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Abstract

Intensive longitudinal data provide psychological researchers with the potential to better 

understand individual-level temporal processes. While the collection of such data has become 

increasingly common, there are a comparatively small number of methods well-suited for 

analyzing these data, and many methods assume homogeneity across individuals. A recent 

development rooted in structural equation and vector autoregressive modeling, Subgrouping Group 

Iterative Multiple Model Estimation (S-GIMME), provides one method for arriving at individual-

level models composed of processes shared by the sample, processes shared by a subset of the 

sample, and processes unique to a given individual. As this algorithm was motivated and validated 

for use with neuroimaging data, its performance and utility is less understood in the context of 

ambulatory assessment data collected by psychologists. Here, we evaluate the performance of the 

S-GIMME algorithm across various conditions frequently encountered with daily diary (compared 

to neuroimaging) data; namely, a smaller number of variables, a lower number of time points, and 

smaller autoregressive effects. Importantly, we demonstrate for the first time the importance of the 

autoregressive effects in recovering data-generating connections and directions, and the ability to 

use S-GIMME with lengths of data commonly seen in daily diary studies. We demonstrate the use 

of the S-GIMME algorithm with an empirical example evaluating the general, shared, and unique 

temporal processes associated with a sample of individuals with borderline personality disorder 

(BPD). Finally, we underscore the need for methods such as S-GIMME moving forward given the 

increasing use of intensive longitudinal data in psychological research, and the potential for these 

data to provide novel insights into human behavior and mental health.
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It is now well recognized that the individuals comprising a priori categories, such as gender, 

age, or psychiatric diagnosis, are remarkably heterogeneous in their characteristic manners 

of mood, behavior, or cognition. Presumably, this rich variability within a given category 

reveals individual differences (perhaps unrelated to category) that undermine the validity of 

the categorization. Indeed, this heterogeneity poses challenges to psychological and 

behavioral classification systems, including those used in high stakes settings (e.g., 

psychiatric diagnosis and treatment). Additionally, these categories have problematically 

nebulous boundaries, and supposedly discrete groups may overlap substantially. A prime 

example of these issues can be found in psychiatric diagnoses, which are paradoxically both 

too specific (i.e., high rates of co-variation or “co-morbidity”; Lilienfeld et al., 1994) and too 

general (i.e., high heterogeneity within diagnosis; Hyman, 2010). These challenges have 

generated a broad and growing literature on quantitative modeling approaches to uncover the 

symptomatic patterns of psychopathology (see e.g., Kotov et al., 2017 for review). The 

present paper evaluates one analytic approach for ambulatory data analysis, Subgrouping 

Group Iterative Multiple Model Estimation (S-GIMME; Gates, Lane, Varangis, Giovanello, 

& Guskiewicz, 2017), for the modeling of emotional, behavioral, and cognitive processes. S-

GIMME arrives at general patterns of relations that exist for the entire sample, patterns that 

are shared by only a subset of individuals, and patterns that are unique to a given individual. 

Originally developed for use on functional brain imaging data, we evaluate the utility of this 

approach for data qualities that are sometimes seen in analysis on ecological momentary 

assessments.

To date, efforts to generate quantitatively derived taxonomies have largely relied on 

assessment approaches that are temporally distal from the putative mechanisms of interest. 

That is, indicators are assessed in cross-section or at a temporal scale (e.g., years) that miss 

the target underlying dynamic processes in real time that serve to define and maintain the 

constructs of interest (e.g., psychopathology). However, over the past two decades, there has 

been a surge in method development and implementation to study mood, behavior, and 

cognition as they unfold in the naturalistic settings of daily life. Referred to variously as 

experience sampling, ecological momentary assessment, or ambulatory assessment 

(Shiffman, Stone, & Hufford, 2008; Trull & Ebner-Primer, 2013), these approaches 

generally use intensive longitudinal data collection designs to sample behavior on a time-

scale closer to the dynamic processes they intend to measure. Research in psychopathology 

increasingly relies on these methods to understand the nuanced and complex dynamic 

processes of mental illness (e.g., Ebner-Priemer et al., 2007; Hamaker & Wichers, 2017; 

Muehlenkamp et al., 2009; Myin-Germeys, van Os, Schwartz, Stone, & Delespaul, 2001; Pe 

et al., 2015; Sadikaj et al., 2013; Shiffman et al., 2002; Silk, Steinberg, & Morris, 2003; 

Smyth et al., 2007; Trull et al., 2008; Wright & Simms, 2016; see also Myin-Germeys et al., 

2009 and Trull & Ebner-Priemer, 2013 for reviews). This work has almost exclusively relied 

on the aforementioned diagnostic classification schemes by placing individuals in predefined 

groups and conducting analysis under the assumption of within-group homogeneity. 
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However, if the assumption of within-group homogeneity does not hold for a given sample, 

then results do not reflect the symptomatology present for individuals seeking treatment. To 

understand individual-level symptoms and experiences, temporal processes must be 

examined. Further, it has now been demonstrated that heterogeneity in temporal processes 

also exists in normative samples, such as the structure of personality (e.g., Borkenau & 

Ostendorf, 1998; Ram et al., 2005; Ram & Grimm, 2009; Molenaar & Campbell, 2009).

Even though diagnostic categories may not accurately reflect the symptoms or experiences 

of individuals, there may exist groups of individuals who share similar behavioral or 

cognitive profiles. Thus, research on the temporal processes of individuals would ideally be 

extended to parsing individuals into subgroups based on similarity in the dynamic processes 

underlying their behavior. Identifying these subgroups first requires quantitative methods for 

arriving at individual-level models that accurately and reliably capture the unique patterns of 

effects among variables across time (Molenaar, 2004), a goal that has gained much traction 

in human brain neuroimaging literature (Smith et al., 2011). From this work, Bayes net 

approaches, a class of algorithms for model selection, have been identified as the most 

promising analytic methods for arriving at data-driven models of temporal processes 

(Mumford & Ramsey, 2014; Ramsey, Hanson, & Glymour, 2011; Ramsey, Sanchez-

Romero, & Glymour, 2014). Among those, Group Iterative Multiple Model Estimation 

(GIMME; Gates & Molenaar, 2012) has surfaced as a highly reliable model building 

procedure for arriving at individual-level patterns of effects underlying dynamic processes. 

One recent extension to the original GIMME algorithm is the ability to cluster individuals 

into subgroups based on similarities in their dynamic processes. Termed, “Subgrouping 

GIMME” (S-GIMME; Gates, Lane, Varangis, Giovanello, & Guskiewicz, 2017), this 

method provides an unsupervised classification approach to arrive at data-driven subgroups. 

S-GIMME thus identifies dynamic relations that exist at the group- (i.e., sample), subgroup-, 

and individual-levels, providing estimates for these relations separately for each individual.

