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Reactive oxygen species (ROS) are common by-products of normal aerobic cellular metabolism and play important physiological
roles in intracellular cell signaling and homeostasis. The human body is equipped with antioxidant systems to regulate the levels of
these free radicals and maintain proper physiological function. However, a condition known as oxidative stress (OS) occurs, when
ROS overwhelm the body’s ability to readily detoxify them. Excessive amounts of free radicals generated under OS conditions cause
oxidative damage to proteins, lipids, and nucleic acids, severely compromising cell health and contributing to disease development,
including cancer. Biomarkers of OS can therefore be exploited as important tools in the assessment of disease status in humans. In
the present review, we discuss different approaches used for the evaluation of OS in clinical samples. The described methods are
limited in their ability to reflect on OS only partially, revealing the need of more integrative approaches examining both pro-
and antioxidant reactions with higher sensitivity to physiological/pathological alternations. We also provide an overview of
recent findings of OS in patients with different types of cancer. Identification of OS biomarkers in clinical samples of cancer
patients and defining their roles in carcinogenesis hold great promise in promoting the development of targeted therapeutic
approaches and diagnostic strategies assessing disease status. However, considerable data variability across laboratories makes it
difficult to draw general conclusions on the significance of these OS biomarkers. To our knowledge, no adequate comparison
has yet been performed between different biomarkers and the methodologies used to measure them, making it difficult to
conduct a meta-analysis of findings from different groups. A critical evaluation and adaptation of proposed methodologies
available in the literature should therefore be undertaken, to enable the investigators to choose the most suitable procedure for
each chosen biomarker.

1. Introduction

Reactive oxygen species (ROS) are chemically reactive mole-
cules containing oxygen that play several beneficial roles for
the organism. At low/moderate concentrations, they are
needed for physiological activities such as intracellular cell
signaling and homeostasis, cell death, immune defense
against pathogens, and induction of mitogenic response
[1–5]. These free radicals are produced endogenously as a
natural by-product of the normal cellular metabolism of
oxygen. Additionally, they can be induced by exogenous
sources such as UV light, ionizing radiation, lifestyle, diet,
stress, and smoking. Maintaining equilibrium between the
reducing and oxidizing states is crucial for proper

physiological functions; therefore, living organisms are
equipped with antioxidant defense systems, consisting of
both enzymatic and nonenzymatic antioxidants, to regulate
the levels of these free radicals [6–11].

An imbalance between the production of ROS and the
ability of the antioxidant systems to readily detoxify these
reactive intermediates results in oxidative stress. Free radicals
generated in excessive and uncontrollable amounts under
oxidative stress conditions cause damage to DNA, proteins,
and lipids, which can severely compromise cell health and
contribute to disease development [12–14]. Indeed, in the
past years, considerable research has demonstrated that
oxidative stress is involved in the natural process of aging
as well as a wide variety of human diseases, including
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neurodegenerative disorders, multiple sclerosis, cardiovas-
cular disease, rheumatoid arthritis, and cancer [15–22].
Consistent with this relationship between oxidative stress
and human disease, numerous studies have suggested
that an increase in dietary antioxidant intake reduces
the risk for coronary heart disease [23], Alzheimer’s disease
[24–26], Parkinson disease [27], ischemic stroke [28–31],
and asthma [32].

Biomarkers of oxidative stress are therefore important
tools in the assessment both of disease status and of the
health-enhancing effects of antioxidants in humans. In this
review, we aim to discuss different methods and approaches
used for the evaluation of oxidative stress in clinical samples,
as well as to review recent findings of oxidative stress in
patients with different types of cancer.

2. Methods and Approaches to Measure
Oxidative Stress in Clinical Samples

2.1. Direct Measurement of Reactive Oxygen Species. Reactive
oxygen species (ROS) are the key molecules responsible for
the deleterious effects of oxidative stress. Direct measure-
ment of their cellular levels is therefore one approach to
determine oxidative stress conditions.

