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The ability to compute the location and direction of sounds is a crucial perceptual skill to efficiently interact with dynamic environments.
How the human brain implements spatial hearing is, however, poorly understood. In our study, we used fMRI to characterize the brain
activity of male and female humans listening to sounds moving left, right, up, and down as well as static sounds. Whole-brain univariate
results contrasting moving and static sounds varying in their location revealed a robust functional preference for auditory motion in
bilateral human planum temporale (hPT). Using independently localized hPT, we show that this region contains information about
auditory motion directions and, to a lesser extent, sound source locations. Moreover, hPT showed an axis of motion organization
reminiscent of the functional organization of the middle-temporal cortex (hMT�/V5) for vision. Importantly, whereas motion direction
and location rely on partially shared pattern geometries in hPT, as demonstrated by successful cross-condition decoding, the responses
elicited by static and moving sounds were, however, significantly distinct. Altogether, our results demonstrate that the hPT codes for
auditory motion and location but that the underlying neural computation linked to motion processing is more reliable and partially
distinct from the one supporting sound source location.
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Introduction
While the brain mechanisms underlying the processing of visual
localization and visual motion have received considerable atten-
tion (Newsome and Paré, 1988; Movshon and Newsome, 1996;

Braddick et al., 2001), much less is known about how the brain
implements spatial hearing. The representation of auditory space
relies on the computations and comparison of intensity, tempo-
ral and spectral cues that arise at each ear (Searle et al., 1976;
Blauert, 1982). In the auditory pathway, these cues are both pro-
cessed and integrated in the brainstem, thalamus, and cortex to
create an integrated neural representation of auditory space
(Boudreau and Tsuchitani, 1968; Goldberg and Brown, 1969;
Knudsen and Konishi, 1978; Ingham et al., 2001; for review, see
Grothe et al., 2010).

Similar to the dual-stream model in vision (Ungerleider and
Mishkin, 1982; Goodale and Milner, 1992), partially distinct ven-
tral “what” and dorsal “where” auditory processing streams have
been proposed in audition (Romanski et al., 1999; Rauschecker
and Tian, 2000; Recanzone, 2000; Tian et al., 2001; Warren and
Griffiths, 2003; Barrett and Hall, 2006; Lomber and Malhotra,
2008; Collignon et al., 2011). In particular, the dorsal stream is
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Significance Statement

Compared with what we know about visual motion, little is known about how the brain implements spatial hearing. Our study
reveals that motion directions and sound source locations can be reliably decoded in the human planum temporale (hPT) and that
they rely on partially shared pattern geometries. Our study, therefore, sheds important new light on how computing the location
or direction of sounds is implemented in the human auditory cortex by showing that those two computations rely on partially
shared neural codes. Furthermore, our results show that the neural representation of moving sounds in hPT follows a “preferred
axis of motion” organization, reminiscent of the coding mechanisms typically observed in the occipital middle-temporal cortex
(hMT�/V5) region for computing visual motion.
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thought to process sound source location and motion both in
animals and humans (Rauschecker and Tian, 2000; Alain et al.,
2001; Maeder et al., 2001; Tian et al., 2001; Arnott et al., 2004).
However, it remains poorly understood whether the human
brain implements the processing of auditory motion and location
using distinct, similar, or partially shared neural substrates
(Zatorre et al., 2002; Smith et al., 2010; Poirier et al., 2017).

One candidate region that might integrate spatial cues to com-
pute motion and location information is the human planum
temporale (hPT; Baumgart et al., 1999; Warren et al., 2002; Bar-
rett and Hall, 2006). hPT is located in the superior temporal
gyrus, posterior to Heschl’s gyrus, and is typically considered part
of the dorsal auditory stream (Rauschecker and Tian, 2000; War-
ren et al., 2002; Derey et al., 2016; Poirier et al., 2017). Some
authors have suggested that hPT engages in both the processing
of moving sounds and the location of static sound sources (Za-
torre et al., 2002; Smith et al., 2004, 2007, 2010; Krumbholz et al.,
2005; Barrett and Hall, 2006; Derey et al., 2016). This proposition
is supported by early animal electrophysiological studies demon-
strating the neurons in the auditory cortex that are selective to
sound source location and motion directions (Altman, 1968,
1994; Benson et al., 1981; Middlebrooks and Pettigrew, 1981;
Imig et al., 1990; Rajan et al., 1990; Poirier et al., 1997; Doan et al.,
1999). In contrast, other studies in animals (Poirier et al., 2017)
and humans (Baumgart et al., 1999; Lewis et al., 2000; Bremmer
et al., 2001; Pavani et al., 2002; Hall and Moore, 2003; Krumbholz
et al., 2005; Poirier et al., 2005) pointed toward a more specific
role of hPT for auditory motion processing.

The hPT, selective to process auditory motion/location in a
dorsal “where” pathway, is reminiscent of the human middle
temporal cortex (hMT�/V5) in the visual system. hMT�/V5 is
dedicated to process visual motion (Watson et al., 1993; Tootell et
al., 1995; Movshon and Newsome, 1996) and displays a columnar
organization tuned to axis of motion direction (Albright et al.,
1984; Zimmermann et al., 2011). However, whether hPT dis-
closes similar characteristic tuning properties remains unknown.

The main goals of the present study were threefold. First,
using multivariate pattern analysis (MVPA), we investigated
whether information about auditory motion direction and sound
source location can be retrieved from the pattern of activity in
hPT. Further, we asked whether the spatial distribution of the
neural representation is in the format of “preferred axis of mo-
tion/location” as observed in the visual motion selective regions

(Albright et al., 1984; Zimmermann et al., 2011). Finally, we
aimed at characterizing whether the processing of motion direc-
tion (e.g., going to the left) and sound source location (e.g., being
in the left) rely on partially common neural representations in the
hPT.

Materials and Methods
Participants
Eighteen participants with no reported auditory problems were recruited
for the study. Two participants were excluded due to poor spatial hearing
performance in the task, as it was lower by �2.5 SDs than the average of
the participants. The final sample included 16 right-handed participants
(8 females; age range, 20 – 42 years; mean � SD age, 32 � 5.7 years).
Participants were blindfolded and instructed to keep their eyes closed
throughout the experiments and practice runs. All the procedures were
approved by the research ethics boards of the Centre for Mind/Brain
Sciences and the University of Trento. Experiments were undertaken
with the understanding and written consent of each participant.

Auditory stimuli
Our limited knowledge of the auditory space processing in the human
brain might be a consequence of the technical challenge of evoking a vivid
perceptual experience of auditory space while using neuroimaging tools
such as fMRI, EEG, or MEG. In this experiment, to create an externalized
ecological sensation of sound location and motion inside the MRI scan-
ner, we relied on individual in-ear stereo recordings that were recorded
in a semianechoic room and on 30 loudspeakers on horizontal and ver-
tical planes, mounted on two semicircular wooden structures with a
radius of 1.1 m (Fig. 1A). Participants were seated in the center of the
apparatus with their head on a chinrest, such that the speakers on the
horizontal and vertical planes were equally distant from participants’
ears. Then, these recordings were replayed to the participants when they
were inside the MRI scanner. By using such a sound system with in-ear
recordings, auditory stimuli automatically convolved with each individ-
uals’ own pinna and head-related transfer function to produce a salient
auditory perception in external space.