Previous work involving GIMME and S-GIMME has been rooted in modeling functional 

magnetic resonance imaging (fMRI) brain data. That is, computer simulations have focused 

on data generated to mimic characteristics of fMRI data, and empirical applications have 

focused on modeling relationships among brain regions of interest (ROIs) from fMRI data 

(e.g., Beltz et al., 2013; Karunanayaka et al., 2014; Nichols, Gates, Molenaar, & Wilson, 

2014; Price et al., 2017; Yang, Gates, Molenaar, & Li, 2015). The present paper provides 

evidence that with some consideration, S-GIMME can be applied to ambulatory assessment 

data, of which daily diary data is a specific type. Here, daily diaries were specifically chosen 

because (a) they are an oft used variant of ambulatory assessment both historically (e.g., 

Borkenau & Orstendorf, 1998; Lebo & Nesselroade, 1978; Searles, Perrine, Mundt, & 

Helzer, 1995; Zevon & Tellegen, 1982) and at present (e.g., Bachrach & Read, 2017; Castro-

Schilo & Ferrer, 2016; Gadassi et al., 2016; Hamaker, Grasman, & Kamphuis, 2016; Lee et 

al., 2017; Zimmermann et al., in press), and (b) the sampling rate is sometimes conducted at 

relatively equal spacing, an advantageous feature for time-series data in the current modeling 

context1. Nevertheless, application to daily diary data presents novel analytic concerns 

which may be absent in neuroimaging data.
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Motivation for Simulation Study

One important difference in the qualities of the data results from the psychophysiological 

nature of fMRI data. In fMRI data, the extent to which a variable predicts itself at 

subsequent time points, also known as the autoregressive (AR) effect (Chatfield, 2003), is 

sizable. The magnitude of these autoregressive effects stems from the slowness of the 

biological process under study relative to the temporal resolution of data collection, such 

that values at a given time are highly predictive of values at the same brain region at the next 

time point. In contrast to fMRI data, where an AR effect concerns an ROI predicting itself at 

the next time point (often two seconds later), there may be little reason to expect a construct 

examined in a daily diary study, such as affect, to strongly predict itself at the next time 

point since changes may occur on the order of hours (or minutes) rather than days. Even 

when data are obtained multiple times within a day, the AR effects have been shown to vary 

across individuals and constructs (see e.g., Fernandez & Fisher, 2017; Fisher & Boswell, 

2016), suggesting that the assumption of strong AR effects may not hold in these types of 

data.

When the rate of measurement is slow relative to the process being studied, time-lagged 

effects surface as contemporaneous (Granger, 1969). As describe in detail below, strong 

contemporaneous relations can prevent the estimation of AR effects in the GIMME process, 

thus changing the search space from what is seen in brain imaging situations where the AR 

effects are often (but not always) high. In these cases, multiple solutions may surface from 

within a GIMME framework that describe the data approximately equally well (Beltz & 

Molenaar, 2016). Accordingly, one issue the present paper seeks to investigate is whether the 

inclusion of AR relations in the base model circumvents this problem and provides reliable 

results even in the presence of relatively low AR estimates. By estimating AR effects (even 

if small), one can directly examine whether a given variable statistically predicts another 

variable – at a lag or contemporaneously – more so than the reverse (Granger, 1969). It has 

previously been shown in simulations emulating fMRI data that failure to include both 

contemporaneous and lagged effects leads to spurious results when both types of effects 

exist in the true generative model (Gates et al., 2010). However, it remains unknown whether 

the inclusion of small, potentially nonsignificant, autoregressive effects perhaps seen in daily 

diary data will allow for the reliable recovery of directed effects among variables.

A second difference is that daily diary data may possess fewer group-level relationships 

compared to fMRI data. This notion again stems directly from fMRI being a biological 

process and as such, having known properties that exist for all individuals. For example, a 

strong connection is typically found between left and right hemispheres of the same region; 

further, this connection is often found across all individuals (e.g., Zelle, Gates, Fiez, Sayette, 

& Wilson, 2016). Thus, for data containing multiple bilateral ROIs, there will be a larger 

number of group-level relationships. While daily diary data may also contain relationships 

common to all individuals (e.g., stress and negative affect), there may be fewer in general 

since there are no biological constraints underlying group-level relations.

1Note that equally spaced time intervals is currently a requirement of the GIMME approach. For more a more detailed discussion 
regarding the requirements for GIMME’s use, see Beltz & Gates, 2017.
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A third difference is that daily diary studies likely will have far fewer observations per 

person than fMRI studies. As with any time series analysis, the power to detect effects 

increases with greater numbers of observations across the time. For instance, it is rare for an 

fMRI study to have fewer than 150 observations, but daily dairy studies rarely collect that 

number of observations.

A related and final difference is the number of variables (or ROIs). Given the decrease in 

sample size, researchers may opt for fewer variables to model in order to ensure model 

convergence and to facilitate interpretation. For these reasons, the present paper investigates 

the performance of S-GIMME on simulated behavioral data, which are expected to differ 

from fMRI data in the following ways: (1) different parameters governing temporal effects; 

(2) shorter time series (3) fewer group-level relationships and (4) a smaller number of 

variables.

Empirical Study

Following examination of simulated data, we provide evidence of heterogeneity in the 

temporal processes of symptoms across days in a sample of individuals diagnosed with 

borderline personality disorder (BPD). That is, we investigate if patterns of relations among 

symptoms vary across individuals within a sample of individuals diagnosed with BPD. BPD, 

in particular, is a psychiatric diagnosis plagued by heterogeneity in clinical presentation 

(Hallquist & Pilkonis, 2012; Wright, Hallquist, Morse, et al., 2013). As defined by the 

Diagnostic and Statistical Manual of Mental Disorders – Fifth Edition (DSM-5; American 

Psychiatric Association, 2013), BPD is a syndrome composed of interpersonal (e.g., 

unstable and intense relationships), affective (e.g., marked reactivity of mood; difficulty 

controlling anger), behavioral (e.g., impulsivity; recurrent suicidal behavior), and cognitive 

(e.g., identity disturbance; transient psychosis) features. Thus, there is diversity in the 

component features of the syndrome. Further, like many DSM-5 diagnoses, BPD is a 

polythetic category, such that only five out of the nine criteria are necessary for diagnosis. 

As such, there are 256 possible combinations of features that would satisfy the threshold for 

BPD diagnosis. This fact, along with seminal clinical theory (Kernberg, 1975), has 

motivated the search for meaningful subgroupings to parse this observed heterogeneity. In 

turn, parsing this heterogeneity may inform more personalized treatment.

Previous efforts have enlisted cluster analysis or finite mixture modeling of various 

concurrently assessed diagnostic, personality, and behavioral features to empirically 

establish more homogeneous groups (Bradley, Conklin, & Westen, 2005; Critchfield, 

Clarkin, Levy, & Kernberg, 2008; Lenzenweger, Clarkin, Yeomans, Kernberg, & Levy, 

2008; Hallquist & Pilkonis, 2012; Wright, Hallquist, Morse, et al., 2013). These studies have 

largely used other dispositional scales to derive more homogenous subgroups, but not direct 

assessments of processes as they might unfold over time and across contexts. However, in 

both the DSM-5 and the broader clinical literature, the cardinal impairments of BPD are 

dynamic and contextualized. For instance, the symptoms of BPD involve not only merely 

elevated negative affect, but also “reactivity of mood,” as well as frantic efforts to avoid 

abandonment, unstable relationships, transient psychosis, difficulty controlling anger, and 

impulsivity. These features are generally understood to have important dynamic 
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relationships to each other (e.g., self-harm may serve to regulate negative emotions; 

Miskewicz et al., 2015); further, the individual variability present in these relations likely 

gives rise to the observed heterogeneity in the presentation of symptoms. To date, there has 

been scant investigation into the potential between-person heterogeneity in within-person 

couplings of BPD features over time.

