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I maging is a routine tool for the diagnosis
of most types of disease processes; in
oncology, imaging is key to identify primary

and metastatic neoplasms, provide differential
diagnoses, evaluate tumors at baseline, and assess
treatment response. Despite increasing refine-
ments of modalities such as magnetic resonance
imaging (MRI) and the enormous amount of
imaging data generated everyday, imaging is
not typically used for tumor characterization
beyond location, size, and gross appearance.
Unlocking the full spectrum of data contained
in routine imaging studies would greatly
enhance tumor characterizations, accelerate
the transition towards imaging-based person-
alized diagnostics and enable the identification
of more accurate, noninvasive, clinically relevant
biomarkers.1,2 Toward this end, radiomics
refers to microscale (on a pixel or voxel level)
imaging features extracted from standardmedical
images.
Glioblastoma Multiforme (GBM) is charac-

terized by a few hallmark mutations: TP53,
PTEN, EGFR, IDH1, NF1, RB1, PIK3CA, and
PIK3R1.3 An ever changing and rapidly evolving
mutational landscape makes it almost impos-
sible to capture the entire genomic temporal and
spatial tumor heterogeneity in a single biopsy.
Further, in analogy to Heraclitus’s concept of
“Panta Rhei,” that we can never step twice into
the same river due to its constant flow,4 we also
can never look at the same tumor twice due to the
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highly proliferative nature and rapid progression
of niche biology across the heterogeneous tumor
landscape; thus, it becomes apparent that a single
snapshot microarray genomic test at time of
surgery or biopsy is not enough to capture a
very dynamic tumor environment over time.
For the most part, numerous biopsies and
repeated genomic testing would carry a high
morbidity and likely be limited by cost of care
at most medical centers. Thus, we recognize
that a more efficient and high-throughput, clini-
cally applicable way to identify key molecular
tumor markers across the entire tumor landscape
and over multiple time points is needed. This
MRI-based noninvasive radiogenomic testing
can be termed “radiopsy,” and might serve as an
adjunct to invasive genomic testing. Further, it
can be of importance for in-depth monitoring
of molecular and phenotypic tumor behavior
over time, as MRI is a clinically accepted,
FDA approved, and cost effective way to screen
patients at multiple time points throughout the
cancer treatment paradigm.
Recently, quantitative parameters, such as

volumetric and radiomic imaging features, have
been linked with genomic data.5-7 The linkage of
imaging information with genomic data has been
termed radiogenomics (or imaging-genomics).8
In this study, we sought to apply the power of

radiomic analysis to GBM, the most common
and most aggressive primary brain cancer in
adults, and correlate imaging characteristics
with underlying key genomic aberrations. Our
objectives were to determine whether there is
a relationship between the 3 most frequently
mutated genes (TP53, PTEN, EGFR) promoting
GBM oncogenicity and imaging characteristics
as assessed by radiomic textural analysis and
demonstrate that extracted radiomic features
carry a similar complexity as microarray-based
genomic information. This can be anticipated
to further clinically applicable radiomic test
methods to noninvasively identify hallmark
mutations in glioblastoma.
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METHODS

The collection of the original material and data provided by The
Cancer Genome Atlas (TCGA) project was conducted in compliance
with all applicable laws, regulations, and policies for the protection of
human subjects, and any necessary approvals, authorizations, human
subject assurances, informed consent documents, and IRB approvals were
obtained.

Patients
A total of 29 TCGA patients underwent radiomic analysis. The

preoperative MRI studies of the TCGA patients were available for
public download from The Cancer Imaging Archive (TCIA). Of 29
patients, as shown in Figure 1A, 10 patients had TP53mutations and no
mutations in PTEN and EGFR genes; 7 patients had PTEN mutations
and no mutations in TP53 and EGFR genes, and 12 patients had EGFR
mutation and no mutations in TP53 and PTEN genes. Five patients
had TP53 and PTEN mutations, 2 patients had mutations in EGFR
and TP53, and 3 patients had EGFR and PTEN mutation. Detailed
information of specific mutations in each gene are presented in Tables,
Supplemental Digital Content 1.