The auditory stimuli were prepared using custom MATLAB scripts
(r2013b; MathWorks). Auditory stimuli were recorded using binaural
in-ear omnidirectional microphones (“flat” frequency range, 20 –20,000
Hz; model TFB-2, Sound Professionals) connected to a portable Zoom
H4n digital wave recorder (16 bit, stereo, 44.1 kHz sampling rate). Mi-
crophones were positioned at the opening of the participant’s left and
right auditory ear canals. While auditory stimuli were played, partici-
pants were listening without performing any task with their head fixed to
the chinrest in front of them. Binaural in-ear recordings allowed com-
bining binaural properties such as interaural time and intensity differ-

Figure 1. Stimuli and experimental design. A, The acoustic apparatus used to present auditory moving and static sounds while binaural recordings were performed for each participant before the
fMRI session. B, Auditory stimuli presented inside the MRI scanner consisted of the following eight conditions: leftward, rightward, upward and downward moving stimuli; and left, right, up, and
down static stimuli. Each condition was presented for 15 s (12 repetitions of 1250 ms sound, no ISI), and followed by a 7 s gap for indicating the corresponding direction/location in space and 8 s of
silence (total interblock interval was 15 s). Sound presentation and response button press were pseudorandomized. Participants were asked to respond as accurately as possible during the gap
period. C, The behavioral performance inside the scanner.
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ences, and participant-specific monaural filtering cues to create reliable
and ecological auditory space sensation (Pavani et al., 2002).

Stimuli recording
Sound stimuli consisted of 1250 ms pink noise (50 ms rise/fall time). In
the motion condition, the pink noise was presented moving in the fol-
lowing four directions: leftward, rightward, upward, and downward.
Moving stimuli covered 120° of the space/visual field in horizontal and
vertical axes. To create the perception of smooth motion, the 1250 ms of
pink noise was fragmented into 15 pieces of equal length with each 83.333
ms fragment being played every two speakers, and moved one speaker at
a time, from outer left to outer right (rightward motion), or vice versa for
the leftward motion. For example, for the rightward sweep, sound was
played through speakers located at �60° and �52° consecutively, fol-
lowed by �44°, and so on. A similar design was used for the vertical axis.
This resulted in participants perceiving moving sweeps covering an arc of
120° in 1250 ms (speed, 96°/s; fade in/out, 50 ms) containing the same
sounds for all four directions. The choice of the movement speed of the
motion stimuli aimed to create a listening experience relevant to condi-
tions of everyday life . Moreover, at such velocity it has been demon-
strated that human listeners are not able to make the differences between
concatenated static stimuli from motion stimuli elicited by a single mov-
ing object (Poirier et al., 2017), supporting the participant’s report that
our stimuli were perceived as smoothly moving (no perception of suc-
cessive snapshots). In the static condition, the same pink noise was pre-
sented separately at one of the following four locations: left, right, up, and
down. Static sounds were presented at the second-most outer speakers
(�56° and �56° in the horizontal axis, and �56° and �56° in the vertical
axis) to avoid possible reverberation differences at the outermost speak-
ers. The static sounds were fixed at one location at a time instead of
presented in multiple locations (Krumbholz et al., 2005; Smith et al.,
2004, 2010; Poirier et al., 2017). This strategy was purposely adopted for
two main reasons. First, randomly presented static sounds can evoke a
robust sensation of auditory apparent motion (Strybel and Neale, 1994;
Lakatos and Shepard, 1997; for review, see Carlile and Leung, 2016).
Second, and crucially for the purpose of the present experiment, present-
ing static sounds located in a given position and moving sounds directed
toward the same position allowed us to investigate whether moving and
static sounds share a common representational format using cross-
condition classification (see below), which would have been impossible if
the static sounds were randomly moving in space.

Before the recordings, the sound pressure levels (SPLs) were measured
from the participant’s head position and ensured that each speaker con-
veys a 65 dB-A SPL. All participants reported a strong sensation of audi-
tory motion and were able to detect locations with high accuracy (Fig.
1C). Throughout the experiment, participants were blindfolded. Stimuli
recordings were conducted in a session that lasted �10 min, requiring
the participant to remain still during this period.

Auditory experiment
Auditory stimuli were presented via MR-compatible closed-ear head-
phones (500 –10 KHz frequency response; Serene Sound, Resonance
Technology) that provided average ambient noise cancellation of �30
dB-A. Sound amplitude was adjusted according to each participant’s
comfort level. To familiarize the participants with the task, they com-
pleted a practice session outside of the scanner until they reached �80%
accuracy.

Each run consisted of the eight auditory categories (four motion and
four static) randomly presented using a block design. Each category of
sound was presented for 15 s [12 repetitions of 1250 ms sound, no inter-
stimulus interval (ISI)] and followed by 7 s gap for indicating the corre-
sponding direction/location in space and 8 s of silence (total interblock
interval, 15 s). The ramp (50 ms fade in/out) applied at the beginning and
at the end of each sound creates static bursts and minimized adaptation
to the static sounds. During the response gap, participants heard a voice
saying “left,” “right,” “up,” and “down” in pseudorandomized order.
Participants were asked to press a button with their right index finger
when the direction or location of the auditory block was matching with

the auditory cue (Fig. 1B). The number of targets and the order (posi-
tions 1– 4) of the correct button press were balanced across category. This
procedure was adopted to ensure that the participants gave their re-
sponse using equal motor command for each category and to ensure the
response is produced after the end of the stimulation period for each
category. Participants were instructed to emphasize the accuracy of re-
sponse but not the reaction times.

Each scan consisted of one block of each category, resulting in a total of
eight blocks per run, with each run lasting 4 min and 10 s. Participants
completed a total of 12 runs. The order of the blocks was randomized
within each run and across participants.

Based on pilot experiments, we decided to not rely on a sparse-
sampling design, as is sometimes done in the auditory literature to pres-
ent the sounds without the scanner background noise (Hall et al., 1999).
These pilot experiments showed that the increase in the signal-to-noise
ratio potentially provided by sparse sampling did not compensate for the
loss in the number of volume acquisitions. Indeed, pilot recordings on
participants not included in the current sample showed that, given a
similar acquisition time between sparse-sampling designs (several op-
tions tested) and continuous acquisition, the activity maps elicited by our
spatial sounds contained higher and more reliable � values using contin-
uous acquisition.

fMRI data acquisition and analyses
Imaging parameters
Functional and structural data were acquired with a 4 T Bruker MedSpec
Biospin MR scanner, equipped with an eight-channel head coil. Func-
tional images were acquired with T2*-weighted gradient echoplanar se-
quence. Acquisition parameters were as follows: repetition time (TR),
2500 ms; echo time (TE), 26 ms; flip angle (FA), 73°; field of view, 192
mm; matrix size, 64 � 64; and voxel size, 3 � 3 � 3 mm 3. A total of 39
slices was acquired in an ascending feet-to-head interleaved order with
no gap. The three initial scans of each acquisition run were discarded to
allow for steady-state magnetization. Before every two EPI runs, we per-
formed an additional scan to measure the point-spread function of the
acquired sequence, including fat saturation, which served for distortion
correction that is expected with high-field imaging (Zeng and Constable,
2002).

A high-resolution anatomical scan was acquired for each participant
using a T1-weighted 3D MP-RAGE sequence (176 sagittal slices; voxel
size, 1 � 1 � 1 mm 3; field of view, 256 � 224 mm; TR, 2700 ms; TE, 4.18
ms; FA, 7°; inversion time, 1020 ms). Participants were blindfolded and
instructed to lie still during acquisition, and foam padding was used to
minimize scanner noise and head movement.

Univariate fMRI analysis: whole brain
Raw functional images were preprocessed and analyzed with SPM8
[Welcome Trust Centre for Neuroimaging London, UK (https://www.fil.
ion.ucl.ac.uk/spm/software/spm8/)] implemented in MATLAB R2014b
(MathWorks). Before the statistical analysis, our preprocessing steps in-
cluded slice time correction with reference to the middle temporal slice,
realignment of functional time series, the coregistration of functional
and anatomical data, spatial normalization to an EPI template conform-
ing to the Montreal Neurological Institute (MNI) space, and spatial
smoothing (Gaussian kernel, 6 mm FWHM).

