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Background: Alzheimer’s disease (AD) pathology and hypertension (HTN) are risk factors for 

development of white matter (WM) alterations and might be independently associated with these 

alterations in older adults.

Objective: To evaluate the independent and synergistic effects of HTN and AD pathology on 

WM alterations.

Methods: Clinical measures of CVD risk were collected from 62 participants in University of 

Kentucky Alzheimer’s Disease Center studies who also had CSF sampling and MRI brain scans. 

CSF Aβ1–42 levels were measured as a marker of AD, and fluid-attenuated inversion recovery 

imaging and diffusion tensor imaging were obtained to assess WM macro and microstructural 

properties. Linear regression analyses were used to assess the relationships among WM 

alterations, CVD risk and AD pathology. Voxelwise analyses were performed to examine spatial 

patterns of WM alteration associated with each pathology.

Results: HTN and CSF Aβ1–42 levels were each associated with white matter hyper-intensities 

(WMH). Also, CSF Aβ1–42 levels were associated with alterations in normal appearing white 

matter fractional anisotropy (NAWM-FA), whereas HTN was marginally associated with 

alterations in NAWM-FA. Linear regression analyses demonstrated significant main effects of 

HTN and CSF Aβ1–42 on WMH volume, but no significant HTN × CSF Aβ1–42 interaction. 

Furthermore, voxelwise analyses showed unique patterns of WM alteration. associated with 

hypertension and CSF Aβ1–42.

Conclusion: Associations of HTN and lower CSF Aβ1–42 with WM alteration were statistically 

and spatially distinct, suggesting independent rather than synergistic effects. Considering such 

spatial distributions may improve diagnostic accuracy to address each underlying pathology.
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1. Introduction

Over 50% of individuals who develop dementia have mixed pathologies at autopsy.[1–3] 

The two most prevalent contributors to mixed pathology are Alzheimer’s disease (AD) and 

cerebrovascular disease (CVD), and intense efforts are being made to develop in vivo tests 

for early diagnosis.[1, 3] Antemortem identification of AD pathology has become easier 

since the development of in vivo markers of amyloid and tau using cerebrospinal fluid (CSF) 

or positron emission tomography (PET) scans.[4–7] Accurate identification and 

classification of CVD in vivo, however, remains challenging. Markers of CVD include areas 

of hyper-intense signal in white matter (white matter hyper-intensities, WMH) on T2-

weighted MRI of the brain, and more recently, alterations in microstructural properties of 

WM such as fractional anisotropy (FA) detected using diffusion tensor imaging (DTI).[8–

10]

WMH also occur in the pre-dementia stage of familial AD, including in those with no 

appreciable CVD risks.[11, 12] It remains unclear whether these WM alterations should be 

attributed to AD, CVD, or both pathological processes. Further, it is unknown whether the 
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effects of AD and CVD are independent or synergistic. The present study examined 

relationships between CSF beta-amyloid (Aβ1–42) and CVD risk factors with both WMH 

volumes and FA values within regions of normal appearing WM. The central analysis of the 

study utilized multiple linear regression to determine whether AD pathology and CVD risk 

are independently or synergistically associated with WM alterations. An interaction term 

was used to explore potential synergistic effects, while main effects explored potential 

independent effects of AD pathology and CVD risk. Voxelwise analyses were then used to 

determine the spatial distribution of WMH changes associated with CSF Aβ1–42 levels 

and/or CVD risk factors.

2. Methods

2.1. Participants:

Participants enrolled in the University of Kentucky Alzheimer’s Disease Center (UK-ADC) 

cohort and affiliated clinical trials were included in the present study. All studies used 

identical imaging and cerebrospinal fluid collection protocols, and all research protocols 

were approved by the University of Kentucky Institutional Review Board. All participants 

gave written informed consent.