Image Registration and Segmentation
Segmentation was performed on the conventionalMR images, namely

precontrast T1-weighted images (T1WI), postcontrast T1WI, and fluid-
attenuating inversion recovery (FLAIR) images. Tumor delineation
was performed in a semi-automated fashion, on a slice-by-slice basis,
using 3D Slicer (https://www.slicer.org), an open-source image analytics
platform. The segmented images were reviewed in consensus by 2 board-
certified neuroradiologists (RRC; 9 yr of experience, AJK, 35 yr of
experience). Prior to image segmentation, all 3 images were coregistered
into the same geometric space using affine registration (12 degrees of
freedom). Registration was implemented using the General Registra-
tions (BRAINS) Toolbox in 3D Slicer. After image registration, we used
postcontrast T1WI and FLAIR images for tumor delineation. Postcon-
trast T1WI were used to determine the borders of the enhancement (ie,
active tumor) and nonenhancing central component (ie, necrosis). The
edema/invasion component was segmented using the FLAIR image. The
precontrast T1WI was used to exclude hemorrhage from the delineated
tumor. Additionally, a region in the contralateral normal-appearing white
matter was also segmented for within-sequence normalization of the data.
The outlines of the 3 segmented phenotypes (active tumor, necrosis,
edema/invasion) and contralateral normal-appearing white matter were
saved in a label volume and further used in radiomic analysis.

Radiomic Analysis
The volume of interest (VOI) corresponding to each phenotype, as

well as the combined phenotype representing the whole GBM, were
used for radiomic analysis. Multiple invariant and volume-independent
radiomic features were extracted from each VOI. Our in-house radiomic
analysis pipeline for MR images consists of 3 steps: (i) skull-stripping,
(ii) image intensity normalization, (iii) radiomic feature extraction. In
the first step, the Functional Magnetic Resonance Imaging of the Brain’s
Brain Extraction Tool (BET; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)
was used to remove nonbrain tissue from the anatomical MR images.
To account for scanner and within-sequence protocol differences, we
applied an intensity normalization algorithm to standardize the intensity
scales across MR images of the same contrast. Finally, radiomic features

were extracted based on histogram analysis and the Gray Level Co-
occurrence Matrix (GLCM). Histogram analysis provides information
about the intensity distribution within a VOI; 10 histogram-based
features were extracted, namely minimum, maximum, mean, standard
deviation, skewness, kurtosis, and percentiles (1%, 5%, 95%, and 99%).
GLCM is a tabulation of how often different combinations of gray levels
co-occur in a region of interest and in a specific direction and provides
information about the distribution of pairs of voxels separated by a
given distance at a specific direction. Three parameters were defined
for the calculation of the GLCM: direction of spatial relationship,
distance between the reference and neighboring pixel, and number of
gray levels. In our implementation, we considered 4 directions of spatial
relationship (ie, in-plane rotations; horizontal, vertical, diagonal up,
diagonal down) and a distance of 1 pixel (ie, co-occurrences between
neighboring pixels); thus, 4 GLCMs were calculated per VOI. Given
that there is no literature support of the appropriate number of gray
levels, multiple gray levels were examined by re-quantization of the initial
image (l= 8, 16, 32, 64, 256 gray levels). For each GLCM, the following
20 features were extracted: autocorrelation, contrast, correlation, cluster
shade, cluster prominence, dissimilarity, energy, entropy, homogeneity,
maximum probability, variance, sum average, sum variance, sum entropy,
difference variance, difference entropy, information measure of corre-
lation 1 and 2, inverse difference moment, and normalized inverse
difference moment. To obtain rotation invariant measures of the GLCM-
based features, the average, range, and angular variance of the features
calculated for different θ were obtained, thereby resulting in 60 invariant
GLCM-based features for each VOI for a specific gray level. Accounting
for multiple gray levels, phenotypes, and sequences, a total of 2480 were
obtained for each patient. An additional 620 texture features from the
contralateral normal-appearing white matter were extracted from human
MRIs and used for within-sequence normalization purposes.

Analysis of Texture Features and Genes Associated with
Patients with Specific GeneMutation