To obtain blood oxygenation level-dependent activity related to audi-
tory spatial processing, we computed single-subject statistical compari-
sons with a fixed-effect general linear model (GLM). In the GLM, we used
eight regressors from each category (four motion direction, four sound
source location). The canonical double-gamma hemodynamic response
function implemented in SPM8 was convolved with a box-car function
to model the above-mentioned regressors. Motion parameters derived
from realignment of the functional volumes (three translational motion
and three rotational motion parameters), button press, and the four
auditory response cue events were modeled as regressors of no interest.
During the model estimation, the data were high-pass filtered with a
cutoff 128 s to remove the slow drifts/low-frequency fluctuations from
the time series. To account for serial correlation due to noise in fMRI
signal, autoregression [AR (1)] was used.
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To obtain activity related to auditory processing in the whole brain, the
contrasts tested the main effect of each category ([Left Motion], [Right
Motion], [Up Motion], [Down Motion], [Left Static], [Right Static], [Up
Static], [Down Static]). To find brain regions responding preferentially
to the moving and static sounds, we combined all motion conditions
[Motion] and all static categories [Static]. The contrasts tested the main
effect of each condition ([Motion], [Static]), and comparison between
the conditions ([Motion � Static], and [Static � Motion]). These linear
contrasts generated statistical parametric maps (SPM[T]), which were
further spatially smoothed (Gaussian kernel, 8 mm FWHM) and entered
in a second-level analysis, corresponding to a random-effects model,
accounting for intersubject variance. One-sample t tests were run to
characterize the main effect of each condition ([Motion], [Static]) and
the main effect of motion processing ([Motion � Static]) and static
location processing ([Static � Motion]). Statistical inferences were per-
formed at a threshold of p � 0.05 corrected for multiple comparisons
[familywise error (FWE) corrected] either over the entire brain volume
or after correction for multiple comparisons over small spherical vol-
umes (12 mm radius) located in regions of interest (ROIs). Significant
clusters were anatomically labeled using the xjView Matlab toolbox
(http://www.alivelearn.net/xjview) or structural neuroanatomy infor-
mation provided in the Anatomy Toolbox (Eickhoff et al., 2007).

ROI analyses
ROI definition. Due to the hypothesis-driven nature of our study, we
defined hPT as an a priori ROI for statistical comparisons and to define
the volume in which we performed multivariate pattern classification
analyses.

To avoid any form of double dipping that may arise when defining the
ROI based on our own data, we decided to independently define hPT,
using a meta-analysis method of quantitative association test, imple-
mented via the on-line tool Neurosynth (Yarkoni et al., 2011) using the
term query “Planum Temporale.” Rather than showing which regions
are disproportionately reported by studies where a certain term is dom-
inant [uniformity test; P (activation � term)], this method identifies re-
gions whose report in a neuroimaging study is diagnostic of a certain
term being dominant in the study [association test; P (term � activation)].
As such, the definition of this ROI was based on a set of 85 neuroimaging
studies at the moment of the query (September 2017). This method
provides an independent method to obtain masks for further ROI anal-
ysis. The peak coordinate from the meta-analysis map was used to create
6 mm spheres (117 voxels) around the peak z-values of hPT [peak MNI
coordinates (�56, �28, 8] and [60, �28, 8]; left hPT (lhPT) and right
hPT (rhPT) hereafter].

Additionally, hPT regions of interest were individually defined
using anatomical parcellation with FreeSurfer (http://surfer.nmr.mgh.
harvard.edu). The individual anatomical scan was used to perform cor-
tical anatomical segmentation according to the atlas by Destrieux et al.
(2010). We selected a planum temporale label defined as [G_temp_sup-
Plan_tempo, 36] bilaterally. We equated the size of the ROI across par-
ticipants and across hemispheres to 110 voxels (each voxel being 3 mm
isotropic). For anatomically defined hPT ROIs, all further analyses were
performed in subject space for enhanced anatomical precision and to
avoid spatial normalization across participants. We replicated our pat-
tern of results in anatomically defined parcels (lhPT and rhPT) obtained
from the single-subject brain segmentation (for further analysis, see Bat-
tal et al., 2018).

Univariate. The � parameter estimates of the four motion directions
and four sound source locations were extracted from lhPT and rhPT
regions (Fig. 2C). To investigate the presence of motion directions/sound
source location selectivity and condition effect in hPT regions, we per-
formed a 2 Conditions (hereafter referring to the stimuli type: motion,
static) � 4 Orientations (hereafter referring to either the direction or
location of the stimuli: left, right, down, and up) repeated-measures
ANOVA in each hemisphere separately on these � parameter estimates.
Statistical results were then corrected for multiple comparisons (number
of ROIs � number of tests) using the false discovery rate (FDR) method
(Benjamini and Yekutieli, 2001). A Greenhouse–Geisser correction was

applied to the degrees of freedom and significance levels whenever an
assumption of sphericity was violated.

ROI multivariate pattern analyses
Within-condition classification. Four-class and binary classification anal-
yses were conducted within the hPT region to investigate the presence of
auditory motion direction and sound source location information in this
area. To perform multivoxel pattern classification, we used a univariate
one-way ANOVA to select a subset of voxels (n 	 110) that are showing
the most significant signal variation between the categories of stimuli (in
our study, between orientations). This feature selection not only ensures
a similar number of voxels within a given region across participants
(dimensionality reduction), but, more importantly, identifies and selects
voxels that are carrying the most relevant information across categories
of stimuli (Cox and Savoy, 2003; De Martino et al., 2008), therefore
minimizing the chance to include in our analyses voxels carrying noises
unrelated to our categories of stimuli.

MVPAs were performed in the lhPT and rhPT. Preprocessing steps
were identical to the steps performed for univariate analyses, except for
functional time series that were smoothed with a Gaussian kernel of 2
mm (FWHM). MVPA was performed using CoSMoMVPA (http://
www.cosmomvpa.org/; Oosterhof et al., 2016), implemented in
MATLAB. Classification analyses were performed using support vector
machine (SVM) classifiers as implemented in LIBSVM (https://www.
csie.ntu.edu.tw/�cjlin/libsvm/; Chang and Lin, 2011). A general linear
model was implemented in SPM8, where each block was defined as a

Figure 2. Univariate whole-brain results. A, Association test map was obtained from the
on-line tool Neurosynth using the term Planum Temporale (FDR corrected, p � 0.05). The black
spheres are illustrations of a drawn mask (radius 	 6 mm, 117 voxels) around the peak coor-
dinate from Neurosynth (search term Planum Temporale, meta-analysis of 85 studies). B, Au-
ditory motion processing [Motion � Static] thresholded at p � 0.05, whole-brin FWE
corrected. C, Mean activity estimates (arbitrary units � SEM) associated with the perception of
auditory motion direction (red) and sound source location (blue). ML, Motion left; MR, motion
right; MD, motion down; MU, motion up; SL, static left; SR, static right; SD, static down; and SU,
static up.
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regressor of interest. A � map was calculated for each block separately.
Two multiclass and six binary linear SVM classifiers with a linear kernel
with a fixed regularization parameter of C 	 1 were trained and tested for
each participant separately. The two multiclass classifiers were trained
and tested to discriminate among the response patterns of the four audi-
tory motion directions and locations, respectively. Four binary classifiers
were used to discriminate brain activity patterns for motion and location
within axes (left vs right motion, left vs right static, up vs down motion,
up vs down static; hereafter called within-axis classification). We used
eight additional classifiers to discriminate across axes (left vs up, left vs
down, right vs up, and right vs down motion directions; left vs up, left vs
down, right vs up, and right vs down sound source locations; hereafter
called across-axes classification).