Inclusion criteria for the current study included a classification of cognitively normal (CN) 

or mild cognitive impairment (MCI), which was based on Clinical Dementia Rating (CDR)

[13] global scores: CN (CDR = 0) and MCI (CDR = 0.5). Additionally, all participants were 

required to have MRI data that met quality control standards for motion and artifacts, 

available CSF Aβ1–42 data, and clinical data regarding current or previous diagnosis of 

hypertension (HTN: 1=yes, 0=no), hyperlipidemia (HLD: 1=yes, 0=no), and diabetes 

mellitus (DM: 1=yes, 0=no). In addition, data on antihypertensive medication use, history of 

cardiovascular disease, atrial fibrillation, cigarette smoking, blood pressure, and lipid levels 

were used to calculate a modified Framingham 10-year Stroke Risk Score (mFRS) for each 

participant (FRS was modified because data on left ventricular hypertrophy were not 

available).[14]

2.2. MRI Protocol and Analysis:

Data were collected on a Siemens 3 Tesla TIM TRIO scanner using a 32-channel head coil 

at the University of Kentucky Magnetic Resonance Imaging and Spectroscopy Center. Two 

high-resolution 3D T1-weighted images were obtained using a magnetization-prepared rapid 

acquisition gradient echo (MP-RAGE) sequence [repetition time (TR) = 2530 ms, inversion 

time (TI) = 1100 ms, echo time (TE) = 2.56 ms, Flip angle = 7 degrees, 1 mm isotropic 

voxels]. Fluid-attenuated inversion recovery (FLAIR) images were acquired using a 3D 

sequence [TR = 6000ms, TI = 2200ms, TE = 338ms, 1mm isotropic voxels]. DTI used an 

axial, double-refocused spin-echo, echo planar imaging sequence [TR = 8000ms, TE = 

96ms, FOV = 224mm2, 52 contiguous slices, 2mm isotropic voxels] with 60 non-collinear 

encoding directions (b = 1000 s/mm2) and 8 images without diffusion weighting (b0, b = 0 

s/mm2).
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2.2.1. FLAIR Sequence Analysis and WMH Mask Generation: FLAIR image 

processing was performed using a previously described protocol.[15] Briefly, MP-RAGE 

and FLAIR images were radiofrequency inhomogeneity-corrected using the N3-correction 

algorithm provided in MIPAV (http://mipav.cit.nih.gov). The two MP-RAGE images were 

registered to each other using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) 

and then averaged. The averaged MP-RAGE image was then registered to FLAIR image 

using SPM12. Next, the FSL (v5.0.9) brain extraction tool[16] was used to remove non-

brain tissue from the average MP-RAGE image to create a binary mask of brain tissue. This 

mask was then applied to the FLAIR image to remove non-brain tissue. Multimodal 

segmentation was performed with SPM12 using the average MP-RAGE and FLAIR image. 

The brain was segmented into gray matter, two separate white matter segments, CSF, and 

other tissues segments using a previously validated segmentation method.[17] The two WM 

segments were combined to form a single WM mask, which was dilated and then multiplied 

with the FLAIR image to form a FLAIR WM mask. Matlab 2015b was then used to 

determine the mean and standard deviation (SD) of the FLAIR WM in each participant by 

fitting a Gaussian model curve to the histogram of WM voxels intensity. The FLAIR WM 

images were then thresholded at 3 SDs above each participant’s mean value to identify areas 

of WMH in that participant. The resulting WMH mask were then manually edited to remove 

artifacts around the interventricular septum and inferior slices.[17] The summed volume of 

remaining voxels in each participant was used as a measure of WMH volume.

2.2.2. DTI Sequence Analysis: The goal of the DTI analyses was to compute mean FA 

values within regions of normal-appearing WM (NAWM) in each participant’s FLAIR 

image. DTI image processing was performed using a previously described protocol.[18] 

Briefly, FSL (v5.0.9) was used to perform pre-processing for motion and eddy-current 

correction with outlier detection and replacement.[19, 20] Following brain extraction, the 

FMRIB Diffusion Toolbox (FDT v3.0) was used to fit a voxelwise diffusion tensor model, 

determine the eigenvalues, and calculate FA.[21] FA images were registered into FMRIB FA 

1mm space, averaged to form a mean FA image to then generate a common WM skeleton, 

and finally project each participants FA image onto the group skeleton using tract-based 

spatial statistics (TBSS).[21]

The same registration parameters were then used to project the FA image to standard 

(MNI152 T1 1mm3) space. The common track skeleton was used together with the WMH 

images in the TBSS non-FA pipeline.[21] These WMH images were then subtracted from 

the TBSS skeleton in order to create a NAWM image for each participant that comprised 

only WM outside of WMH. The mean global FA was then extracted from each participant’s 

NAWM image using fslstats FSL statistical tool.