Significant texture features associated with 3 groups of patients with a
mutually exclusive mutation in either TP53, PTEN, or EGFR (n = 29),
were selected using the comparative marker selection (CMS) module
of GenePattern (Broad Institute, Boston, Massachusetts). Features with
false discovery rate (FDR) less than 0.05 were included. Heatmap using
these significant texture features values across patients were generated
using the GENE-E software from Broad Institute. GENE-E converts
values to heatmap colors using the mean and maximum values for
each row or the standard deviations from the row mean for each row.
Genomic data was unavailable for one of the EGFR and TP53 mutant
patients. Gene expression analyses were performed with whole genome
expression profiles of patients with mutation either in TP53 (n = 9),
EGFR (n = 11), or PTEN (n = 7) gene. Briefly, level 3 whole genome
expression profiles were obtained from the public TCGA data portal
(https://gdc-portal.nci.nih.gov/). Gene expression profiles were grouped
into TP53 mutant vs TP53 WT, PTEN mutant vs PTEN WT, and
EGFR mutant vs EGFR WT groups and analyzed by using the CMS
module as above. Heatmap using these significant genes expression levels
across patients were generated using the GENE-E (Broad Institute); and
patients were grouped by unsupervised hierarchical clustering. Genes
with significant P-values (P < .05) were selected for network/pathway
analyses by Ingenuity Pathway Analysis (IPA). Consensus clustering of
patients based on significant-CMS filtered texture features and genes
(TP53: n = 342; PTEN: n = 18; EGFR: n = 97) were performed using
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FIGURE 1. TCGA/TCIA GBM patients with known gene mutation and their cognate MRI volumetric information. A, Venn diagram depicting patients’ association
with specific gene mutation. Numbers show patients with imaging data while numbers within the brackets are patients with whole genome expression profiles. B,
Schematic representation of mutation type and frequency across specific domains of genes. Gene names are shown at the left top corner of graphs and color codes for
mutation type are shown at the bottom right corner. C-E,MRI volumes for patients with specific gene mutation. Volumes in mm3 of specific MRI phenotype is plotted
on y-axis. Pair-wise comparisons (mutant vs Wild Type (WT)) are shown on x-axis. P-values are shown above the bar graphs. ns: P-value not-significant. F-H,
Representative MRI scans with volumes for TP53 mutant F, PTEN mutant G, and EGFR mutant H, patients. Necrosis, contrast enhancing, and FLAIR areas are
demarcated in orange, yellow, and blue lines, respectively. I, MRI volumetric comparisons across mutations. Statistically significant MRI volume is identified with
number above the pair of box plots.
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GENE-E, where columns (with patient ID and mutant/WT annota-
tions) were clustered based on 1 minus spearman rank correlation for
distance metric with average linkage. Hierarchical clustering algorithm
was used with 100 resampling iteration, with row-wise (values of selected
texture features and genes across patients) normalization.

RESULTS

We identified patients in the TCGA database that also had
corresponding MR imaging present in the TCIA and had
nonoverlapping mutations in either TP53 (n = 10), PTEN (n
= 7), or EGFR (n = 12; Figure 1A). These were either missense,
truncating, or in-frame mutations (Figure 1B). We then sought
to determine if there was a difference in MRI appearance of
those tumors carrying mutually exclusive mutations in TP53,
PTEN, or EGFR genes. Conventional volumetric MRI analysis
for areas of necrosis, contrast enhancement, and peritumoral
edema did not reveal any significant differences between WT
and respective mutation except that EGFR WT as compared to
mutant (P = .029) and PTEN mutant as compared to EGFR
mutant (P = .0376) tumors showed slightly larger areas of
contrast enhancement (Figures 1C-1E). Representative images are
shown for TP53, PTEN, and EGFRmutated tumors (Figures 1F-
1I).
We then identified the significant radiomic features for the 3

genotypes using the CMS tool,9 this in analogy as previously used
for gene expression analysis by our group.8,10 We identified 283
unique radiomic features forTP53mutated tumors, 18 for PTEN
mutated tumors, and 38 features for EGFR mutated tumors that
were nonoverlapping (Figure 2A). Heatmap representation of
the radiomic texture features of mutated vs WT tumors for the
respective 3 mutations demonstrates the complexity and depth
of radiomic data (Figures 2B-2D). Similar to gene expression
data, radiomic data also shows overlapping features that are highly
correlated with multiple traits of interest, in this case TP53 and
EGFR mutated tumors (n = 59 features; Figure 2E).
We then sought to determine TP53, PTEN, and EGFR

mutation defining gene expression profiles to mirror the analysis
as done for the radiomic features. We identified 505 unique and
nonoverlapping genes significantly upregulated in TP53mutated
tumors, 300 for PTENmutated tumors, and 197 genes for EGFR
mutated tumors (Figure 3A). The latter gene expression profiles
and heatmaps for mutational versusWT defining gene expression
profiles (P < .05) demonstrate a slightly more complex, but
similar pattern as for genotype defining radiomic feature sets
(Figure 3B). Combined analysis using shared and significant genes
revealed significantly differentially expressed upstream regulating
molecules: NFKB, TNF, PDGFBB, EGFR, PTEN, and TP53,
the latter 3 serving as correct positive control for the initial
selection criteria (Figure 3C). We then determined the major
associated TP53 (P-value 4.2E-10), PTEN (P-value 4.6E-03),
or EGFR (P-value 2.4E-03) defining gene expression clusters
(Figure 3C, i, ii, iii, Tables, Supplemental Digital Content 2, 3,
and 4, respectively). A similar analysis was performed for themain