For each participant, the classifier was trained using a cross-validation
leave-one-out procedure where training was performed with n � 1 runs,
and testing was then applied to the remaining one run. In each cross-
validation fold, the � maps in the training set were normalized (z-scored)
across conditions, and the estimated parameters were applied to the test
set. To evaluate the performance of the classifier and its generalization
across all of the data, the previous step was repeated 12 times, where in
each fold a different run was used as the testing data and the classifier was
trained on the other 11 runs. For each region per participant, a single
classification accuracy was obtained by averaging the accuracies of all
cross-validation folds.

Cross-condition classification. To test whether motion directions and
sound source locations share a similar neural representation in hPT re-
gion, we performed cross-condition classification. We performed the
same steps as for the within-condition classification as described above
but trained the classifier on sound source locations and tested on motion
directions, and vice versa. The accuracies from the two cross-condition
classification analyses were averaged. For interpretability reasons, cross-
condition classification was only interpreted on the stimuli categories
that the classifiers discriminated reliably (above chance level) for both
motion and static conditions (e.g., if discrimination of left vs right was
not successful in one condition, either static or motion, then the left vs
right cross-condition classification analysis was not performed).

Within-orientation classification. To foreshadow our results, cross-
condition classification analyses (see previous section) showed that mo-
tion directions and sound source locations share, at least partially, a
similar neural representation in hPT region. To further investigate the
similarities/differences between the neural patterns evoked by motion
directions and sound source locations in the hPT, we performed four
binary classifications in which the classifiers were trained and tested on
the same orientation pairs: leftward motion versus left static, rightward
motion versus right static, upward motion versus up static, and down-
ward motion versus down static. If the same orientation (leftward and
left location) across conditions (motion and static) generates similar
patterns of activity in hPT region, the classifier would not be able to
differentiate leftward motion direction from left sound location. How-
ever, significant within-orientation classification would indicate that the
evoked patterns within hPT contain differential information for motion
direction and sound source location in the same orientation (e.g., left).

The mean of the four binary classifications was computed to produce
one accuracy score per ROI. Before performing the within-orientation
and cross-condition MVPA, each individual pattern was normalized sep-
arately across voxels so that any cross-orientation or within-orientation
classification could not be due to global univariate activation differences
across the conditions.

Statistical analysis: MVPA
Statistical significance in the multivariate classification analyses was as-
sessed using nonparametric tests permuting condition labels and boot-
strapping (Stelzer et al., 2013). Each permutation step included shuffling
of the condition labels and rerunning the classification 100 times on the
single-subject level. Next, we applied a bootstrapping procedure to ob-
tain a group-level null distribution that is representative of the whole
group. From each individual’s null distribution, one value was randomly
chosen and averaged across all of the participants. This step was repeated
100,000 times, resulting in a group-level null distribution of 100,000

values. The classification accuracies across participants was considered as
significant if p � 0.05 after corrections for multiple comparisons (num-
ber of ROIs � number of tests) using the FDR method (Benjamini and
Yekutieli, 2001).

A similar approach was adopted to assess statistical difference between
the classification accuracies of two auditory categories (e.g., four motion
direction vs four sound source location, left motion vs left static, left
motion vs up motion). We performed additional permutation tests
(100,000 iterations) by building a null distribution for t statistics after
randomly shuffling the classification accuracy values across two auditory
categories and recalculating the two-tailed t test between the classifica-
tion accuracies of these two categories. All p values were corrected for
multiple comparisons (number of ROIs � number of tests) using the
FDR method (Benjamini and Yekutieli, 2001).

Representation similarity analysis
Neural dissimilarity matrices
To further explore the differences in the representational format between
sound source locations and motion directions in hPT region, we relied
on representation similarity analysis (RSA; Kriegeskorte et al., 2008).
More specifically, we tested the correlation between the representational
dissimilarity matrix (RDM) of rhPT and lhPT in each participant with
different computational models that included condition-invariant mod-
els assuming orientation invariance across conditions (motion, static),
condition-distinct models assuming that sound source location and mo-
tion direction sounds elicit highly dissimilar activity patterns, and a series
of intermediate graded models between them. The RSA was performed
using the CosmoMVPA toolbox (Oosterhof et al., 2016) implemented in
MATLAB. To perform this analysis, we first extracted in each participant
the activity patterns associated with each condition (Edelman et al., 1998;
Haxby et al., 2001). Then, we averaged individual-subject statistical maps
(i.e., activity patterns) to have a mean pattern of activity for each auditory
category across runs. Finally, we used Pearson’s linear correlation as the
similarity measure to compare each possible pair of the activity patterns
evoked by the four different motion directions and four different sound
source locations. This resulted in an 8 � 8 correlation matrix for each
participant that was then converted into an RDM by computing 1 �
correlation. Each element of the RDM contains the dissimilarity index
between the patterns of activity generated by two categories, in other
words the RDM represents how different the neural representation of
each category is from the neural representations of all the other categories
in the selected ROI. The 16 neural RDMs (1 per participant) for each of
the two ROIs were used as neural input for RSA.

Computational models
To investigate shared representations between auditory motion direc-
tions and sound source locations, we created multiple computational
models ranging from a fully condition-distinct model to a fully con-
dition-invariant model with intermediate gradients in between (Zabicki
et al., 2017; see Fig. 4C).

Condition-distinct model. The condition-distinct models assume that
dissimilarities between motion and static condition is 1 (i.e., highly dis-
similar), meaning that neural responses/patterns generated by motion
and static conditions are totally unrelated. For instance, there would be
no similarity between any motion directions with any sound source lo-
cation. The dissimilarity values in the diagonal were set to 0, simply
reflecting that neural responses for the same direction/location are iden-
tical to themselves.

Condition-invariant model. The condition-invariant models assume a
fully shared representation for specific/corresponding static and motion
conditions. For example, the models consider the neural representation
for the left sound source location and the left motion direction highly
similar. All within-condition (left, right, up, and down) comparisons are
set to 0 (i.e., highly similar), regardless of their auditory condition. The
dissimilarities between different directions/locations are set to 1, mean-
ing that each within-condition sound (motion or static) is different from
all the other within-condition sounds.

Intermediate models. To detect the degree of similarity/shared repre-
sentation between motion direction and sound source location patterns,
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we additionally tested two classes of five different intermediate models.
The two classes were used to deepen the understanding of the character-
istic tuning of hPT for separate direction/location or axis of motion/
location. The two model classes represent two different possibilities. The
first scenario was labeled as Within-Axis Distinct, and these models as-
sume that each of the four directions/locations (i.e., left, right, up, and
down) would generate a distinctive neural representation different from
all of the other within-condition sounds (e.g., the patterns of activity
produced by the left category are highly different from the patterns pro-
duced by right, up, and down categories; see Fig. 4C, top). To foreshadow
our results, we observed a preference for axis of motion in MVP classifi-
cation; therefore, we created another class of models to further investi-
gate neural representations of within-axis and across-axes of auditory
motion/space. The second scenario was labeled with Within-Axis Com-
bined, and these models assume that opposite direction/locations within
the same axis would generate similar patterns of activity [e.g., the pattern
of activity of horizontal (left and right) categories are different from the
patterns of activity of vertical categories; up and down; see Fig. 4C,
bottom].

In all intermediate models, the values corresponding to the dissimilar-
ity between same auditory spaces (e.g., left motion and left location) were
gradually modified from 0.9 (motion and static conditions are mostly
distinct) to 0.1 (motion and static conditions mostly similar). These
models were labeled IM9, IM7, IM5, IM3, and IM1, respectively.