2.2.3. Cerebral Microbleed Analysis: Measures of cerebral microbleeds (CMBs) 

were collected from 62 participants who had CSF sampling. Gradient recalled echo (GRE) 

MRI sequence was obtained to assess CMBs. CMBs were visually rated using Microbleeds 

Anatomical Rating Scale (MARS). [22]
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2.3. CSF Collection and Analysis:

CSF collection and analysis was performed as previously described.[23] In brief, 

participants underwent lumbar puncture the same day as MRI scanning. CSF was collected 

in the morning after fasting since midnight and stored in a − 80 °C freezer prior to shipment 

on dry ice to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Biomarker Core 

laboratory at the University of Pennsylvania Medical Center. CSF levels of Aβ1–42 were 

measured using the multiplex xMAP Luminex Platform (Luminex Corp, Austin, TX) with 

Innogenetics (INNO-BIA, AlzBio3; Ghent, Belgium) immunoassay kit as previously 

described.[24]

2.4. Statistical Analysis:

2.4.1. Statistical Analyses: Independent samples t-tests and chi-square tests were used 

to assess differences between CN and MCI groups in demographic and clinical measures, 

CSF Aβ1–42, and measures of WM alteration. Bivariate relationships between CSF Aβ1–42, 

mFRS, HTN status, HLD status, DM status, smoking status and quantitative measures of 

WMH volume and DTI-based FA measures were investigated using partial correlations 

controlling for age and sex.

As HTN was the only CVD risk factors associated with WMH volume, HTN was used as a 

marker of CVD risk in further analyses. Next, separate linear regression models were used to 

explore the association of HTN and CSF Aβ1–42 with WMH volume and NAWM-FA. Each 

model included main effects of HTN and CSF Aβ1–42, a HTN × CSF Aβ1–42 interaction, 

and age, sex, and cognitive status as covariates. The interaction term was included to explore 

any synergistic effects of HTN and CSF Aβ1–42 on WM alterations. If the interaction term 

was not significant, it was removed from the model and the model was refit to the data in 

order to explore the independent effects of HTN and CSF Aβ1–42. Finally, the above models 

were repeated with the mFRS included as additional covariate.

In order to assess potential contributions from cerebral amyloid angiopathy (CAA), bivariate 

relationships of CSF Aβ1–42 with CMBs in the frontal, parietal, temporal, occipital lobes 

and the basal ganglia were investigated using partial correlations controlling for age and sex. 

Next, linear regression was performed to explore whether WMH and significant CMBs 

predicted CSF Aβ1–42 independently after controlling for age, sex, and cognitive status. 

SPSS 23 (IBM, Chicago, IL) was used for all statistical analyses, and significance was set at 

0.05.

2.4.2. Voxelwise Regression Analysis: FSL’s Randomise tool was used to perform 

exploratory voxelwise regression analyses to examine the spatial location of WM alteration 

associated with CSF Aβ1–42 and HTN. CSF Aβ1–42 (measured in pg/ml) was treated as a 

continuous variable, whereas the clinical diagnosis of HTN, systolic BP >139, or diastolic 

BP > 89 were used as criteria indicating presence of HTN. Each analysis included either 

CSF Aβ1–42 or HTN as the predictor of interest and age, sex, and education as covariates. 

These models were then used to identify voxels where the presence of WMH were 

associated with CSF Aβ1–42 or HTN. Correction for multiple comparisons across all voxels 

was performed using the false-discovery rate (FDR) tool provided with FSL (https://
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fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDR), which uses the distribution of p-values from every voxel 

in order to determine an appropriate threshold to reduce false-positives.[25] Results were 

then compared to the ICBM-DTI-81 WM labels atlas to identify the tracts that included 

significant voxels.

3. Results:

A total of 62 participants met all criteria for inclusion, including 26 CN (CDR=0) and 36 

MCI (CDR=0.5). Demographic and clinical features of the participants are presented in 

Table 1. The MCI group had higher percentages of participants with HTN and HLD than the 

CN group (p < .001). In addition, CSF Aβ1–42 was significantly lower in the MCI group than 

the CN group (p = .005). There was no difference between CN and MCI groups in other 

clinical measures or in measures of WM alterations. Results of bivariate partial correlations 

controlling for age, sex, and cognitive status are shown in Table 2. The mFRS, HLD and DM 

were not associated with either WMH volume or FA in NAWM. HTN and lower CSF 

Aβ1–42 (which is associated with higher amyloid plaque burden), however, were both 

correlated with higher WMH volume (r = 0.30, df = 57, p = 0.021 and r = - 0.30, df = 57, p = 

0.021, respectively). CSF Aβ1–42 but not HTN was associated with lower FA in NAWM (r = 

0.40, df = 57, p = 0.002 and r = −0.23, df = 57, p = 0.08, respectively).