Methods

Definition of unified structural equation modeling (uSEM) implemented in S-GIMME

The current paper uses the S-GIMME algorithm (Gates & Molenaar, 2012; Gates et al., 

2017), which reliably recovers data-generating group-, subgroup-, and individual-level 

relations at the level of the person. This algorithm is rooted in the uSEM framework (Kim, 

Zhu, Chang, Bentler, & Ernst, 2007), a variant of structural vector autoregressive modeling 

that simultaneously estimates both contemporaneous and lagged relations. The uSEM 

capitalizes on the known ability to conduct time-series analysis from within an SEM 

framework, which allows one to draw on the many strengths of SEM to arrive at individual-

level models with directed (not correlational) relationships among variables of interest. The 

inclusion of the lagged effects, including the autoregressive (AR) effects, allows 

specification of the direction of a relationship from within a Granger causality framework. 

That is, a variable X is said to “Granger-cause” variable Y if it explains variance in variable 

Y above and beyond the variance explained by the autoregressive term of Y (Granger, 1969). 

This is typically evaluated by looking at the error variance; as a proxy, we examine whether 

the candidate variable (X in our example) would significantly improve model fit if it were 

added as a predictor to variable Y after considering the AR effect for variable Y. Note that 

this definition centers on the improvement of prediction in variable Y when using 

information from variable X; it does not represent causality in an absolute sense. 

Importantly, making stronger claims of causality rests in part on the assumption that all 

relevant variables are in the model, a known limitation of drawing claims of causality in 

SEM (see omitted variable problem: Bollen, 1989). Results must be interpreted as causal 

with the caveat that the only putative third-variable influences were those contained in the 

set used and not the universe of variables.

Including the AR relations during the path search procedure in S-GIMME automatically 

tests for Granger causality in each step2. Each additional path added provides a significant 

improvement upon the reduced model (which in this case includes the AR effect for the 

target variable) as well as any other predictors that have been added. The interpretation of 

lagged relations that are added is quite straightforward: deviation from the mean at the prior 

time point relates to deviation from the mean at the next time point. Directed 

contemporaneous relations can emerge because (1) the time delay for cause and effect is 

small (or unmeasurable) relative to the time interval of data collection or (2) both variables 

are caused by a different unmeasured variable at a prior time point (Granger, 1988). The 

latter reason provides further motivation for researchers to carefully consider variables to 

include in the model to avoid the absence of necessary third-variable influences. In many 

2In brain imaging data, AR relations are typically the first relations opened in the model search, as they are strong. Therefore, without 
placing them in the null model at the start of estimation, they are usually selected shortly thereafter.
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cases it is reasonable to expect contemporaneous relations due to the temporal resolution of 

data collection being too large to capture the effect as lagged. In functional MRI for 

instance, the biological process is slow (on the order of seconds) relative to the underlying 

neuronal activity it aims to capture (which occurs on the order of milliseconds). Thus it is 

expected that effects are larger for contemporaneous relations. The same may occur when 

measurements are taken daily but the process changes hourly, or any other such situation 

where the measurement rate is slower than the rate under which the process evolves.

The general uSEM may be formally defined as:

ηt = Aηt +  ϕηt − 1 +  ζt

where A is a p × p matrix containing the contemporaneous relations among p variables (with 

a zero diagonal to prevent contemporaneous self-prediction), ϕ is a p × p matrix containing 

the lagged relations among p variables with AR effects on the diagonal, η is the observed 

time series, and ζ contains residuals with a mean of zero and diagonal covariance matrix, 

assumed to be white noise processes and therefore contain no temporal dependencies.

These relations can be further decomposed for each individual into group-, subgroup-, and 

individual-level relations. That is, certain relations exist for the entire sample; certain 

relations exist within a given subgroup k; and certain relations exist for a given individual i. 
This decomposition can be expressed as:

ηi, t = Ai + Ai, k
s + Ai

g ηi, t + ϕi +  ϕi, k
s + ϕi

g ηi, t − 1  + ζi, t

Here, A, ϕ, and ζ are defined as before, where the superscripts s and g indicate that these 

paths exist at the subgroup- and group-level, respectively. Importantly, should no subgroup 

division exist (i.e., all individuals are in one “subgroup”), these relations will be contained in 

the group-level matrix. Parameter matrices A and ϕ that lack a superscript denote matrices 

containing only the individual-level relations. Finally, the subscript i on all matrices 

indicates that each relation is estimated at the individual-level, even in the cases where there 

are group- and subgroup-level patterns of relations.

Assumptions of S-GIMME

S-GIMME requires that the assumption of stationarity be met but does not require the 

assumption of ergodicity be met. We first define stationarity since it is part of an ergodicity 

assumption. Stationary (formally, “weakly stationary”) multivariate time series data has 

statistical properties, such as mean, variance, and covariance, that are constant over time and 

only depend on the lag. Data that has a trend violates this assumptions since the mean level 

changes across time. This issue can be accommodated prior to analysis using preprocessing 

steps described in Beltz & Gates (2017). In a similar vein, data where the autocovariance 

value (at a given lag) changes across time violates the stationarity assumption, as do data 

where the covariance among variables changes across time. For these instances the 

researcher may want to consider approaches that allow for these estimates to vary across 
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time (e.g., Molenaar, Beltz, Gates, & Wilson, 2016). To be ergodic, a process (1) must be 

stationary and (2) each unit (here, person) must have the same dynamic processes 

(Molenaar, 2008). While S-GIMME requires that each unit of data (however defined) be 

stationary, it does not require that all individuals have the same process: individuals can vary 

in their processes. The rate of recovery of data-generating relations is improved when some 

relations are consistently found across individuals since this helps to detect signal from 

noise, but the entire process does not have to be the same either in terms of the pattern of 

relations or the estimates of those relations. Two other noteworthy assumptions related to 

any SEM analysis also exist for the S-GIMME framework: that the data are normally 

distributed and have equal intervals between them.