In all condition-distinct and intermediate models, the dissimilarity of
within-condition sounds was fixed to 0.5, and the dissimilarity of within-
orientation sounds was fixed to 1. Across all models, the diagonal values
were set to 0.

Performing RSA
We computed Pearson’s correlation to compare neural RDMs and com-
putational model RDMs. The resulting correlation captures which com-
putational model better explains the neural dissimilarity patterns
between motion direction and sound source location conditions. To
compare computational models, we performed the Mann–Whitney–
Wilcoxon rank-sum test between for every pair of models. All p values
were then corrected for multiple comparisons using the FDR method
(Benjamini and Yekutieli, 2001). To test differences between two classes
of models (Within-Axis Combined vs Within-Axis Distinct), within each
class, the correlation coefficient values were averaged across hemispheres
and across models. Next, we performed permutation tests (100,000 iter-
ations) by building a null distribution for differences between classes of
models after randomly shuffling the correlation coefficient values across
two classes, and recalculating the subtraction between the correlation
coefficients of Within-Axis Combined and Within-Axis Distinct classes.

To visualize the distance between the patterns of the motion directions
and sound source locations, we used multidimensional scaling (MDS) to
project the high-dimensional RDM space onto two dimensions with the
neural RDMs that were obtained from both lhPT and rhPT.

Additionally, the single-subject 8 � 8 correlation matrices were used
to calculate the reliability of the data considering the signal-to-noise ratio
of the data (Kriegeskorte et al., 2007). For each participant and each ROI,
the RDM was correlated with the averaged RDM of the rest of the group.
The correlation values were then averaged across participants. This pro-
vided the maximum correlation that can be expected from the data.

Results
Behavioral results
During the experiment, we collected target direction/location
discrimination responses (Fig. 1C). The overall accuracy scores
were entered into 2 � 4 (Condition, Orientation) repeated-
measures ANOVA. No main effect of Condition (F(1,15) 	 2.22;
p 	 0.16) was observed, indicating that the overall accuracy while
detecting the direction of motion or sound source location did
not differ. There was a significant main effect of orientation
(F(1.6,23.7) 	 11.688; p 	 0.001), caused by greater accuracy in the
horizontal orientations (left and right) compared with the verti-
cal orientations (up and down). Post hoc two-tailed t tests

(Bonferroni corrected) revealed that accuracies did not reveal
significant differences within horizontal orientations (left vs
right; t(15) 	 �0.15, p 	 1), and within vertical orientations (up
vs down; t(15) 	 0.89, p 	 1). However, left orientation accuracy
was greater compared with down (t(15) 	 3.613, p 	 0.005) and
up (t(15) 	 4.51, p � 0.001) orientation accuracies, and right
orientationaccuracywasgreatercomparedwiththedown(t(15) 	3.76,
p 	 0.003) and up (t(15) 	 4.66, p � 0.001) orientation accuracies.
No interaction between Condition and Orientation was ob-
served, pointing out that differences between orientations in
terms of performance expresses both for static and motion. A
Greenhouse–Geisser correction was applied to the degrees of
freedom and significance levels whenever an assumption of sphe-
ricity was violated.

fMRI results
Whole-brain univariate analyses
To identify brain regions that are preferentially recruited for au-
ditory motion processing, we performed a univariate random
effects-GLM contrast (Motion � Static; Fig. 2B). Consistent with
previous studies (Pavani et al., 2002; Warren et al., 2002; Poirier
et al., 2005; Getzmann and Lewald, 2012; Dormal et al., 2016),
whole-brain univariate analysis revealed activation in the supe-
rior temporal gyri, bilateral hPT, precentral gyri, and anterior
portion of middle temporal gyrus in both hemispheres (Fig. 2B,
Table 1). The most robust activation (resisting whole-brain FWE
correction, p � 0.05) was observed in the bilateral hPT (peak
MNI coordinates [�46, �32, 10] and [60, �32, 12]). We also
observed significant activation in occipitotemporal regions (in
the vicinity of anterior hMT�/V5), as suggested by previous
studies (Warren et al., 2002; Poirier et al., 2005; Dormal et al.,
2016).

ROI univariate analyses
Beta parameter estimates were extracted from the predefined
ROIs (see Materials and Methods) for the four motion directions
and four sound source locations from the auditory experiment
(Fig. 2C). We investigated the condition effect and the presence
of direction/location selectivity in lhPT and rhPT regions sepa-
rately by performing 2 � 4 (Conditions, Orientations) repeated
measures of ANOVA with � parameter estimates. In lhPT, the

Table 1. Results of the univariate analyses for the main effect of auditory motion
processing 
motion > static�

Area K

MNI coordinates (mm)

Z px y z

Motion � Static
L planum temporale 10,506 �46 �32 10 6.63 0.000*
L Middle temporal G �56 �38 14 6.10 0.000*
L Precentral G �46 �4 52 5.25 0.004*
L Putamen �22 2 2 4.98 0.011*
L Middle temporal G 43 �50 �52 8 3.79 0.01#

R Superior temporal G 7074 66 �36 12 6.44 0.000*
R Superior temporal G 62 �2 �4 5.73 0.000*
R Superior temporal G 52 �14 0 5.56 0.001*
R Precentral G 50 2 50 4.70 0.032*
R Superior frontal S 159 46 0 50 4.40 0.001#

R Middle temporal G 136 42 �60 6 4.31 0.001#

R Middle occipital G 24 44 �62 6 3.97 0.006#

Coordinates reported in this table are significant ( p � 0.05, FWE corrected) after correction over small spherical
volumes (SVCs, 12 mm radius) of interest (#) or over the whole brain (*). The coordinates used for correction over
small SVCs are as follows (in x, y, z, in MNI space): left middle temporal gyrus (hMT�/V5), 
�42, �64, 4� (Dormal
et al., 2016); right middle temporal gyrus (hMT �/V5) 
42, �60, 4� (Dormal et al., 2016); right superior frontal
sulcus 
32, 0, 48� (Collignon et al., 2011); right middle occipital gyrus 
48, �76, 6� (Collignon et al., 2011).
K, Number of voxels when displayed at p(uncorrected) � 0.001; L, left; R, right; G, gyrus; S, sulcus.
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main effect of Conditions was significant (F(1,15) 	 37.28, p �
0.001), indicating that auditory motion evoked a higher response
compared with static sounds. There was no significant main ef-
fect of Orientations (F(1.5,22.5) 	 0.77, p 	 0.44), and no interac-
tion (F(3,45) 	 2.21, p 	 0.11). Similarly, in rhPT, only the main
effect of Conditions was significant (F(1,15) 	 37.02, p � 0.001).
No main effect of Orientation (F(1.5,23.2) 	 1.43, p 	 0.26) or
interaction (F(3,45) 	 1.74, p 	 0.19) was observed. Overall, brain
activity in the hPT, as measured with a � parameter estimate
extracted from the univariate analysis, did not provide evidence
of motion direction or sound source location selectivity.

ROI multivariate pattern analyses
To further investigate the presence of information about auditory
motion direction and sound source location in hPT, we ran mul-
ticlass and binary multivariate pattern classifications. Figure
3A–C shows the mean classification accuracy across categories in
each ROI.

Within condition classification. Multiclass across four condi-
tions, the classification accuracy in the hPT was significantly
above chance (chance level, 25%) in both hemispheres for mo-
tion direction (lhPT: mean � SD 	 38.4 � 7, p � 0.001; rhPT:
mean � SD 	 37.1 � 6.5, p � 0.001) and sound source location
(lhPT: mean � SD 	 32.4 � 6.7, p � 0.001; rhPT: mean � SD 	
31.2 � 7.5, p � 0.001; Fig. 3A). In addition, we assessed the
differences between classification accuracies for motion and
static stimuli by using permutation tests in lhPT (p 	 0.024) and
rhPT (p 	 0.024), indicating greater accuracies for classifying
motion direction than sound source location across all regions.