Results of linear regression analysis examining the effects of CSF Aβ1–42, HTN, the CSF 

Aβ1–42 × HTN interaction on WMH volume, controlling for age, sex, and cognitive status 

are shown in Table 3 (Model 1). Results after removing the non-significant interaction term 

are also shown (Model 2). Models 1 and 2 were repeated with the inclusion of mFRS as an 

additional covariate (Table 3; Models 3 and 4, respectively). Results of linear regression 

analysis examining the effects of CSF Aβ1–42, HTN, the CSF Aβ1–42 × HTN interaction on 

NAWM-FA controlling for age, sex, and cognitive status are shown in Table 4 (Model 1). 

Results after removing the non-significant interaction term are also shown (Model 2). 

Models 1 and 2 were repeated with the inclusion of mFRS as an additional covariate (Table 

4; Models 3 and 4, respectively).

Results from the voxelwise regression analyses demonstrated both HTN and CSF Aβ1–42 

were primarily associated with WMH in different areas, with 95% of HTN-related WMH 

voxels and 90% of CSF Aβ1–42 -related WMH voxels being unique (i.e., non-overlapping) 

(Figure 1). WMH associated with HTN were primarily located in the right inferior fronto-

occipital fasciculus, right superior longitudinal fasciculus, and bilateral periventricular WM 

along the body of the lateral ventricles. In contrast, WMH associated with CSF Aβ1–42 were 

primarily located at the posterior corona radiata bilaterally and periventricular regions near 

the anterior horns of the lateral ventricles. The primary area of overlap was in the posterior 

portion of the right cingulum (Figure 1).

In order to assess the impact of CMBs on the relationships observed between CSF Aβ1–42 

and WM alterations, partial correlations were performed to examine the relationships of 

Aβ1–42 with basal ganglia and lobar CMBs (in frontal, parietal, temporal, and occipital lobes 

separately). Results of the analyses demonstrated that Aβ1–42 was associated with parietal 

CMBs (r = −0.28, p = .037) but not with any other CMBs (p > 0.05). A linear regression 

Al-Janabi et al. Page 6

J Alzheimers Dis. Author manuscript; available in PMC 2019 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDR


analysis was then performed to examine whether parietal CMBs and WMH independently 

predicted CSF Aβ1–42. Results demonstrated that Aβ1–42 was significantly predicted by 

WMH volume (β = −0.32, p =.025) and only marginally predicted by parietal CMBs (β = 

−0.25, p = .06) while controlling for age, sex, and cognitive status.

4. Discussion:

Results from this study demonstrate that CSF levels of Aβ1–42 and HTN are each associated 

with WM damage, manifesting as both overt areas of WMH and microstructural alterations 

in NAWM. Importantly, these processes appear to independently contribute to WM changes 

and affect spatially distinct areas of WM. These data demonstrate that pathologies 

underlying or caused by CSF Aβ1–42 and HTN exert additive rather than synergistic effects 

on WM alteration. Our work also raises the question of whether the nature of white matter 

alteration associated with HTN is the same as that associated with CSF Aβ1–42. Since the 

spatial distributions of WM changes were distinguishable (HTN vs CSF Aβ1–42), equivalent 

underlying mechanisms should not be assumed, despite some similarities in their 

appearances on MRI. Assuming that both types of WM alteration are deleterious, it follows 

that treatment of mixed disease states may require interventions aimed at both processes to 

achieve maximal clinical efficacy.

Initial analyses sought to determine whether CVD risk factors and/or CSF Aβ1–42 levels 

were associated with WM alteration as assessed by overt WMH or subtler microstructural 

changes within NAWM that are not detectable at the macrostructural level. The modified 

Framingham CVD risk score was not associated with either marker of WM alteration. 