One way to estimate the cellular levels of ROS is
through the use of fluorogenic probes [33–41]. Hydrogen
peroxide (H2O2), hydroxyl radicals (OH-), and peroxyl
radicals (ROO-) can be measured following staining with
5-(and -6)-carboxy-2′,7′-dichlorodihydrofluorescein diace-
tate (DCFDA). This membrane-permeable probe diffuses
into the cells where it becomes hydrolyzed by intracellular
esterase to DCFH. The latter remains trapped within
the cells and reacts with H2O2, generating the fluorescent
2′,7′-dichlorofluorescein (DCF). Therefore, the amount of
peroxide produced by the cells can be estimated by the
fluorescence intensity of DCF (λexcitation = 488 nm and
λemission = 530 nm) as analyzed by flow cytometry or by
employing a fluorescence plate reader [39]. On the other
hand, superoxide molecules (O2

-) can be detected follow-
ing staining with another fluorescent probe, dihydroethi-
dium (DHE). The sodium borohydride-reduced form of
ethidium bromide is also permeable to viable cells. Inside
the cells, DHE is directly oxidized to ethidium bromide
by the superoxide anion, which then fluoresces. The red
fluorescence, measured using an excitation of 488nm and
an emission of 585 nm, is therefore considered to be propor-
tional to the intracellular superoxide anion levels [34, 38].
Another way to quantify ROS molecules such as hydroperox-
ides (R-OOH), particularly in serum, is by assessing the
derivatives of reactive oxygen metabolites (D-Roms) test, as
described by Trotti et al. [42]. In this assay, a small amount
of patient serum is dissolved in an acetate-buffered solution
(pH4.8). Transition metal ions (Fe2+, Fe3+), liberated from
the proteins in the acidic medium, react with hydroperoxide
groups converting them into alkoxy (R-O•) and peroxy
(R-OO•) radicals by way of the Fenton reaction. These newly
formed radicals become trapped chemically with a chromo-
gen (N,N-diethyl-para-phenylendiamine) leading to the

formation of the corresponding radical cation. The concen-
trations of these newly formed radicals, which are directly
proportional to those of the peroxides present in serum, are
then determined by spectrophotometric procedures at an
absorption of 505nm [42–45].

2.2. Assessment of Oxidative Damage. Direct measurement of
ROS levels with high accuracy and precision is difficult due to
their short lifespan and rapid reactivity with redox state reg-
ulating components. While peroxyl radicals and hydrogen
peroxide are relatively stable molecules (with half-lives of
seconds to minutes), hydroxyl radicals are very reactive
(having a half-life of less than a nanosecond) [46–49]. There-
fore, indirect measurement of ROS by examining the oxida-
tive damage these radicals cause to the lipids, proteins, and
nucleic acids of the cells is a promising alternative approach
to assess oxidative stress in clinical samples.

2.2.1. Protein Damage. Protein carbonyl (PC) content is a
commonly used marker of oxidative modification of pro-
teins, providing significant evidence of oxidative stress in
clinical samples. PCs are generated due to the oxidation of
protein backbones and amino acid residues such as proline,
arginine, lysine, and threonine by ROS molecules [50]. The
oxidized proteins can be measured using the 2,4-dinitrophe-
nylhydrazine (DNPH) method as described by Levine et al.
[51], and simplified by Mesquita et al. [52]. In this assay,
DNPH reacts with PCs, forming a Schiff base to produce
dinitrophenylhydrazone products, the levels of which can
be analyzed spectrophotometrically at 375nm and correlated
to the levels of oxidized proteins [51–54]. Alternatively,
PC contents can be identified by 2D gel electrophoresis and
western blot [55, 56], or by OxyBlot according to Butterfield
et al. [57, 58].

The detection of advanced oxidation protein products
(AOPP), according to Witko-Sarsat et al., is another
approach to assess protein oxidation in clinical samples.
AOPP, also defined as dityrosine containing cross-linked
protein products, are generated through the reaction of
plasma proteins with chlorinated oxidants such as chlora-
mines. In this method, plasma or serum of patients, cali-
brated with chloramine-T, is mixed with potassium iodide
and acetic acid and the absorbance is spectrophotometrically
read at 340 nm [59, 60].

2.2.2. Lipid Damage. Lipid peroxidation has been commonly
used as an indicator of ROS-mediated damage to cell mem-
branes. Malondialdehyde (MDA) is one of the best studied
end-products of peroxidation of polyunsaturated fatty acids
in clinical samples and is frequently used to estimate oxida-
tive stress conditions [61]. The levels of MDA can be mea-
sured using thiobarbituric acid reactive substances (TBARS)
[62–67] as described by Donnan [68], Yagi [69], Mihara
and Uchiyama [70], Buege and Aust [71], Ohkawa et al.
[72], or Yoshioka et al. [73]. In all these methods, MDA
reacts with TBARS in acidic medium at 100°C to generate a
pink/red-colored productwhich canbe extractedwith butanol
and measured using a spectrophotometer at an absorbance of
520-535 nm or by a fluorimeter at λexcitation = 515 nm and