Binary within-axis classification. Binary horizontal (left vs
right) within-axis classification showed significant results in both
lhPT and rhPT for static sounds (lhPT: mean � SD 	 58.6 �
14.5, p � 0.001; rhPT: mean � SD 	 56.5 � 11.9, p 	 0.008; Fig.
3C), while motion classification was significant only in the rhPT
(mean � SD 	 55.5 � 13.9, p 	 0.018; Fig. 3B). Moreover, binary
vertical (up vs down) within-axis classification was significant
only in the lhPT for both motion (mean � SD 	 55.7 � 7.1, p 	
0.01) and static (mean � SD 	 54.9 � 11.9, p 	 0.03) conditions
(Fig. 3B,C).

Binary across-axis classification. We used eight additional bi-
nary classifiers to discriminate across axes-moving and static
sounds. Binary across-axes (Left vs Up, Left vs Down, Right vs
Up, and Right vs Down) classifications were significantly above
chance level in the bilateral hPT for motion directions (Left vs
Up: lhPT: mean � SD 	 65.8 � 14.8, p � 0.001; rhPT: mean �
SD 	 64.8 � 9.4, p � 0.001; Left vs Down: lhPT: mean � SD 	
74 � 15.9, p � 0.001; rhPT: mean � SD 	 66.9 � 10.4, p � 0.001;
Right vs Up: lhPT: mean � SD 	 72.4 � 15.8, p � 0.001; rhPT:
mean � SD 	 71.4 � 13.3, p � 0.001; Right vs Down: lhPT:
mean � SD 	 73.4 � 11.8, p � 0.001; rhPT: mean � SD 	
68.2 � 15.9, p � 0.001; Fig. 3B). However, sound source location
across-axes classifications were significant only in certain condi-
tions (Left vs Up rhPT: mean � SD 	 56 � 12.7, p 	 0.018; Left
vs Down: lhPT: mean � SD 	 55.2 � 11.2, p 	 0.024; rhPT:
mean � SD 	 57.3 � 17.2, p 	 0.003; Right vs Down lhPT:
mean � SD 	 57.6 � 8.4, p 	 0.005; Fig. 3C).

“Axis of motion” preference. To test whether neural patterns
within hPT contain information about opposite directions/loca-
tions within an axis, we performed four binary within-axis clas-
sifications. Similar multivariate analyses were performed to
investigate the presence of information about across-axes direc-
tions/locations. The classification accuracies were plotted in Fig-
ure 3, B and C.

In motion direction classifications, to assess the statistical dif-
ference between classification accuracies of across axes (left vs up,
left vs down, and right vs up, right vs down) and within axes (left
vs right and up vs down) directions, we performed pairwise per-
mutation tests that were FDR corrected for multiple compari-
sons. Across-axes classification accuracies in lhPT ([left vs up] vs
[left vs right]: p 	 0.006; [left vs down] vs [left vs right]: p �
0.001; [right vs down] vs [left vs right]: p � 0.001; [right vs up] vs
[left vs right]: p 	 0.001), and rhPT ([left vs up] vs [left vs right]:
p 	 0.029; [left vs down] vs [left vs right]: p 	 0.014; [right vs
down] vs [left vs right]: p 	 0.02; [right vs up] vs [left vs right]:
p 	 0.003) were significantly higher compared with the horizon-
tal within-axis classification accuracies. Similarly, across-axes
classification accuracies were significantly higher when com-
pared with vertical within-axis classification accuracies in lhPT

Figure 3. Within-classification and cross-classification results. A, Classification results for
the four conditions in the functionally defined hPT region. Within-condition and cross-condition
classification results are shown in the same bar plots. Moving, four motion directions; Static,
four sound source locations; Cross, cross-condition classification accuracies. B, Classification
results of within-axes (left vs right, up vs down) and across-axes (left vs up, left vs down, right
vs up, right vs down) motion directions. C, Classification results of within-axes (left vs right, up
vs down) and across-axes (left vs up, left vs down, right vs up, right vs down) sound source
locations. LvsR, Left vs Right; UvsD, Up vs Down; LvsU, Left vs Up; LvsD, Left vs Down; RvsU, Right
vs Up; RvsD, Right vs Down classifications. FDR-corrected p values: *p � 0.05, **p � 0.01,
***p � 0.001 testing differences against chance level (dotted lines; see Materials and
Methods).
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([up vs down] vs [left vs up]: p 	 0.02; [up vs down] vs [left vs
down]: p 	 0.001; [up vs down] vs [right vs up]: p 	 0.001; [up
vs down] vs [right vs down]: p � 0.001) and rhPT ([up vs down]
vs [left vs up]: p 	 0.001; [up vs down] vs [left vs down]: p 	
0.001; [up vs down] vs [right vs up]: p 	 0.001; [up vs down] vs
[right vs down]: p 	 0.002). No significant difference was ob-
served between the within-axis classifications in lhPT ([left vs
right] vs [up vs down]: p 	 0.24) and rhPT ([left vs right] vs [up
vs down]: p 	 0.31). Similarly, no significance difference was
observed among the across-axes classification accuracies in the
bilateral hPT.

In static sound location classifications, no significant differ-
ence was observed between across-axes and within-axes classifi-
cation accuracies, indicating that the classifiers did not perform
better when discriminating sound source locations across axes
compared with the opposite locations.

One may wonder whether the higher classification accuracy
for across axes compared with within axes relates to the percep-
tual differences (e.g., difficulty in localizing) in discriminating
sounds within the horizontal and vertical axes. Indeed, because
we opted for an ecological design reflecting daily life listening
condition, we observed, as expected, that discriminating vertical
directions was more difficult than discriminating horizontal ones
(Middlebrooks and Green, 1991). To address this issue, we rep-
licated our classification MVPAs after omitting the four partici-
pants showing the lowest performance in discriminating the
vertical motion direction, leading to comparable performance (at
the group level) within and across axes. We replicated our pattern
of results by showing preserved higher classification accuracies
across axes than within axis. Moreover, while accuracy differ-
ences between across-axes and within-axes classifications was ob-
served only in the motion condition, behavioral differences were
observed in both static and motion conditions. To assess whether
the higher across-axes classification accuracies are due to differ-
ences in difficulties between horizontal and vertical sounds, we
performed correlation analysis. For each participant, the behav-
ioral performance difference between horizontal (left and right)
and vertical (up and down) conditions was calculated. The dif-
ference between the classification accuracies within axes (left vs
right and up vs down) and across axes (left vs up, left vs down,
right vs up, and right vs down) was calculated. Spearman corre-
lation between the (�) behavioral performance and (�) classifi-
cation accuracies was not significant in the bilateral hPT (lhPT:
r 	 0.18, p 	 0.49; rhPT: r 	 0.4, p 	 0.12). An absence of
correlation suggests that there is no relation between the differ-
ence in classification accuracies and the perceptual difference.
These results strengthen the notion that the axis of motion orga-
nization observed in PT does not simply stem from behavioral
performance differences.

Cross-condition classification. To investigate whether motion
direction and sound source locations rely on shared representa-
tion in hPT, we trained the classifier to distinguish neural pat-
terns from the motion directions (e.g., going to the left) and then
tested on the patterns elicited by static conditions (e.g., being in
the left), and vice versa.

