: 
True network structure used for generating simulated data sets
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Figure 2: 
Comparison between ASQEE and FK ((a), (b), (c)) and sample size effect of ASQEE ((d)) 

in terms of average number of false positives and false negatives across 10 randomly 

generated data sets with σi = 0.5, M = 100, 500, 1000.
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Figure 3: 
Comparison between ASQEE and FK ((a), (b), (c)) and sample size effect of ASQEE ((d)) 

in terms of average number of false positives and false negatives across 10 randomly 

generated data sets with σi = 1.0, M = 100, 500, 1000.
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Figure 4: 
Averaged ratio of appearance for both true nodes and noisy nodes across 10 randomly 

generated data sets with M = 100,σi = 0.5.
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Figure 5: 
Comparison between ASQEE and FK ((a), (b), (c)) and sample size effect of ASQEE ((d)) 

in terms of average number of false positives and false negatives across 10 randomly 

generated data sets with σi = 0.5, M = 100, 500, 1000 for larger network with 50 nodes.
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Figure 6: 
Comparison between ASQEE and FK ((a), (b), (c)) and sample size effect of ASQEE ((d)) 

in terms of average number of false positives and false negatives across 10 randomly 

generated data sets with σi = 1.0, M = 100, 500, 1000 for larger network with 50 nodes.
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Figure 7: 
This inferred network is for 197 girls exposed to mother smoking during pregnancy with 

cutoff 0.25. CpG sites indices are given in Table 1.
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Figure 8: 
This inferred network is for girls of 48 mothers who smoked during pregnancy with cutoff 

0.3. CpG sites indices are given in Table 1.
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Table 1:

Relevant information on 26 CpG sites. Chr denotes the chromosome location.

Chr Gene CpG CpG Index in the inferred network

1 GFI1 cg10399789 10

1 GFI1 cg09662411 8

1 GFI1 cg06338710 7

1 GFI1 cg18146737 18

1 GFI1 cg12876356 15

1 GFI1 cg18316974 19

1 GFI1 cg09935388 9

1 GFI1 cg14179389 16

5 AHRR cg23067299 25

5 AHRR cg03991871 2

5 AHRR cg05575921 6

5 AHRR cg21161138 22

6 HLA-DPB2 cg11715943 11

7 MYO1G cg19089201 21

7 MYO1G cg22132788 23

7 MYO1G cg04180046 3

7 MYO1G cg12803068 14

7 ENSG00000225718 cg04598670 4

7 CNTNAP2 cg25949550 26

8 EXT1 cg03346806 1

14 TTC7B cg18655025 20

15 CYP1A1 cg05549655 5

15 CYP1A1 cg22549041 24

15 CYP1A1 cg11924019 12

15 CYP1A1 cg18092474 17

21 RUNX1 cg12477880 13
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