2 Oxidative Medicine and Cellular Longevity



λemission = 555 nm. The TBARS method is rapid and easy;
however, aldehydes other than MDA may also react with
TBARS, producing derivatives that absorb light in the
same wavelength range [74]. Alternatively, plasma MDA
can be measured using high-performance liquid chroma-
tography (HPLC) employing a C18 reversed-phase column
[75] as described by Victorino et al. [76] or by gas
chromatography-mass spectrometry (GC-MS) on a capillary
column following transmethylation with sodium methoxide
[77–79]. While this method determines MDA levels more
reproducibly and reliably, the individual sample processing
makes it time-consuming, labor-intensive, and impractical.

Other lipid peroxidation markers include 8-iso-
prostaglandin F2α (8-iso-PGF2α), 4-hydroxy-2-nonenal
(4-HNE), conjugated dienes (CD), and lipid hydroperoxides
(LOOH), providing different reliable approaches for the
identification of oxidative damage to the cell’s lipids.
8-Iso-PGF2α, generated as a result of nonenzymatic perox-
idation of arachidonic acid in membrane phospholipids,
can be measured using rapid ultra-high-performance liquid
chromatography-tandem mass spectrometry, noting the lim-
itations of being labor-intensive and requiring specialized
and expensive instrumentation [80, 81]. Unsaturated hydro-
xyalkenal 4-HNE can be investigated in tissues, preferably
using immunohistochemistry (IHC), or HPLC [82, 83].
CDs, produced as a consequence of free radical-induced
autoxidation of polyunsaturated fatty acids (PUFAs), can be
detected according to Suryanarayana Rao and Recknagel,
which follows the maximal absorption of UV light at
233nm by these compounds [84–86]. Finally, LOOHs, which
are the primary oxidation products of PUFAs, can be deter-
mined by the ferrous oxidation xylenol orange (FOX) assay,
based on the ability of LOOH to oxidize ferrous iron in the
presence of xylenol orange, leading to the formation of a
colored ferric-xylenol orange complex, with an absorbance
at 560nm [87, 88].

Oxidized levels of low-density lipoproteins (LDL) are
also sometimes measured in human serum or plasma as
established biosensors of oxidative stress, using a sandwich
ELISA based on the proprietary mouse monoclonal antibody
4E6, which is directed against a conformational epitope in
oxidized ApoB-100. However, this method may fall short
on antibody specificity for oxLDL as native LDL may also
be detected [89–91].

2.2.3. DNA Damage. 8-Hydroxy-2′-deoxyguanosine
(8-OHdG) is one of the major oxidative modifications in
DNA that is generated by hydroxylation of the deoxyguano-
sine residues. 8-OHdG residues can be excised from the
DNA by enzymatic repair systems, leading to their circula-
tion in the blood and subsequent excretion in the urine
[92]. Levels of 8-OHdG in blood and/or urine of patients
can therefore be measured as a marker of oxidative DNA
damage. 8-OHdG is frequently examined using HPLC
coupled with an electrochemical detector (ECD) [93–96]
based on the procedures elaborated by Shigenaga et al. [97],
Toyokuni et al. [98], or Helbock et al. [99]. In spite of its
sensitivity and accuracy, the HPLC-ECD method is not very
convenient for analyzing 8-OHdG contents in clinical

samples because of its cost, technical involvement, and low
throughput [100]. Alternative and simpler ways to measure
this DNA damage marker include the enzyme-linked immu-
nosorbent assay (ELISA) [55, 82, 100–102] and immunohis-
tochemical analysis [82, 101–105]. 8-oxodG can also be
identified by OxyDNA-FITC conjugate binding followed by
analysis by flow cytometry for fluorescence at λexcitation =
495 nm and λemission = 515 nm [36].

Thymidine glycol (TG) is another principal DNA lesion
caused by oxidative stress. TG is a more specific marker for
oxidative DNA damage because thymidine, unlike guano-
sine, is not incorporated into RNA. Moreover, TG is sus-
tained in tissues while 8-OHdG is rapidly excised from
DNA and excreted in urine. Therefore, TG is an appropriate
marker for oxidative DNA damage in tissue specimens.
Accumulation of TG in tissues can be examined immunohis-
tochemically using the streptavidin-biotin-peroxidase com-
plex method [44].