cellular biofunctions defined by the most highly differentially
regulated TP53, PTEN, and EGFR associated gene networks,
which revealed functions such as: generation of cells, angiogenesis,
invasion of cells, immune response, differentiation of cells, and
cell survival, all hallmarks of cancer and GBM in particular
(Figure 3D). The major biofunction and defining gene clusters
associated with each mutant genotype were as follows: TP53-
angiogenesis (P-value 1.4E-06), PTEN-invasion (P-value 3.1E-
7), and EGFR-immune response (P-value 7.4E-04; Figure 3D, i,
ii, iii, Tables, Supplemental Digital Content 5, 6, and 7, respec-
tively).
Side by side consensus cluster analysis demonstrated similar

correlation matrices for TP53 mutant vs WT radiomic texture
features (Figure 4A) as for the corresponding gene expression
results (Figure 4B). This was similarly seen for PTEN mutant vs
WT (Figures 4C and 4D) and to a lesser degree for EGFRmutant
vs WT (Figures 4E and 4F).

DISCUSSION

In this study, we demonstrate that there are distinct MRI
radiomic texture feature signatures associated with the TP53-
PTEN-EGFR mutational landscape. We show that, unlike
conventional quantitative volumetric image analysis, the extracted
radiomic feature sets containing 4800 data points per tumor
carry extra depth of information. Our results demonstrated
that radiomic features are now approaching the complexity of
whole genome microarray expression data. These findings have
important clinical implication, since radiomic analysis is nonin-
vasive and performed using routine imaging obtained in the
everyday clinical setting. If prospectively validated, it can serve
as cost effective adjunct radiogenomic diagnostic test method and
advance personalized patient care. The field of medical radiomics,
particularly cancer radiomics, is rapidly evolving with numerous
studies now showing that radiomic data are highly correlated with
genomic data across various types of cancers.11-15

However, for the field of radiogenomics to evolve, causality
and biologic genetic validation is required with gain- and loss-
of-function studies, this is currently underway in our laboratory.
Nevertheless, the herein presented data are unique in showing
that the 3 hallmark mutations in GBM3 have very distinctly
corresponding and partially nonoverlapping radiomic feature sets
(Figure 2). The radiomic data structure visibly approaches the
complexity of genomicmicroarray data, and there is a quantifiable
relationship between genotypic-specific radiomic features and
gene expression clusters (Figures 3). Side by side analysis shows
that consensus clustering of both radiomic and genomic data
yields similar appearing graphical representation and separation of
mutant vs WT TP53, PTEN, and EGFR glioblastoma (Figure 4).
Altogether, these data suggest that radiomic analysis does unlock
inherent information present in routine imaging that previously
was inaccessible. Furthermore, these data carry quantifiable infor-
mation that can be utilized towards the prediction of complex
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FIGURE 2. MRI texture feature signatures are uniquely associated with patients with TP53, PTEN, and EGFR gene mutations.
A, Venn diagram depicting numbers of MRI texture features, their unique and overlapping association with GBM patients with
specific gene mutation. B-D, Heatmap generated using uniquely associated and significant texture features (FDR < 0.05) in
TP53 mutant vs WT (n = 283) B, EGFR mutant vs WT (n = 38) C, and PTEN mutant vs WT (n = 18) D. Color scale
bar above heatmap show range of texture feature values across patients. E, Heatmap generated using fold change values of shared
and significant texture features (n = 59; FDR < 0.05) in TP53 mutant vs WT and EGFR mutant vs WT. Color scale above
heatmap show range of fold change values for specific texture feature.
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FIGURE 3. Specific gene signatures are uniquely associated with patient tumors carrying mutually exclusive TP53, EGFR, and
PTEN gene mutations. A, Venn diagram with numbers of significantly altered genes in patients with specific gene mutation
vs WT comparisons. B, Heatmap generated using uniquely associated and significant genes (top 50 upregulated and top 50
downregulated genes with fold change ≥2.0 and P < .05) in TP53 mutant vs WT (left), EGFR mutant vs WT (middle) and
PTEN mutant vs WT (right). Color scale bar above heatmap show range of gene expression levels. C, Heatmap generated using
activation z-scores of upstream regulators in mutant vs WT analyses. 1: TP53 mut vs WT; 2: PTEN mut vs WT; 3: EGFR
mut vs WT. Color scale bar shown above heatmap show range of texture feature values. C: i, Network of TP53 regulated genes
in TP53 mut vs WT analysis. Z-score and P-value are shown under the network. C: ii, Network of EGFR regulated genes in
EGFR mut vs WT analysis. Z-score and P-value are shown under the network. C: iii, Network of PTEN regulated genes in
PTEN mut vs WT analysis. Z-score and P-value are shown under the network.D,Heatmap generated using activation z-scores
of cellular bio-functions in mutant vs WT analyses. 1: TP53 mut vs WT; 2: PTEN mut vs WT; 3: EGFR mut vs WT. Color
scale bar shown above heatmap show range of texture feature values. D: i, Status of angiogenesis and associated gene network
in TP53 mut vs WT analysis. Z-score and P-value are shown under the network. D: ii, Status of immune response of cells and
associated gene network in EGFR mut vs WT analysis. Z-score and P-value are shown under the network. D: iii, Status of
invasion and associated gene network in PTEN mut vs WT analysis. Z-score and P-value are shown under the network.
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FIGURE 4. Consensus clustering of GBM patients on the basis of texture features and genes. A, Consensus clustering of patients based on significant altered texture
features in TP53 mutant vs WT analysis. B, Consensus clustering of patients based on significantly altered genes in TP53 mutant vs WT analysis. C, Consensus
clustering of patients based on significant altered texture features in PTEN mutant vs WT analysis. D, Consensus clustering of patients based on significantly altered
genes in PTEN mutant vs WT analysis. E, Consensus clustering of patients based on significant altered texture features in EGFR mutant vs WT analysis. F, Consensus
clustering of patients based on significantly altered genes in EGFR mutant vs WT analysis. Range of patient correlations are shown color scale bar above each plot.