Previous studies examining the relationship between the mFRS and WM alterations have 

been equivocal with one study finding a relationship[26] and another failing to find such a 

relationship in older adults.[27] These discordant findings may be due to differences in the 

cohorts, including clinical, environmental, and cultural characteristics. In addition, the 

Framingham CVD risk score is intended to predict future CVD, which may account for the 

lack of cross-sectional relationship between mFRS and WM alterations. Of note, a recent 

study failed to find a relationship between mFRS and WM but did find that mFRS predicted 

future cognitive decline.[27]

HTN was associated with both WMH volume and FA in NAWM, which is consistent with 

previous reports.[28, 29] The potential mechanisms underlying the association between 

HTN and WM alteration are unclear, but several explanations have been proposed. It is 

possible that that reduced cerebral blood flow could contribute to transient ischemic injury 

or that HTN-induced endothelial damage could result in extravasation of blood products into 

WM tissue resulting in injury.[30–32] WMH may represent areas of reduced vascular 

integrity,[33] whereas alteration in NAWM may include decreased myelin organization, 

lower axonal coherence, or decrease in axonal numbers otherwise related to reduced 

vascular integrity.[34]

Lower CSF Aβ1–42 levels were also associated with both higher WMH volume and lower 

FA in NAWM. These findings are consistent with previous studies, which found that WMH 

volume is higher[11, 12] and FA is lower[35, 36] in AD brain compared to healthy controls. 
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The exact mechanism underlying these relationships also remains unclear, but several 

possibilities exist. First, we noted that soluble Aβ1–42 oligomers were present in WM and 

were associated with loss of axons as well as breakdown in myelin content.[37, 38] Further, 

soluble Aβ1–42 is toxic to oligodendrocytes and inhibits formation of new myelin sheaths in 
vitro.[39, 40] It is also possible that Aβ1–42 may indirectly influence WM through increased 

inflammation,[41] decreased cerebral blood flow secondary to a hypocholinergic state,[42] 

or damage to blood vessels secondary to cerebral amyloid angiopathy.[12, 43]

The most important finding of the present study is that a history of HTN and CSF Aβ1–42 

levels are independently associated with WM alterations and have additive effects. Of note, 

AD and HTN often coexist in older adults.[44] However, linear regression analyses 

demonstrated that there was no significant interaction between CSF Aβ1–42 levels and HTN 

on WM changes. Further, the main effect of CSF Aβ1–42 and HTN were both significant 

when assessed simultaneously, indicating that these measures constitute independent 

predictors of WM changes. Several studies suggest that Aβ amyloidosis and HTN are 

independent predictors of cognitive outcomes,[45, 46] but this is the first evidence that CSF 

Aβ1–42 levels and HTN are independently associated with WM alterations in older adults. 

These findings suggest that WM alterations could be viewed as the sum of effects from both 

AD and CVD pathology, rather than thought of as either AD or CVD modifying the effect of 

the other on WMH burden. This has important implications for therapeutic interventions, 

since treating one pathology will only address WM alteration from that disease mechanism 

but may have no significant impact on WM changes related to the other condition.

After identifying statistically independent relationships of CSF Aβ1–42 levels and HTN with 

WM alteration, we sought to determine if this independence was due to spatially distinct 

patterns of WM alteration associated with each pathology. We found minimal overlap 

between areas of WM alterations associated with CSF Aβ1–42 and HTN; 95% of HTN-

associated WMH and 90% of Aβ-associated WMH were unique. Consistent with previous 

studies in familial AD, CSF Aβ1–42 was primarily associated with WM alteration in 

posterior regions.[11, 12, 43] Although much of the evidence for the relationship between 

Aβ1–42 and posterior WM alteration comes from studies of dominantly-inherited AD, the 

present study provides support for a similar relationship in sporadic late-onset AD. In 

contrast to Aβ1–42-associated WM alterations, HTN-associated WM change was primarily 

observed in deep WM. Many of these areas are near watershed regions between the middle 

cerebral artery and posterior cerebral artery distributions. These findings are consistent with 

previous studies that found CVD risk is associated with greater WM alteration in the 

watershed regions and deep WM.[30, 31]

An important possibility that must be considered is that the association between the Aβ1–42 

and WM alterations in these posterior regions is mediated by cerebral amyloid angiopathy 