Single- or double-stranded breaks within the DNA are
also generated during oxidative stress conditions. These oxi-
dative DNA lesions can be identified using the comet assay,
which is based on the ability of cleaved DNA fragments to
migrate out of the nucleus when an electric field is applied,
unlike the undamaged DNA which migrates slower and
remains within the nucleoid. Assessment of the DNA
“comet” tail shape and migration pattern can therefore be
used to evaluate DNA damage within cells [35, 36].

More generally, various modified DNA bases in
clinical samples can also be measured using gas
chromatography-mass spectrometry with selected ion
monitoring (GC/MS-SIM) as described by Dizdaroglu
[106]. Here, the quantification of these products is done by
isotope-dilution mass spectrometry using their stable
isotope-labeled analogues as internal standards.

It is worth mentioning that the DNA base modifica-
tions detected with all these methods, although very
important, do not provide information as to whether the
damage is in active genes or in quiescent DNA. However,
it seems likely that the “exposed” and active DNA would be
more sensitive to oxidative damage than that packaged into
condensed chromatin.

Alternatively, DNA repair enzymes, such as human
8-oxoguanine-DNA-glycosylase (hOGG) and apurinic/apyr-
imidinic endonuclease (APE), which repair the endogenous
DNA damage induced by increased ROS levels, can be evalu-
ated to estimate oxidative damage in clinical samples. Their
levels can be determined by IHC analysis [107, 108] or HPLC
[109] while the activity of the hOGG enzyme can be assessed
according to the method of Yamamoto et al. [110], which
uses a double-stranded 22 bp oligonucleotide substrate
containing one 8-OHdG paired with deoxycytidine at the
complementary strand and labeled with FITC.

2.3. Assessment of Antioxidant Status. The human body is
equipped with an antioxidant system that serves to counter-
balance the deleterious effects of oxidative free radicals.When
the balance between antioxidants and ROS species, referred to
as redox homeostasis, is disturbed, oxidative stress can occur.
The disturbance of this prooxidant and antioxidant balance
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can be a result of increased free radical production, antioxi-
dant enzyme inactivation, or excessive antioxidant consump-
tion. Assessment of the antioxidant status can thereby be
correlated to the extent of oxidative stress in clinical samples.

Redox homeostasis is regulated by two arms of antiox-
idant machineries: enzymatic components and nonenzy-
matic, low molecular compounds. Several approaches have
been developed to measure the different activities or levels
of these antioxidants. Alternatively, the total antioxidant
status can be evaluated to assess the oxidative state of
clinical samples.

2.3.1. Enzymatic Antioxidants

(1) Superoxide Dismutase. Superoxide dismutase (SOD) is a
family of antioxidant enzymes that regulate ROS levels by
catalyzing the conversion of superoxide to hydrogen perox-
ide and molecular oxygen [61].

Their total activity can be determined using a method
described by McCord and Fridovich [111] or Misra and
Fridovich [112]. The basis of this method is the ability of
SOD to inhibit the autoxidation of adrenaline to adreno-
chrome in a basic medium, which can be measured at an
absorption of λ = 480 nm [66, 67]. Another method to
directly measure the activity of SOD has been established
by Marklund and Marklund [113] and described by Roth
and Gilbert [114] and is based on a similar principle. Instead
of epinephrine autoxidation, their method conversely inves-
tigates the ability of SOD to inhibit the autoxidation of
pyrogallol into a yellow solution that can be measured at an
absorbance of 420nm [75].

Alternatively, SOD activity can be measured using indi-
rect methods developed by Nishikimi et al. [115] & Kakkar
et al. [116] or Oyanagui (1984) & Sun et al. (1988) [117,
118]. The principle of this indirect method is that superoxide
radicals, generated by the NADH/D-amino acid
oxidase-phenazine methosulfate (PMS) system or the
xanthine-xanthine oxidase system, respectively, cause the
reduction of tetrazolium salts such as 2-(4-idophenyl)
3-(4-nitrophenol)-5-phenyltetrazolium (INT), 3′-{1-[(phe-
nylamino)-carbonyl]-3,4-tetrazolium}-bis (4-methoxy-6-
nitro)benzenesulfonic acid (XTT), or nitro blue tetrazolium
(NBT), into blue formazan which can be measured spec-
trophotometrically at 470-560 nm. The SOD in the sam-
ples competes for the generated superoxide radicals,
thereby inhibiting the reaction of tetrazolium reduction
[77–79, 119–123]. In all the methods discussed above, a
unit of SOD is generally defined as the amount of the
enzyme which causes inhibition of the reaction (autoxidation
of adrenaline, autoxidation of pyrogallol, or tetrazolium
reduction).

