Skip to main content
. 2019 Mar 25;8:e41555. doi: 10.7554/eLife.41555

Figure 4. Manipulations of synaptic strength (N·PSyn·12Wmax) and g-CAN have equivalent effects on network activity amplitude, frequency and recruitment of inspiratory neurons not involved in rhythm generation.

Figure 4.

(A and B) Relationship between g-CAN (mean values for the simulated populations), synaptic strength and the amplitude and frequency in the CaSyn network. Notice the symmetry about the X=Y line in panels A and B, which, indicates that changes in g-CAN and or synaptic strength are qualitatively equivalent. Synaptic strength was changed by varying Wmax. (C) Relationship between network activity amplitude and the reduction of g-CAN (blue) or synaptic strength (green). (D) Relationship between network frequency and the reduction of g-CAN (blue) or synaptic strength (green). (E and F) Decreasing g-CAN or synaptic strength de-recruits neurons by reducing the inspiratory drive potential, indicated by the amplitude of subthreshold depolarization, right traces. The solid blue and green lines in panels A and B represent the location in the 2D parameter space of the corresponding blue and green curves in C and D. The action potentials in the right traces of E and F are truncated to show the change in neuronal inspiratory drive potential. The parameters used for these simulations are CaSyng-Ca=[0,0], PCa=0.01, PSyn=1.0 and Wmax=var.