Model Selection Procedure

Group-level search.—The ultimate goal of GIMME (and S-GIMME) is to allow for 

individual-level estimates and relations in order to attend to heterogeneity in dynamic 

processes. However, GIMME begins with a group-level search for two related reasons. First, 

when using model selection procedures for SEM, the recovery of individual-level 

relationships is greatly improved when the starting model is closer to the data-generating 

model (MacCallum, 1986). This follows from suggestions that model search procedures 

work best when starting from a point in the model formation that is as close as possible to 

the final model (MacCallum, Roznowski, & Necowitz, 1992). Second, there likely is noise 

in any process being studied, and looking for similarities in relations across individuals aids 

in detecting signal from noise. Taken together, by looking for consistencies across 

individuals GIMME detects signal from noise to arrive at group-level paths which then 

greatly aid in accurately recovering individual-level relations. Full details of the model 

selection procedure can be found in Gates et al. (2017) and Gates & Molenaar (2012). Here, 

we briefly describe the relevant steps. The model selection procedure is implemented in the 

freely distributed R package, gimme (Lane, Gates, & Molenaar, 2014; Lane & Gates, 2017), 

which allows for both traditional GIMME and S-GIMME to be implemented. For each 

individual, the model search procedure begins with a null model; that is, all values in the A 
matrix and ϕ matrix are zero. Optionally, a researcher may choose to have this null model 

estimate the diagonal of the ϕ matrix (i.e., the AR effects) rather than initially constrain them 

to be zero. While it is standard (and the default in gimme) to have the AR elements freely 

estimated in the null model, it is ultimately the decision of the researcher. For this reason, 

investigation into best practices is warranted here.

Upon estimation of the null model for each individual, S-GIMME examines the modification 

index (MI) associated with each fixed parameter. Modification indices are Lagrange 

Multiplier equivalents tests that indicate the anticipated improvement in model fit should 

that parameter be freely estimated (Jöreskog & Sörbom, 1986). There are unique MI 

estimates for all of the elements in the ϕ matrix (when AR effects are not included initially) 

and for the estimates in the A matrix (excluding the diagonal). For each of these estimates, 

GIMME counts the number of individuals for whom it is significant after a Bonferroni 

correction of α= .05/N. From these counts, the MI that is significant for the largest 

proportion of individuals is selected for inclusion in each individual’s model (i.e., considered 

a “group-level” relation). The selection of group-level paths terminates when no path is 
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significant for a prespecified proportion of individuals. Informed by prior research and 

simulations, the default cutoff is 75% (Gates & Molenaar, 2012; Smith et al., 2011). 

Although 75% is a strict cutoff for what constitutes a majority, this cutoff aids in the 

subsequent search for paths which may exist at a subgroup level. The researcher can adjust 

this value if a more or less strict criterion is desired. A group-level pruning procedure is 

conducted following the group-level search, where paths are removed sequentially which are 

no longer significant for 75% of individuals at a Bonferroni-corrected α = .05/N.

Subgroup-level search.—Following the identification of the group-level model, S-

GIMME searches for the existence of subgroups. These subgroups are defined based on 

shared characteristics of individuals’ temporal processes. Specifically, an adjacency matrix is 

created which counts the number of similar effects shared by each dyad of two individuals, i 
and j. Here, similarity is defined using the correspondence between individuals’ already-

estimated values contained in the A and ϕ matrices (collectively referred to here as β), as 

well as the correspondence of the expected parameter change (EPC) associated with each 

potential path that could be added to the model. The EPC for a given parameter is preferred 

to the MI since the EPC also provides an indication of the direction of the effect (should it 

be freely estimated). If both the significance and sign of individuals i and j match for a given 

β or EPC value, the similarity count increases by 1. In this way, the adjacency matrix which 

forms the basis for subgrouping is constructed. This matrix is adjusted by the lowest 

similarity count to increase the sparseness of the matrix. Generation of an appropriate 

similarity matrix is highly critical for accurate clustering of time series data (Liao, 2005), 

and prior work indicated that the count matrix constructed here is optimal when compared to 

other feature-selection techniques, such as label propagation, Infomap, and fast modularity 

(Gates et al., 2017).

The community detection procedure known as Walktrap is then applied to this adjacency 

matrix (Pons & Latapy, 2006). Briefly, as a random walk approach, Walktrap performs short 

random walks, generally with three to five steps, and merges communities in a bottom-up 

fashion using traditional Ward’s clustering (Ward, 1963). Then, a quality function called 

modularity (Newman, 2004) is used to identify the optimal cut point in the dendrogram. In 

this way, the researcher does not need to specify a priori the number of subgroups or 

subjectively decide given the options for cluster solutions. Full details of this procedure can 

be found in Pons and Latapy (2006). A benefit of Walktrap is that it is one of the few 

approaches that reliably recovers cluster (i.e., subgroup or community) assignments on data 

that are in the form of a dense correlation matrix or a count matrix as used in S-GIMME 

(Gates, Henry, Steinley, & Fair, 2016). Once subgroup membership is established, a search 

is conducted within each subgroup using the same procedure as the group-level search. 

Here, the starting model is now the previously-established group-level model. This search 

terminates when no path is significant for the majority of individuals (here, 51%) in that 

subgroup. This cutoff can also be adjusted by the researcher. As before, a subgroup-level 

pruning procedure is conducted, where paths are removed sequentially which are no longer 

significant for 51% of individuals at a Bonferroni-corrected α = .05/N, where N represents 

the number of individuals in the sample.
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Individual-level search.—By this point in the search procedure, all individuals enter the 

individual-level search with a model composed of (potentially) group- and (potentially) 

subgroup-level paths. The individual-level search adds paths which are significant for an 

individual at α = .01 until an “excellent” model is obtained. Here, an excellent fit is obtained 

when two of four fit indices are excellent (RMSEA < .05, SRMR < .05, CFI > .95, NNFI > .

95; Brown, 2006). An individual’s final model is composed of (potentially) group-, 

(potentially) subgroup-, and individual-level paths, all of which are estimated at the 

individual level. Importantly, if a sample is so heterogeneous that no paths exist at the group- 

or subgroup-level, then the final model for an individual will be entirely composed of paths 

unique to that individual.

Estimation.—In order to represent the lagged and contemporaneous relationships, a block 

Toeplitz structure is used, enabling estimates which can be considered quasi-maximum 

likelihood estimates. The block Toeplitz covariance matrix is structured to represent the 

covariance among lag-0 variables, the covariance among lag-1 variables, and the covariance 

among lag-0 and lag-1 variables. Importantly, assuming normality, these parameters 

approximate true ML estimates (Hamaker, Dolan, & Molenaar, 2002). Finally, the default 

estimation method is full information maximum likelihood (Enders & Bandalos, 2001), 

which allows for the presence of missing data under the assumption that they are missing at 

random (MAR).

Stimulation Study: Monte Carlo Simulation and Evaluation Criteria

Data generation.—We designed a Monte Carlo simulation consistent with empirical daily 

diary data. The intentions of this simulation were to evaluate the reliability of the recovery of 

paths with and without the autoregressive effects across common conditions. Here, in the 

data-generating process, we varied: (1) the number of time points, T, to be 30, 60, 90, and 

120; (2) the number of variables, p, to be 5 and 10; (3) the number of individuals, N, to be 

25, 75, and 150. When applying S-GIMME to these data, two conditions were tested – (4) 

AR fixed and AR freed. This yielded a fully factorial design, with 4 × 2 × 3 × 2 conditions. 