Cross-condition classification revealed significant results
across four directions/locations (lhPT: mean � SD 	 27.8 � 5.3,
p 	 0.008; rhPT: mean � SD 	 28.7 � 3.8, p � 0.001; Fig. 3A).
Within-axis categories did not reveal any significant cross-
condition classification. These results suggest that a partial over-
lap between the neural patterns of moving and static stimuli in
the hPT.

Within orientation classification. Cross-condition classifica-
tion results indicated a shared representation between motion
directions and sound source locations. Previous studies have ar-
gued that successful cross-condition classification reflects an ab-
stract representation of stimuli conditions (Hong et al., 2012;
Fairhall and Caramazza, 2013; Higgins et al., 2017). To test this
hypothesis, patterns of the same orientation of motion and static
conditions (e.g., leftward motion and left location) were involved
in within-orientation MVPA. The rational was that if the hPT
region carries a fully abstract representation of space, within-
orientation classification would give results in favor of the null
hypothesis (no differences within the same orientation). In the
within-orientation classification analysis, accuracies from the
four within-orientation classification analyses were averaged and
survived FDR corrections in bilateral hPT (lhPT: mean � SD 	
65.6 � 5, p � 0.001; rhPT: mean � SD 	 61.9 � 5.6, p � 0.001),
indicating that the neural patterns of motion direction can be
reliably differentiated from sound source location within hPT
(Fig. 4A).

RSA
Multidimensional scaling
Visualization of the representational distance between the neural
patterns evoked by motion directions and sound source locations
further supported that within-axis directions show similar geom-
etry compared with the across-axes directions, therefore, it is
more difficult to differentiate the neural patterns of opposite di-
rections in MVP-classification. MDS also showed that in both
lhPT and rhPT, motion directions and sound source locations are
separated into 2 clusters (Fig. 4B).

Correlation with computational models
The correlation between model predictions and neural RDMs for
the lhPT and rhPT is shown in Figure 4D. The cross-condition
classification results indicated a shared representation within the
neural patterns of hPT for motion and static sounds. We exam-
ined the correspondence between the response pattern dissimi-
larities elicited by our stimuli, with 14 different model RDMs that
included a fully condition distinct, fully condition-invariant
models, and intermediate models with different degrees of shared
representation.

The first class of computational RDMs was modeled with the
assumption that the neural patterns of within-axis sounds are
fully distinct. The analysis revealed a negative correlation with the
fully condition-invariant model in the bilateral hPT (lhPT, mean
r � SD 	 �0.12 � 0.18; rhPT, mean r � SD 	 �0.01 � 0.2) that
increased gradually as the models progressed in the condition-
distinct direction. The model that best fit the data was the M9
model in the bilateral hPT (lhPT, mean r � SD 	 0.66 � 0.3;
rhPT, mean r � SD 	 0.65 � 0.3). A similar trend was observed
for the second class of models that have the assumption of within-
axis sounds that evoke similar neural patterns. The condition-
invariant model provided the least explanation of the data (lhPT,
mean r � SD 	 0.14 � 0.25; rhPT, mean r � SD 	 0.2 � 0.29),
and correlations gradually increased as the models progressed in
the condition-distinct direction. The winner models in this class
were the models M9 in lhPT and M7 in the rhPT (lhPT, mean r �
SD 	 0.67 � 0.22; rhPT, mean r � SD 	 0.69 � 0.15).

In addition, we assessed differences between correlation coeffi-
cients for computational models using the Mann–Whitney–Wilc-
oxon rank-sum test for each class of models and hemispheres
separately (Fig. 4D,E). In the Within-Axis Distinct class in lhPT,
pairwise comparisons of correlation coefficients did not show a
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significant difference for [Condition Distinct versus IM.9 (p 	
0.8)], [Condition Distinct versus IM7 (p 	 0.6); rhPT], and
[Condition Distinct versus IM.5 (p 	 0.09)]; however, as the
models progressed further in the condition-invariant direction,

the difference between correlation coefficients for models
reached significance ([Condition Distinct vs IM.3], p 	 0.012;
[Condition Distinct vs IM.1], p 	 0.007; [Condition Distinct vs
Condition Invariant], p � 0.001), indicating that the Condition-

Figure 4. Pattern dissimilarity between motion directions and sound source locations. A, Across-condition classification results across four conditions are represented in each ROI (lhPT and rhPT).
Four binary classifications [leftward motion vs left location], [rightward motion vs right location], [upward motion vs up location], and [downward motion vs down location] were computed and
averaged to produce one accuracy score per ROI. FDR-corrected p values: ***p � 0.001. Dotted lines represent chance level. B, The inset shows neural RDMs extracted from lhPT and rhPT, and the
MDS plot visualizes the similarities of the neural pattern elicited by four motion directions (arrows) and four sound source locations (dots). Color codes for arrow/dots are as follows: green indicates
left direction/location; red indicates right direction/location; orange indicates up direction/location; and blue indicates down direction/location. ML, Motion left; MR, motion right; MD, motion
down; MU, motion up; SL, static left; SR, static right; SD, static down; SU, static up. C–E, The results of RSA in hPT are represented. C, RDMs of the computational models that assume different
similarities of the neural pattern based on auditory motion and static conditions. D, E, RSA results for every model and each ROI. For each ROI, the dotted lines represent the reliability of the data
considering the signal-to-noise ratio (see Materials and Methods), which provides an estimate of the highest correlation we can expect in a given ROI when correlating computational models and
neural RDMs. Error bars indicate the SEM. IM1, Intermediate models with within-axis conditions distinct; IM2, Intermediate model with within-axis conditions combined. Each right up corner of the
bar plots shows visualization of significant differences for each class of models and hemispheres separately (Mann–Whitney–Wilcoxon rank-sum test, FDR corrected).
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Distinct model provided a stronger correlation compared with
the models representing conditions similarly. In rhPT, the rank-
sum tests between each pairs revealed no significant difference for
[Condition Distinct versus IM.9 (p 	 0.9)], [Condition Distinct
versus IM7 (p 	 0.7)], [Condition Distinct versus IM.5 (p 	
0.3)], and also [Condition Distinct versus IM.3 (p 	 0.06)]; how-
ever, as the models progressed further in the condition-invariant
direction, the difference between correlation coefficients for
models reached significance ([Condition Distinct vs IM.1], p 	
0.006; [Condition Distinct vs Condition Invariant], p � 0.001).

The two classes of models were used to deepen our under-
standing of the characteristic tuning of hPT for separate direc-
tion/location or axis of motion/location. To reveal the differences
between Within-Axis Distinct and Within-Axis Combine classes
of models, we relied on a two-sided signed-rank test. Within-Axis
Combined models explained our stimuli space better than
Within-Axis Distinct models supporting similar pattern repre-
sentation within planes (p 	 0.0023).

Discussion
In line with previous studies, our univariate results demonstrate
higher activity for moving than for static sounds in the superior
temporal gyri, bilateral hPT, precentral gyri, and anterior portion
of middle temporal gyrus in both hemispheres (Baumgart et al.,
1999; Pavani et al., 2002; Warren et al., 2002; Krumbholz et al.,
2005; Poirier et al., 2005). The most robust cluster of activity was
observed in the bilateral hPT (Fig. 2B, Table 1). Moreover, activ-
ity estimates extracted from independently defined hPT also re-
vealed higher activity for moving relative to static sounds in this
region. Both whole-brain and ROI analyses therefore clearly in-
dicated a functional preference (expressed here as higher activity
level estimates) for motion processing over sound source loca-
tion in bilateral hPT regions (Fig. 2).