(CAA), which has a predilection for parietal-occipital cortex. [47] In our study, we found a 

relationship between CSF Aβ1–42 and CMBs in the parietal lobe, which is consistent with 

extensive previous work. [48, 49] However, regression analyses demonstrated that these 

amyloid-associated CMBs did not account for the significant relationship between amyloid 

and WMHs. These results suggest that CAA is likely one of multiple mechanisms that 

contribute to WM alterations associated with increasing amyloid in the brain.
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There are several limitations to the present study. The cross-sectional design allowed for 

measurement of correlations among HTN, CSF Aβ1–42 levels and WMH/FA in NAWM, but 

we did not assess the temporal sequence of these changes, precluding causal inferences. In 

addition, the sample size may have led to insufficient power to detect small effects. Further, 

cardiovascular risk measures were assessed using dichotomous variables (either present or 

absent) and did not account for medication control or adherence, disease duration, and/or 

severity. This may mask potential relationships that exist between these cardiovascular risk 

measures and WM alterations. Additionally, our sample included only those without 

dementia. It is unclear whether these relationships are present in individuals with severe 

disease(s). Also, the present study did not examine relationships with cognition. Despite 

independent effects on WM, CVD risk and AD pathology may have a different relationship 

with cognition as demonstrated by a recent study reporting synergistic effects of CVD risk 

and AD pathology on cognitive decline. [26] Finally, amyloid PET scans were not collected 

as part of this study. Previous work has demonstrated spatial overlap between CAA and PET 

amyloid binding. [51, 52] Therefore, future studies should seek to include PET imaging to 

examine whether these areas of WM alteration found in the present study share overlap with 

these same regions of increased amyloid-PET binding in CAA.

In conclusion, the present study demonstrates that the effects of HTN and CSF Aβ1–42 levels 

on WM alteration may be additive rather than synergistic, with each associated with distinct 

spatial distributions of WM alteration. Considering such spatial distributions may improve 

diagnostic accuracy and optimal development of treatment paradigms that address CVD and 

AD, either separately or in combination. It is unclear whether the underlying 

pathophysiology and injurious mechanisms of these alterations are the same in the different 

brain regions. Further studies are needed to explore whether these distinct spatial patterns of 

WM alteration are associated with different cognitive processes and/or clinical outcomes.
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Figure 1. Distinct spatial distribution of white matter hyperintensities related to hypertension 
and CSF amyloid β1–42 levels.
The spatial distribution of white matter hyperintensities (WMH) related to hypertension 

(HTN) (red) and Cerebrospinal fluid amyloid beta 1–42 levels (Aβ1–42) (green) shows 

primarily distinct distributions with minimal overlapping areas (blue). WMH associated with 

HTN occur primarily in deep cortical white matter and along the body of the lateral 

ventricles. WMH associated with Aβ1–42 occur primarily near the ventricular horns and the 

posterior corona radiata. Areas of WMH are displayed on the FMRIB58 FA 1mm3 brain. 

Contiguous 1mm slices are shown starting from MNI z = 0 at the top left and MNI z = 48 at 

the bottom right. All images are shown in radiological orientation (anatomical right is on the 

left side of the image).
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Table 1.

Demographics, clinical, imaging and laboratory characteristics of the study cohort.

Variables CN (N=26) MCI (N=36) Total (N=62) Differences CN vs. MCI (p-value)

Age mean ± sd 76.81 ± 6.14 73.47 ± 7.98 74.87 ± 7.40 0.080

Male sex n (%) 9 (34.6) 19 (52.8) 28 (45.2) 0.156

Education mean ± sd 17.08 ± 2.18 16.83 ± 3.67 16.94 ± 3.12 0.764

mFRS mean ± sd 17.58 ± 2.8 16.56 ± 3.1 17 ± 3 0.189

Hypertension n (%) 7 (26.9) 27 (75.0) 34 (54.8) 0.001‡

SBP mean ± sd 135.77 ± 10.77 138.47 ± 16.47 137.34 ± 14.32 0.468

DBP mean ± sd 74.19 ± 9.70 73.89 ± 11.42 74.02 ± 10.65 0.913

Hyperlipidemia n (%) 2 (7.7) 25 (73.5) 27 (43.5) 0.000‡

Diabetes n (%) 4 (15.4) 10 (27.8) 14 (22.6) 0.247

Smoking n (%) 2 (7.7) 1 (2.7) 3 (4.8) 0.567

NAWM-FA mean ± sd 0.59 ± 0.41 0.59 ± 0.55 0.59 ± 0.05 0.987

Aβ1–42 mean ± sd 320 ± 93.14 251.03 ± 90.82 279.95 ± 97.29 0.005¥

WMH volume cc mean ± sd 8.22 ± 9.98 13.30 ± 20.03 11.17 ± 16.65 0.238

CN = cognitively normal; MCI = mild cognitive impairment; mFRS = modified Framingham stroke risk score; SBP = systolic blood pressure; DBP 
= diastolic blood pressure; HLD = hyperlipidemia; NAWM-FA = fractional anisotropy values of the normally appearing white matter; Aβ1–42 = 

Cerebrospinal fluid amyloid beta 1–42 levels; WMH = white matter hyperintensities.