These conditions were evaluated across R = 100 replications. The data were generated using 

an algebraic manipulation of the formula depicted in Equation 2:

ηi, t, k = I p − Ai + Ai, k
s + Ai

g −1
ϕi +  ϕi, k

s + ϕi
g ηi, t − 1 + I p − Ai + Ai, k

s + Ai
g −1

ζi, t

The values for the autoregressive paths were set to 0.2 (SD = .1); this value reflects that 

autoregressive processes may not be as strong in daily diary data as in fMRI data, with prior 

simulation work placing them at 0.6 (Gates & Molenaar, 2012). Therefore, for ambulatory 

data that has higher AR estimates (perhaps due to shorter time intervals as seen in Fisher & 

Boswell, 2016), prior work supports that accurate model recovery should be high. The path 

weights for the off-diagonal elements in ϕ were set to −0.4 (SD = 0.1), and the path weights 

for the off-diagonal elements in A were set to 0.4 (SD = 0.1). The errors were generated to 

be Gaussian white noise errors; that is, normally distributed for all variables and all 

individuals. All individual time series were checked for stability over time, such that the 

mean and variance of the time series remained relatively constant.
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To prevent the results from being driven by a specific network structure (e.g., one that is 

particularly easy or difficult to recover), we generated each set of paths for each replication 

randomly, holding constant the overall density of the network structure at approximately 

20%. Of the paths generated for each individual, 25% percent were generated to exist at the 

group level (not including AR effects), 50% were generated to exist at the subgroup level, 

and 25% were generated to exist at the individual level. Group- and subgroup-level paths 

were varied across replications but not within replications; individual-level paths were varied 

randomly both across and within replication. For each simulated time series, a series of T 

+ 50 observations were generated, where the first 50 observations were discarded to remove 

deviations due to initialization of the time series.

Hubert-Arabie Adjusted Rand Index.—In order to evaluate the accuracy of subgroup 

recovery, we computed the Hubert-Arabie Adjusted Rand Index (ARIHA; Hubert & Arabie, 

1985). It is considered an adjusted index because it corrects for the grouping of elements by 

chance. This index compares the vector of recovered subgroup assignment with the vector of 

true subgroup assignment, where values closer to 1 indicate better recovery of the true 

subgroup structure. The ARIHA can be formally expressed as:

ARIHA = 2
N (a + d) − [(a + b)(a + c) + (c + d)(b + d)]

2
N 2 − [(a + b)(a + c) + (c + d)(b + d)]

where N indicates the number of individuals, α indicates the number of pairs assigned to the 

same community who truly belonged in the same community, b indicates the number of 

pairs assigned to the different communities but truly belonged to the same community, c 
indicates the number of pairs assigned to the same community but truly belonged in different 

communities, and d indicates the number of pairs assigned to different communities which 

truly belonged in different communities. Perfect recovery results in an ARIHA of 1, where 

excellent recovery is >.90, good recovery is >.8, moderate recovery is >.65, and poor 

recovery is <.65 (Steinley, 2004).

Recovery Indices.—To evaluate the accuracy of the path recovery, we compute four 

indices popularized by Ramsey, Hanson, & Glymour (2011), which evaluate both the 

presence and the direction of the paths in the true and recovered individual-level models: 

path recall, path precision, direction recall, and direction precision. Here, recall pertains to 

the proportion of true paths (or directions) in the recovered model relative to the paths (or 

directions) in the data-generating model. Thus, recall evaluates S-GIMME’s power to find 

relations that existed in the data-generating model. Direction recall takes into account both 

the detection of the presence of a path as well as the directionality, and as such is always 

lower than path recall. Neither the path recall nor the direction recall takes into account 

recovered paths which did not exist in the data-generating model (false positives). Therefore, 

we also evaluate precision, which is a proportion of the true paths (or directions) in the 

recovered model relative to the total paths (or directions) in the recovered model. Using 

these pieces of information, we are able to evaluate the algorithm’s ability to accurately 
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recover an individual’s data-generating model (i.e., sensitivity), while balancing both false 

positives and false negatives (specificity).

Meta-models.—We estimated a series of four-factor general linear models to examine 

mean differences in the path recovery using the aforementioned measures of recall and 

precision. Each GLM was estimated using all main effects (i.e., AR open or closed, number 

of variables, sample size, and length of observations) and two-, three-, and four-way 

interactions. Any effects with a partial η2 exceeding .01 were examined further. Full results 

for each meta-model can be found in the appendix.

Empirical Study

As a final step, we applied S-GIMME to an available clinical dataset to demonstrate its 

performance in real-world empirical daily diary data. Our goal was to examine potential 

group, subgroup, and individual-specific paths among cardinal BPD manifestations at the 

daily level. BPD was selected as a target for these investigations because it is a highly 

heterogeneous diagnosis by definition, and this heterogeneity has been studied using 

traditional dispositional assessments in cross-section (e.g., Hallquist & Pilkonis, 2012; 

Wright, Hallquist, Morse, et al., 2013). For the current example, we drew the data from a 

study of the processes involved in the daily manifestation of personality disorder (see e.g., 

Wright, Beltz, Gates, Molenaar, & Simms, 2015; Wright, Hopwood, & Simms, 2015; 

Wright & Simms, 2016). For a detailed description of the method and procedure involved in 

data collection, see Wright & Simms (2016). In brief, a large group of participants (N = 628) 

were recruited from outpatient psychiatric treatment settings and received diagnostic clinical 

interviews. Subsequently, a subset of those participants (n = 116) who met the criterion for 

any personality disorder were enrolled in the daily diary study, provided they also had daily 

access to the Internet. Written informed consent was obtained prior to participation. The 

relevant institutional review board approved all study procedures. Participants attended an 

in-person training and assessment session during which study procedures were explained, 

and self-report measures were completed via computer. Starting the evening of the in-person 

assessment, participants began completing daily diaries via secure website every evening for 

100 consecutive days. Surveys were to be completed at (roughly) the same time each day, 

between 8pm and 12am. However, participants were allowed to deviate from this schedule if 

necessary (e.g., working nightshift) provided (a) they completed diaries at the end of their 

day, and (b) the diaries were completed at roughly the same time each day. Participants 

received daily email reminders and were also provided several paper diaries they could use 

in the event of technological difficulties. Compensation was provided for daily participation 

at the rate of $100 for ≥ 80% participation, and prorated at $1/day for < 80%. Participation 

also was incentivized though recurring raffles ($10 drawing every 5 days for those providing 

at least 4 diaries) and drawings for additional money and tablet computers at the end of the 

study, with the odds of winning proportionally tied to participation. Of the total number of 

participants in the daily diary study, we selected 36 who met the threshold for a BPD 

diagnosis and had ≥ 60 days worth of daily diary responses.