It is worth noting that these methods can also be applied
following a separation step in sample preparation to
determine the different activities of the three SOD isoforms
(cytosolic Cu/Zn-SOD, mitochondrial MnSOD, and extra-
cellular EC-SOD). Due to its affinity to heparin, EC-SOD
can be separated from the intracellular isoforms by passing
the samples over a concanavalin A sepharose column [124].
On the other hand, applying differential centrifugation to

the samples results in a mitochondrial pellet and cytosolic
supernatant, which can be used to assess the separate activi-
ties of MnSOD and Cu/Zn-SOD, respectively [125, 126].
The selective measurement of MnSOD activity can also be
achieved by the addition of sodium cyanide to the samples
to inhibit the Cu/Zn-SOD isoform [127, 128].

(2) Catalase. Catalase is a ubiquitously expressed antioxidant
enzyme that is responsible for the degradation of hydrogen
peroxide into water and oxygen [129]. Numerous methods
have been designed to assess the activity of this antioxidant
in biological samples. A quantitative spectrophometric
method, developed by Beers and Sizer [130] and described
by Nelson and Kiesow [131] or Aebi [132], follows the break-
down of hydrogen peroxide catalyzed by catalase, by observ-
ing the decrease in ultraviolet absorbance of a hydrogen
peroxide solution at λ = 240 nm as a function of time
[67, 75, 77–79]. Another simple colorimetric assay based
on the utilization of hydrogen peroxide by catalase using
the K2Cr2O7/acetic acid reagent has been described by
Sinha [133]. When heated in the presence of hydrogen
peroxide, the dichromate in acetic acid reduces to chromic
acetate, which can be measured colorimetrically at 610nm
[119]. In both these methods, the catalase activity is deter-
mined by the disappearance of hydrogen peroxide and
each unit is therefore defined as the amount that degrades
1 μmol of hydrogen peroxide per minute. Alternatively, the
activity of the catalase enzyme can be determined using
another spectrophotometric assay developed by Goth [134],
which measures the stable complex formation of hydrogen
peroxide with ammonium molybdate at an absorbance of
405 nm [121].

In contrast to the previously discussed assays, the method
developed by Johansson and Håkan Borg [135] determines
the activity of catalase using its peroxidatic function of alco-
hol oxidation. In this method, the formaldehyde, generated
by the reaction of catalase with methanol in the presence
of an optimal concentration of hydrogen peroxide, is mea-
sured spectrophotometrically at λ = 550 nm with purpald
reagent (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole)
as a chromagen [123].

(3) Glutathione Peroxidase. Glutathione peroxidase (GPx) is
another antioxidant enzyme that catalyzes the reduction of
hydrogen peroxide and lipid peroxides to water and their
corresponding lipid alcohols via the oxidation of reduced
glutathione (GSH) into glutathione disulfide (GSSG) [136].
Its activity can be assessed by the method of Rotruck et al.
[137], as described by Hafeman et al. [138], in which the
samples are incubated with hydrogen peroxide in the pres-
ence of glutathione for a particular time period. The amount
of utilized hydrogen peroxide is then determined by directly
estimating GSH content using Ellman’s reagent, 5,5′-dithio-
bisnitrobenzoic acid (DTNB) (discussed in Section 1) [139].
Another method developed by Kokatnur and Jelling [140]
and later described by Paglia and Valentine [141] and Pleban
et al. [142] relies on a similar principle, with GPx catalyzing
the oxidation of glutathione by cumene hydroperoxide
(for selenium-independent GPx) or hydrogen peroxide
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(for selenium-dependent GPx). However, in this method,
the oxidized glutathione is later reduced by exogenous glu-
tathione reductase causing the coenzyme of the reaction,
NADPH, to become oxidized into NADP+. The change
in the absorbance can then be read spectrophometrically
at λ = 340 nm [67, 119, 123, 143].