genomic events. In analogy to a surgically obtained biopsy, this
type of analysis can yield voxel size based micro- to macro-
scopic radiomic tumor sampling of any size and location within
a tumor and can be termed “radiopsy” as we suggest. It follows
that radiopsy is not limited by physical constraints such as biopsy
needle size and length, trajectory chosen and morbidity such as
iatrogenic bleeding, infection, or parenchymal damage caused.
In the field of pathology, mainstream implementation of

the microscope in the early nineteenth century completely
disrupted the field from gross pathologic specimens (organs) to
accessing microscopic depth with resolutions down to the cellular
level.16 Surprisingly, in radiology, a similar paradigm shift is just
happening now. Radiomics allows several-folds increase in the
depth of analysis and yields a “microscopic” image appearance

with thousands of data points instead of conventional radio-
logic descriptors related to lesion size, location, and appearance,
reminiscent of conventional gross organ pathology. Interestingly,
since, the field of pathology has evolved much further and by
means of whole genome sequencing, we now have capabilities to
zoom into single cells down to the verymolecular level. The herein
mentioned novel radiologic radiomic methods are advancing the
field, but are just approaching that very depth down to the
“cellular and molecular” level until the radiome has been fully
sequenced, studied, and made sense of. This will require unified
methods, large prospective trials with spatially matched voxel-
biopsy radiogenomic analysis and basic laboratory functional
genomic and radiogenomic validation using RNA interference
and genetically engineered animal models.
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Certainly, the above-mentioned obstacles must be overcome,
and until then radiogenomics remains at the correlative stage
only. Another pitfall is the lack of analysis methods for complex
radiomic data; as of today, for the most part, gene expression
microarray analyses methods have been adopted and tailored
to fit the radiomic data structure, but no unified analysis
method is used for data quality control, noise reduction, normal-
ization, batch effect control across MRI scanner or field strength
comparison just to name a few. However, the herein presented
radiomic texture extraction method attempts to address those
latter pitfalls and presents a robust texture analysis method that
validated across a very diverse set of source images.
In summary, our results show that the high resolution radiomic

brain cancer landscape is approaching its genomic counterpart in
complexity and heterogeneity. It also demonstrates the evolution
of the field of radiology and image analysis is similar to the
advent of the microscope in pathology, now unlocking previously
inaccessible microscale data in routine imaging. This study will
further the development of the MRI-based noninvasive biopsy or
radiopsy and advance personalized molecular therapy as adjunct
to invasive genomic testing.
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