Daily Personality Disorder Manifestations.—Daily expression of PD was measured 

using 30 items created for this project. Details related to full item set and scale development 
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can be found in Wright and Simms (2016) supplementary material. Daily items included the 

stem, “Over the past 24 hours…” and were rated on an 8-point response scale for each item 

anchored with Not at All (0) and Very Much So (7). Of the 30 items, seven were selected for 

being (a) core features of the BPD construct, and (b) exhibiting enough variability across the 

majority of participants to be suitable for S-GIMME analyses. These items included 

measures of mood lability (“My mood was up and down”), anxiousness (“I felt anxious”), 

depression (“I felt depressed”), anger (“I lost my temper”), impulsivity (“I did something on 
impulse”), emptiness (“My relationships felt empty”), and urgency (“I acted on my 
emotions”). One participant was removed due to no variability on the urgency item. Thus, 

the final analyses used a total of n = 35 participants.

MANOVA.—We conducted a one-way multivariate analysis of variance (MANOVA) to 

evaluate if the average level of symptoms across the days used in the present study differed 

across the subgroups obtained from S-GIMME. We wished to examine if the subgroups 

based on temporal processes differed in terms of symptom severity. As such, we conducted a 

MANOVA to examine potential between-subgroup differences in symptom severity using 

the same variables used in the analysis of temporal processes (described below): 

participant’s mood lability, impulsivity, anger, anxiousness, depression, emptiness, and 

urgency.

Results

Convergence

Across all simulation conditions, there was noticeable variability in the percentage of 

converged cases. The lowest convergence was seen in the 5 variable condition with 30 time 

points and AR effects closed at the beginning of estimation, with approximately 48% of 

individual-level models terminating normally. The models that did not terminate normally 

either (1) halted at a model one path prior to nonconvergence or (2) failed to converge at all. 

However, if AR effects were open at the beginning of estimation, more than 99% of cases 

converged normally, meaning that the final model experienced no convergence issues and at 

least two of four fit indices met the criteria to be considered “excellent.”

Meta-Model Results

As seen previously (Gates & Molenaar, 2012), the performance of S-GIMME did not 

fluctuate across varying levels of sample size in the present study. For this reason, Figure 1 

collapses across sample size to display the path recovery of S-GIMME for the conditions 

when the AR effects are fixed (closed) and freed (open) across varying lengths of time and 

number of variables. As can clearly be seen, S-GIMME conducted with AR effects freely 

estimated greatly improves the accurate and reliable recovery of paths. Further, a larger 

number of time points greatly improves the recovery of data-generating relationships. 

Finally, though we find promising results in both the 5 and 10 variable conditions, 

performance is better in the 5 variable condition. Specifics regarding precision and direction 

as well as performance across the specific conditions are discussed below.

Lane et al. Page 13

Psychol Methods. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Path and direction recall.—We statistically evaluated the recovery of data-generating 

paths across four simulation factors corresponding to conditions frequently encountered in 

daily diary data: the estimation of autoregressive effects, sample size, number of time points, 

and number of variables. The outcome measures relating to path recovery were evaluated 

using an ANOVA which included main effects and interactive effects among the simulation 

factors. For the recall of true paths, main effects were present for opening the AR effects in 

estimation  ηp
2 =   . 34 , the number of time points  ηp

2 =   . 19 , and the number of variables

  ηp
2 =   . 02 . Thus, the recovery of true paths was improved in the presence of freely 

estimated autoregressive effects, a larger number of time points, and a smaller number of 

variables.

A three-way interaction between AR, number of time points, and number of variables 

clarified these main effects; this interaction explained 6% of the variance ηp
2 =   . 06  in true 

path recovery. The same interaction effect was present for the recall of true directions

  ηp
2 =   . 04 . Increased rates of path and direction recovery was observed in cells where the 

AR paths were open, the number of time points was greater (see Figure 2 for path recall), 

and the number of variables was lower. The total number of individuals, or sample size, did 

not meaningfully impact the path recovery. There was a large amount of variability present 

depending on simulation condition. For example, collapsing over sample size, the average 

path recovery in the condition with T = 120, AR effects open, and 5 variables was 93.3% 

compared to 45.9% in the condition with T = 30, AR effects closed, and 10 variables.

Path and direction precision.—Whereas our two measures of recall provide 

information regarding our ability to recover paths that existed in the true model, our two 

measures of precision provide information regarding the quality of the paths we recovered in 

terms of false positives. That is, precision addresses the number of true paths in the 

recovered model relative to the number of total paths in the recovered model. Here, the 

number of individuals again was not influential. The interaction of AR estimation with the 

number of variables was the most important determination of precision, where precision was 

highest when AR effects were freed for estimation and the number of variables was smaller. 

There was also an interaction between the number of time points and the number of 

variables ηp
2 =   . 02 , such that the greatest precision of paths is obtained when the number 

of variables is low and the number of time points is high. If the number of variables is large 

relative to the number of time points (e.g., in the condition with 10 variables and 30 time 

points), then the precision of paths is low. Figure 1 summarizes the findings across all four 

measures of path recovery. Table 1 contains comprehensive results for path recall by 

simulation condition.

Performance by level.—All results discussed thus far focus on recall and precision of all 

paths, regardless of the data-generating level (e.g., group-, subgroup-, individual-level). 

Figure 3 displays the path recovery of group, subgroup, and individual-level paths across the 

number of time points with estimated AR paths. We observe that the recovery of group-level 

relationships is most robust within S-GIMME. The recovery of subgroup-level relationships 
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is next, followed by the recovery of individual-level relationships. Importantly, the recovery 

of subgroup-level paths will be in part determined by the quality of the data-driven 

subgrouping. If a path is not added in the subgroup-level search, it may be recovered at the 

individual level. The high recovery of subgroup-level paths points to the benefits of 

searching for consistencies across individuals in order to arrive at reliable models. The 

recovery of individual-level paths was lowest averaging around 60% recall, suggesting that 

S-GIMME may achieve a model characterized by “excellent” fit before all individual-level 

paths have been added. The trade-off of the use of a fit index as a stopping criterion is that 

while not all paths may be recovered, favoring parsimony prevents false positives.

Relative bias.—Finally, we assessed the relative bias of the recovered path estimates by 

condition. There existed variability across conditions, though no individual effect exceeded a 

partial η2 value of .01. A graphic depiction (see Figure 4) shows the amount of bias present 

across the number of time points, split by AR condition. For the conditions in which the AR 

effects are freed at the start of estimation, the relative bias stays within +/− 10% across the 

number of time points, where bias is lowest when T = 120. These findings are consistent 

with prior work evaluating bias when using the block-Toeplitz method to implement SEM-

based time series models.

Subgroup recovery.—Finally, we examined the ARIHA as a measure of subgroup 

recovery. Subgroup results generally follow those seen for recall and precision because the 

algorithm uses path information to cluster individuals. Therefore, the most accurate recovery 

of subgroups was present in conditions with AR effects freed, and 120 time points. For the 

ten variable condition, the Adjusted Rand index exceeded .8 provided that T ≥ 90 and AR 

effects were freely estimated. The subgroup recovery of the five variable condition was 

poorer, though it too increased with an increasing number of time points (range = .09-.47 

between T = 30 and T = 120, respectively). A graphical examination of the results revealed 

that freeing the estimation of the AR effects was the most important determination of 

subgroup recovery; however, no simulation factor exceeded the cutoff for partial η2. Table 2 

shows comprehensive results for subgroup recovery by simulation condition.