‡
Pearson Chi-square

¥
T test (2 sided)
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Table 2.

Partial Correlation of hypertension, CSF amyloid β1–42levels and imaging measures of micro and 

macrostructural white matter alteration in study subjects.

HTN Aβ1–42 HLD DM mFRS WMH volume NAWM-FA

HTN -- −0.01 0.308* 0.207 0.026 0.298* −0.233

Aβ1–42 -- -- 0.036 0.188 −0.057 −0.300* 0.400**

HLD -- -- -- 0.083 0.078 0.056 −0.036

DM -- -- -- -- −0.001 −0.100 0.019

mFRS -- -- -- -- -- −0.041 −0.007

WMH volume -- -- -- -- -- -- −0.481‡

Values are partial correlation coefficients adjusted for age, gender and cognitive status; HTN = hypertension; Aβ1–42 = Cerebrospinal fluid 

amyloid beta 1–42 levels; HLD = hyperlipidemia; DM = diabetes mellitus; mFRS = modified Framingham stroke risk score; WMH = white matter 
hyperintensity; NAWM-FA = fractional anisotropy values of the normally appearing white matter.

*
P ≤ 0.05

**
P ≤ 0.01

‡
P ≤ 0.001
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Table 3.

Linear regression models to examine the effects of hypertension and Cerebrospinal fluid amyloid beta 1–42 

levels on white matter hyperintensity burden.

Aβ1–42 HTN Aβ1–42 × HTN

Model 1
a
 (F5,56 = 7.7, R2 = 0.409, p < 0.001)

B = −0.28 (.026) B = 0.30 (.017) B = 0.03 (.829)

Model 2
a
 (F6,55 = 6.3, R2 = 0.408, p < 0.001)

B = −0.28 (.016) B = 0.30 (.016) --

Model 3
b
 (F7,54 = 5.8, R2 = 0.432, p < 0.001)

B = −0.28 (.024) B = 0.32 (.012) B = 0.04 (.728)

Model 4
b
 (F6,55 = 6.9, R2 = 0.431, p < 0.001)

B = −0.29 (.013) B = 0.32 (.011) --

Linear regression models using white matter hyperintensity (WMH) volume as the dependent variable. Values shown are standardized β-
coefficients with p-values in parentheses. Predictors of interest were CSF levels of Aβ1–42, HTN, and Aβ1–42 × HTN interaction (Models 1, 3). 

The analyses were repeated without the non-significant interaction term (Models 2, 4).

a
Covariates included in models 1 & 2 were age, sex, and cognitive status.

b
Covariates included in models 3 & 4 were age, sex, cognitive status, and mFRS.

J Alzheimers Dis. Author manuscript; available in PMC 2019 March 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Al-Janabi et al. Page 17

Table 4.

Linear regression models to examine the effects of hypertension and Cerebrospinal fluid amyloid beta 1–42 

levels on white matter microstructural alterations.

Aβ1–42 HTN Aβ1–42 × HTN

Model 1
a
 (F6,55 = 7.0, R2 = 0.432, p < 0.001)

B = 0.016 (.007) B = −0.01 (.065) B = −0.01 (.143)

Model 2
a
 (F5,56 = 7.8, R2 = 0.409, p < 0.001)

B = 0.018 (.001) B = −0.011 (.067) --

Model 3
b
 (F7,54 = 5.9, R2 = 0.434, p < 0.001)

B = 0.016 (.007) B = −.0011 (.063) B = −0.008 (.138)

Model 4
b
 (F6,55 = 6.4, R2 = 0.410, p < 0.001)

B = 0.018 (.001) B = −0.011 (.067) --

Linear regression models using the fractional anisotropy values of the normally appearing white matter (NAWM-FA) as the dependent variable. 
Values shown are standardized β-coefficients with p-values in parentheses. Predictors of interest were CSF levels of Aβ1–42, HTN, and Aβ1–42 × 

HTN interaction (Models 1, 3). The analyses were repeated without the non-significant interaction term (Models 2, 4).

a
Covariates included in models 1 & 2 were age, gender, and cognitive status.

b
Covariates included in models 3 & 4 were age, gender, cognitive status, and mFRS.
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