Does hPT contain information about specific motion direc-
tions and sound source locations? At the univariate level, our four
(left, right, up, and down) motion directions and sound source
locations did not evoke differential univariate activity in hPT
region (Fig. 2C). We then performed multivariate pattern classi-
fication and observed that bilateral hPT contains reliable distrib-
uted information about the four auditory motion directions (Fig.
3). Our results are therefore similar to the observations made
with fMRI in the human visual motion area hMT�/V5 showing
reliable direction-selective multivariate information despite
comparable voxelwise univariate activity levels across directions
(Kamitani and Tong, 2006; but see Zimmermann et al., 2011).
Within-axis MVP classification results revealed that even if both
horizontal (left vs right), and vertical (up vs down) motion direc-
tions can be classified in the hPT region (Fig. 3C,D), across-axes
(e.g., left vs up) direction classifications revealed higher decoding
accuracies compared with within-axis classifications. Such en-
hanced classification accuracy across axes versus within axis is
reminiscent of observations made in MT�/V5, where a large-
scale axis of motion-selective organization was observed in non-
human primates (Albright et al., 1984) and in area hMT�/V5 in
humans (Zimmermann et al., 2011). Further examination with
RSA provided additional evidence that within-axis combined
models (aggregating the opposite directions/location) better ex-
plain the neural representational space of hPT by showing higher
correlation values compared with within-axis distinct models
(Fig. 4D,E). Our findings suggest that the topographic organiza-
tion principle of hMT�/V5 and hPT shows similarities in repre-
senting motion directions. Animal studies have shown that
hMT�/V5 contains motion direction-selective columns with

specific directions organized side by side with their respective
opposing motion direction counterparts (Albright et al., 1984;
Geesaman et al., 1997; Diogo et al., 2003; Born and Bradley,
2005), an organization also probed using fMRI in humans (Zim-
mermann et al., 2011; but see below for alternative accounts). The
observed difference for within-axis versus between-axis direction
classification may potentially stem from such underlying cortical
columnar organization (Kamitani and Tong, 2005; Haynes and
Rees, 2006; Bartels et al., 2008). Alternatively, it has been sug-
gested that classifying orientation preference reflects a much
larger-scale (e.g., retinotopy) rather than columnar organization
(Op de Beeck, 2010; Freeman et al., 2011, 2013). Interestingly,
high-field fMRI studies showed that the fMRI signal carries in-
formation related to both large-scale and fine-scale (columnar
level) biases (Gardumi et al., 2016; Pratte et al., 2016; Sengupta et
al., 2017). The present study sheds important new light on the
coding mechanism of motion direction within the hPT and dem-
onstrates that the fMRI signal in the hPT contains direction-
specific information and points toward an axis-of-motion
organization. This result highlights intriguing similarities be-
tween the visual and auditory systems, arguing for common
neural-coding strategies of motion directions across the senses.
However, further studies are needed to test the similarities be-
tween the coding mechanisms implemented in visual and audi-
tory motion-selective regions, and, more particularly, what
drives the directional information captured with fMRI in the
auditory cortex.

Supporting univariate motion selectivity results in bilateral
hPT, MVPA revealed higher classification accuracies for moving
sounds than for static sounds (Fig. 3A,B). However, despite min-
imal univariate activity elicited by sound source location in hPT,
and the absence of reliable univariate differences in the activity
elicited by each position (Fig. 2C), within-axis MVP classification
results showed that sound source location information can be
reliably decoded bilaterally in hPT (Fig. 3C). Our results are in
line with those of previous studies showing that posterior regions
in auditory cortex exhibit location sensitivity both in animals
(Recanzone, 2000; Tian et al., 2001; Stecker et al., 2005) and
humans (Alain et al., 2001; Zatorre et al., 2002; Warren and Grif-
fiths, 2003; Brunetti et al., 2005; Krumbholz et al., 2005; Ahveni-
nen et al., 2006, 2013; Deouell et al., 2007; Derey et al., 2016;
Ortiz-Rios et al., 2017). In contrast to what was observed for
motion direction, however, within-axis and across-axis classifi-
cations did not differ in hPT for static sounds. This indicates that
sound source locations might not follow topographic represen-
tations that are similar to the one observed for auditory motion
directions.

The extent to which the neural representations of motion di-
rections and sound source locations overlap has long been de-
bated (Grantham, 1986; Kaas et al., 1999; Romanski et al., 2000;
Zatorre and Belin, 2001; Smith et al., 2004, 2007; Poirier et al.,
2017). A number of neurophysiological studies have reported
direction-selective neurons along the auditory pathway (Ahissar
et al., 1992; Stumpf et al., 1992; Toronchuk et al., 1992; Spitzer
and Semple, 1993; Doan et al., 1999; McAlpine et al., 2000). How-
ever, whether these neurons code similarly for auditory motion
and sound source location remains debated (Poirier et al., 1997;
McAlpine et al., 2000; Ingham et al., 2001; Oliver et al., 2003). In
our study, cross-condition classification revealed that auditory
motion (e.g., going to the left) and sound source location (being
on the left) share partial neural representations in hPT (Fig. 3A).
This observation suggests that there is a shared level of computa-
tion between sounds located on a given position and sounds
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moving toward this position. Low-level features of these two
types of auditory stimuli vary in many ways and produce large
differences at the univariate level in the cortex (Fig. 2B). How-
ever, perceiving, for instance, a sound going toward the left side
or located on the left side evokes a sensation of location/direction
in the external space that is common across conditions. Our sig-
nificant cross-condition classification may therefore relate to the
evoked sensation/perception of an object being/going to a com-
mon external spatial location. Electrophysiological studies in an-
imals demonstrated that motion-selective neurons in the
auditory cortex display a response profile that is similar for
sounds located or moving toward the same position in external
space (Ahissar et al., 1992; Poirier et al., 1997; Doan et al., 1999).
Results from human psychophysiological and auditory evoked
potential studies also strengthen the notion that sound source
location contributes to motion perception (Strybel and Neale,
1994; Getzmann and Lewald, 2011). Our cross-condition MVPA
results therefore extend the notion that motion directions and
sound source locations might have common features that are
partially shared for spatial hearing.

Significant cross-condition classification based on a multivar-
iate fMRI signal has typically been considered as a demonstration
that the region implements a common and abstracted represen-
tation of the tested conditions (Hong et al., 2012; Fairhall and
Caramazza, 2013; Higgins et al., 2017). For instance, a recent
study elegantly demonstrated that the human auditory cortex at
least partly integrates interaural time differences (ITDs) and
interaural level differences (ILDs) into a higher-order represen-
tation of auditory space based on significant cross-cue classifica-
tion (training on ITD and classifying ILD, and the reverse;
Higgins et al., 2017). In the present study, we argue that even if
cross-condition MVP classification indeed demonstrates the
presence of partially shared information across sound source lo-
cation and direction, successful cross-MVPA results should,
however, not be taken as evidence that the region implements a
purely abstract representation of auditory space. Our successful
across-condition classification (Fig. 4A) demonstrated that, even
though there are shared representations for moving and static
sounds within hPT, classifiers are able to easily distinguish mo-
tion directions from sound source locations (e.g., leftward vs left
location). RSAs further supported the idea that moving and static
sounds elicit distinct patterns in hPT (Fig. 4B–D). Altogether, our
results suggest that hPT contains both motion direction and
sound source location information but that the neural patterns
related to these two conditions are only partially overlapping.
Our observation of significant cross-condition classifications
based on highly distinct patterns of activity between static and
moving sounds may support the notion that even if location
information could serve as a substrate for movement detection,
motion encoding does not solely rely on location information
(Ducommun et al., 2002; Getzmann, 2011; Poirier et al., 2017).
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Levänen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau
JW (2006) Task-modulated “what” and “where” pathways in human
auditory cortex. Proc Natl Acad Sci U S A 103:14608 –14613.

Ahveninen J, Huang S, Nummenmaa A, Belliveau JW, Hung AY, Jääskeläinen
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