Empirical Study

S-GIMME discovered three subgroups from the 35 individuals. These subgroups are labeled 

“A”, “B”, and “C”, in order of size, for descriptive purposes. Subgroup A comprised the 

largest proportion of the sample with n = 24; subgroup B was the second largest (n = 10). 

Subgroup C contained only one individual; this singleton group demonstrates the strength of 

the Walktrap approach for clustering individuals. Rather than combining individuals who do 

not share temporal processes into a “super” subgroup, it allows the existence of subgroups 

with very low numbers. This individual can thus be considered an outlier with respect to the 

multivariate pattern of temporal relations. Thus, it is not included in subsequent analysis.

Figure 5 depicts the patterns of effects found for the group, subgroups A and B, and 

individuals. Only one group-level path was found – after controlling for other individual-

level lagged and contemporaneous effects, feelings of depression within the last 24 hours 

can be statistically predicted by reports of mood lability at that same time period. The small 
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number of group-level paths suggests a very high degree of heterogeneity in this sample, 

supporting the decision to conduct subgroup- and individual-level searches for temporal 

patterns rather than treating individuals as the same (as is frequently done within diagnostic 

categories). In contrast to the relatively sparse group-level structure, each subgroup was 

typified by 5–6 subgroup-level paths. The network of paths that defined Subgroup A 

included contemporaneous prediction of Anxiety by Depression and Mood Lability, 

Depression also predicted Emptiness, Anxiety predicted Anger, Anger predicted Urgency, 

and Urgency predicted Impulsivity. Interestingly, Subgroup B included a path that linked 

two of the same daily BPD manifestations as in Subgroup A, but in the opposite direction: 

Anxiety predicted Mood Lability, Anxiety also predicted Impulsivity, Mood Lability 

predicted Urgency and Anger, and Urgency predicted Emptiness. Each of these groups is 

suggestive of potentially important clinical differences that are given greater treatment in the 

Discussion section.

Although the sample is small and any group comparison is likely to be low powered to 

detect anything but sizeable effects, we conducted a one-way MANOVA with the seven 

indicators of daily BPD symptomology as independent variables and subgroup assignment 

as dependent variables, similar to a discriminant analysis. Results yielded a nonsignificant 

main effect for BPD symptomology, Pillai’s Trace = 0.35, F(7, 26) = 1.98, p > .05, 

suggesting no differences in the average daily symptom endorsement based on subgroup 

allocation. Thus, these subgroups are not typified by symptom level but rather by similarities 

in their symptom dynamics. This demonstration illustrates that the relations of symptoms 

across time reveals information above and beyond simply averaging the data.

Discussion

The analytic method evaluated here enables researchers to reliably parse individuals into 

clusters based on similarities in their emotional, behavioral, and cognitive processes. From 

the S-GIMME results, researchers can make inferences regarding dynamic processes that are 

generalizable to the population from which individuals are drawn. Additionally, the results 

reveal patterns of effects that exist for a subset of individuals and finally, individual-level 

effects. Originally developed for use on brain imaging data, we found that with minor 

adaptation (specifically, forcing autoregressive effects to be freed at the start of model 

building), S-GIMME can be used for data with the same qualities as those seen in daily 

diary studies. Specifically, these results provide evidence that including the AR effects 

greatly improves recovery of the contemporaneous and lagged temporal effects among 

variables when conducting S-GIMME for model selection. This information may be 

particularly useful for ambulatory assessment, such as daily self-report, that may be 

collected at a low temporal resolution relative to the process of interest. In this case, as seen 

here in the empirical example, the majority of effects may surface contemporaneously, 

particularly if the relations among variables occur faster than the data collection (as 

described in Granger, 1988). Further, we find our results to be robust to the formation of the 

data-generating network structure, as a strength of the current study is our use of randomly 

generated network structures. The results from the simulation study suggest that S-GIMME 

is a viable option, assuming certain data features, for studying heterogeneity in multivariate 

processes assessed using daily diary studies. Namely, data characterized by moderate to 
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strong autoregressive effects, a longer time series (e.g., T > 60), a relatively small number of 

variables (e.g., 5–10), and equally spaced time intervals are best suited for use with S-

GIMME.

The present project found lower rates of recovery than what has been seen previously in data 

generated to emulate brain imaging data. A few factors decrease the utility of S-GIMME in 

the context of daily diary studies. First, many effects may be missed for studies that only 

have 30 data points (e.g., daily measures for one month). Here, we saw that having a higher 

number of variables (10) when there were under 60 time points decreased accurate model 

recovery. However, there were also relatively few false positives, indicating that the effects 

that were recovered, although potentially more sparse, were accurate and reliable. Second, 

the AR effect sizes were much smaller than had been previously tested. The present paper 

provides evidence that S-GIMME has satisfactory rates of recovery of the data-generating 

relations even when AR effects are small. Still, the rate of recovery was worse than seen in 

data generated to have higher AR effect sizes. S-GIMME favors parsimony by using fit 

indices as a stopping criteria rather than adding all paths that might be significant. While this 

keeps false positives at a minimum, we see that it might have an unintended effect of 

stopping too early in the search and not adding paths that were in the data-generating model. 

More work needs to be done to identify the best fit indices for this context.

The model search procedure that began with AR effects estimated greatly improved recovery 

of the presence and direction of effects from within an S-GIMME framework. This finding 

aligns with statistical theory and prior research that demonstrate the utility of examining 

how variables relate after controlling for the influence each variable has on itself at a later 

time (Gates et al., 2010; Granger, 1969). However, other noteworthy options exist for 

accurately detecting the direction of prediction between variables. One option, GIMME for 

Multiple Solutions (GIMME-MS; Beltz & Molenaar, 2016) generates a set of possible 

connectivity maps from which the optimal solution can be selected using decision criteria 

(e.g., based on information criteria or residuals). Other Bayesian network approaches 

perform well in terms of accurate model recovery in the absence of autoregressive effects. 

One such approach, independent multisample greedy equivalence search (iMaGES; Ramsey 

et al., 2011) uses information across all individuals in a manner that does not produce false 

paths. A second approach in the Bayesian network class of algorithms originally designed 

for cross-sectional studies, Linear Non-Gaussian Acyclical Model (LiNGAM; Shimizu et 

al., 2006; Hyvärinen, Zhang, Shimizu, & Hoyer, 2010), performs well for non-Gaussian data 

but likely requires a greater number of observations than typical in daily diary studies. These 

latter two approaches, like the original GIMME, performed well on a canonical set of 

benchmark fMRI data (Gates & Molenaar, 2012; Mumford & Ramsey, 2014; Smith et al., 

2011). Much like including ARs for all individuals with S-GIMME, GIMME-MS, iMaGES, 

and LiNGAM appear to be useful when contemporaneous effects are large compared to 

lagged effects and when AR effects are low or inconsistent (i.e., present for some variables 

but not for others).

