Skip to main content
. 2019 Mar 19;60(4):319–325. doi: 10.3349/ymj.2019.60.4.319

Fig. 1. The diverse regulatory mechanisms of lncRNAs on the Wnt signaling pathway. CCAL can activate Wnt/β-catenin signaling pathway by down-regulating activator protein 2α (AP-2α), which can attenuate β-catenin/TCF-4 interactions and increase β-catenin. CASC11 can interact with hnRNP-K to induce the degradation of β-catenin and activate the Wnt/β-catenin signaling pathway. MALAT1 can increase the nuclear localization of β-catenin and activate the pathway. SNHG1 can increase TCF-4 and β-catenin expression, leading to the nuclear accumulation of β-catenin and activation of the β-catenin pathway. CRNDE and ZEB1-AS1 can activate the Wnt/β-catenin signaling pathway through sponging miR-181a-5p. LincRNA-p21 and CTD903 can reduce the levels of β-catenin in CRC cells. H19 competitively binds to miR-200a and indirectly increases β-catenin expression in CRC. CCAT2 overexpression inhibits β-catenin expression in CRC cells. HNF1A-AS1 can up-regulate the expression of β-catenin, cyclinD1, and c-Myc. LncRNA XIST binds to miR-34a, which can rescue the dysregulation of WNT1 and β-catenin. lncRNA, long noncoding RNA; CRC, colorectal cancer.

Fig. 1