Other areas of growth for model selection pertain specifically to qualities of daily diary data. 

As noted above, multiple items were removed from the empirical demonstration due to there 

being no variability for some individuals. Analysis from within a general linear modeling 
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framework (including time series) cannot immediately utilize variables that are constant 

across the measurement period. Additionally, it is highly likely that these processes may 

change across time, reflecting non-stationarity (and a violation of the assumptions of S-

GIMME). This is particularly true if the participants are measured during an intervention. In 

these cases, trends may be addressed through preprocessing or other approaches (e.g., 

splitting of time series) prior to S-GIMME analysis. Another option is to increase the lag 

order to account for periodic effects (e.g., a lag of 7 for weekly effects), but this may only be 

tenable when a small number of variables is used. Adding an exogenous basis vector that 

contains the shape of the trend is another option that will be shortly available. Non-

normality in the distribution of the data presents another issue. At present, it is unknown the 

influence that this will have on S-GIMME’s recovery rate. A more pressing issue is that of 

measurement error. Within the SEM framework it is rather straightforward to arrive at latent 

variables in an effort to obtain more precise measurements of underlying constructs. 

Extension of GIMME to manage latent variables is currently underway by integrating the 

gimme package with MIIVsem (Fisher, Bollen, Gates, & Rönkkö, 2017).

Further, given the data-driven nature of the GIMME approach, the role of measurement error 

should be investigated in future work, particularly when considering how different 

modalities of data collection may affect the precision of our instrument, and therefore, our 

error in measurement. Finally, some designs will encounter unequal spacing between 

observations. This unequal spacing may occur in ecological momentary assessments where 

the measurement is taken only when the participant indicates a life event occurred (as 

described in the review by Laurenceau & Bolger, 2005) or when there are no measurements 

obtained while the participants are at sleep (eg., the publicly available data described in 

Fisher, 2015) or in burst designs. Furthermore, in the case of designs that use multiple intra-

day assessments, the matter of the lack of assessments during the overnight further imposes 

large periods without assessment, and it is difficult to make the argument that the final and 

first assessments going between days are equivalent to other successive periods. These sorts 

of irregular time-series pose methodological and conceptual problems for contemporary 

time-series methods, not just GIMME. A number of approaches have been proposed and 

implemented to generate series with equal spacing from these types of data, such as 

continuous time modeling or rescaling continuous time to integer time (see, e.g., 

Asparouhov, Hamaker, & Muthén, in press). Users interested in implementing GIMME with 

irregularly spaced data may wish to create equally spaced time-series in advance by using 

interpolation and resampling methods (Beltz & Gates, 2017; Fisher & Biswal, 2016). 

However, the effect of these approaches on parameter estimates for ambulatory assessment 

data and recovery of the correct model remains unstudied in GIMME, and poorly understood 

across all analytic approaches. These issues warrant much more attention for time series 

analysis for intensively gathered longitudinal data collected for psychological studies.

Empirical Study

To illustrate the utility of using S-GIMME method, we examined group, subgroup, and 

individual-level temporal models in a sample of 35 patients diagnosed with BPD who 

completed daily diaries of various clinical features over 60 days or more. We found that only 

a single group-level path existed tying together all of these participants with the same 
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diagnosis. This path suggests that the common feature in this group is the within-day 

prediction of depression from mood lability. At the same time, we found rich individual 

heterogeneity in contemporaneous and lagged paths. Moreover, we found that two 

subgroups emerged which were markedly distinct in the daily associations among several 

variables. We also found that the subgroups could not be differentiated using the average 

daily endorsement of the symptom variables examined in their temporal processes, though 

we note that this was a low powered comparison for all but large effects. Nevertheless, this 

demonstrates that the information regarding how the symptoms relate across time differed 

from what can be reaped by looking at average scores alone. Although necessarily 

speculative given the limitations of the data (e.g., modest sample size), interpreting the 

subgroup specific models offers compelling results and beckon further analyses in larger 

samples. The processes that differentiate the Subgroup A from Subgroup B may best be 

understood as internalizing vs. externalizing processes. That is, the majority of relationships 

within Subgroup A were between the predominantly affective variables (e.g., Depression, 

Anxiety, Mood Lability, Anger, and Emptiness); the disinhibitory behaviors (Urgency, 

Impulsivity) are linked, but are largely separate from these processes.

Conclusion

The present paper introduces one approach for analyzing daily diary data for heterogeneous 

populations that satisfies a few issues seen in the analysis of temporal processes across 

individuals. Namely, S-GIMME arrives at individual-level models that are accurate and 

reliable even when parameters mimic those seen in daily diary studies. Additionally, S-

GIMME provides robust results for as few as 60 time points, which is far fewer than the 

number that has been tested in neuroimaging research. Finally, S-GIMME performs well 

even with a relatively low number of participants. Ultimately, our demonstration underscores 

the need for methods such as S-GIMME moving forward given the increasing use of 

intensive longitudinal data in psychological research, and the potential for these data to 

provide novel insights into human behavior and mental health.
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Figure 1. 
All outcomes by number of variables, time, and autoregressive estimation.
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Figure 2. 
Path recall and precision by time and autoregressive estimation.
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Figure 3. 
Recall by level.
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Figure 4. 
Relative bias by time and autoregressive estimation.
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Figure 5. 
Depiction of relationships for Subgroups A and B.
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Table 1.

Path recall across all simulation conditions.

AR Effects Number of Time Points Sample Size Path Recall: 5 variables Path Recall: 10 variables

Fixed

30

25 46.30 48.86

75 45.90 49.19

150 45.45 49.75

60

25 52.28 45.27

75 52.21 46.04

150 52.38 46.40

90

25 57.64 46.37

75 57.97 47.49

150 57.81 47.60

120

25 62.78 47.40

75 61.72 49.77

150 61.14 49.33

Freed

30

25 82.93 67.06

75 82.47 66.73

150 81.82 66.46

60

25 89.43 68.87

75 88.62 68.53

150 87.73 67.11

90

25 92.05 72.70

75 91.75 72.12

150 91.72 70.98

120

25 93.43 75.77

75 93.38 75.07

150 93.08 73.86

Psychol Methods. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lane et al. Page 30

Table 2.

Subgroup recovery across all simulation conditions.

AR Effects Number of Time Points Sample Size ARIHA: 5 variables ARIHA: 10 variables

Fixed

30

25 0.00 0.00

75 0.00 0.00

150 0.00 0.00

60

25 0.01 0.00

75 0.01 0.00

150 0.00 0.00

90

25 0.08 0.01

75 0.05 0.01

150 0.04 0.01

120

25 0.15 0.04

75 0.11 0.04

150 0.09 0.03

Freed

30

25 0.12 0.37

75 0.10 0.42

150 0.06 0.37

60

25 0.35 0.71

75 0.31 0.68

150 0.30 0.66

90

25 0.39 0.81

75 0.45 0.85

150 0.44 0.82

120

25 0.42 0.85

75 0.50 0.91

150 0.48 0.89
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