(4) Glutathione S-Transferase. Glutathione S-transferases
(GSTs) are members of the multigene family of isoenzymes
that are ubiquitously expressed in humans. In addition to
their catalytic role in conjugating GSH to a variety of harmful
electrophilic compounds for detoxification, a number of GST
isoenzymes reduce lipid hydroperoxides through their
selenium-independent GPx activity and detoxify lipid per-
oxidation end-products such as 4-HNE [144, 145]. Their
activity is most commonly determined by the method of
Habig et al. [146], which is based on the ability of GST to
conjugate 1-chloro-2,4-dinitrobenzene (CDNB) to reduced
glutathione. The conjugation is accompanied by an increase
in absorbance at 340nm which can be measured spectropho-
metrically to directly estimate the level of GST activity in
clinical samples [66, 119, 123, 143].

2.3.2. Nonenzymatic Antioxidants

(1) Glutathione. Inside the cell, free glutathione can exist as
the reduced GSH and oxidized GSSG forms, although it is
primarily maintained in the former state by glutathione
reductase [147]. GSH is the most abundant intracellular
low-molecular-weight thiol and plays a critical role in meta-
bolic protective functions, including hydroperoxide reduc-
tion, xenobiotic detoxification, and free radical scavenging
[148]. The levels of GSH are commonly determined by the
method developed by Ellman [139] and described by Beutler
et al. [149], Sedlak and Lindsay [150], or Hu [151], based on
the ability of the Ellman reagent, DTNB, to react with com-
pounds containing sulfhydryl groups, yielding a mixed disul-
fide (GS-TNB) and 2-nitro-5-thiobenzoic acid (TNB). The
levels of the latter are quantified spectrophometrically by
measuring the absorbance of the anion (TNB2-) at 412 nm
using a molar extinction coefficient of 14,150M-1 cm-1

[143]. This method has been modified by Tietze [152] using
an enzymatic recycling procedure by glutathione reductase
to enhance the sensitivity of the assay and to measure instead
the total glutathione content of the biological samples. In this
method, the NADPH-dependent glutathione reductase of the
recycling system subsequently reduces the generated
GS-TNB, releasing a second TNB molecule and recycling
GSH, thereby amplifying the response. In addition, any
GSSG, present in the samples or formed during the reaction,
is also reduced to GSH by glutathione reductase. Therefore,
the glutathione concentration of the sample measured at an
absorbance of 415nm would account for both GSH and
GSSG levels [75, 153].

Alternatively, the level of GSH can be determined
using the GSH-400 method, based on a two-step chemical
reaction followed by a spectrophotometric detection. First,
4-chloro-7-trifluoromethylbenzopyridine reacts with all
mercaptans present in the sample to form substitution

products (thioethers). Then, the passage through an alka-
line medium gives rise to a specific β-elimination reaction
of the thioether obtained with glutathione, leading to the
formation of a chromophoric thione with an absorbance
of 400nm [83, 154].

Fluorometric assays have also been developed for glu-
tathione analysis offering high specificity and specificity.
The most frequently used probe, ortho-phthalaldehyde
(OPA) or its analogue 2,3-naphthalenedicarboxaldehyde,
reacts with GSH to form a highly fluorescent product with
Ex/Em = 340/420 nm [155–157]. Other fluorescent probes,
such as monochlorobimane (MCB) and monobromobi-
mane (MBB), used less frequently, also form stable fluo-
rescent adducts with GSH, which can be determined at
Ex/Em = 394/490 nm. In comparison with OPA, MCB
and MBB have the substantial advantage of penetrating into
the cell to react directly with cellular thiols, preventing possi-
ble GSH oxidation after cell lysis and allowing analysis by
flow cytometry and fluorescence microscopy [158–161].

(2) Vitamin A. Vitamin A refers to a group of fat-soluble ret-
inoids (retinol, retinal, and retinyl esters) and provitamin A
carotenoids (most notably β-carotene) that function as
important dietary antioxidants, due to their ability to scav-
enge and directly neutralize free radicals [162]. The levels
of retinoids and carotenoids are typically measured in
plasma/serum or tissue samples to assess vitamin A inad-
equacy using atmospheric pressure chemical ionization
(APCI) liquid chromatography/mass spectrometry [80, 163]
or reversed-phase HPLC [164–168].

(3) Vitamin C. Water-soluble vitamin C (ascorbic acid), pri-
marily found in the cytosol and extracellular fluid, plays a
protective effect in reducing oxidative damage by reacting
with ROS molecules such as aqueous peroxyl radicals
[14, 169]. The total ascorbic acid level is commonly esti-
mated by the method developed by Roe and Keuther
[170]. This method involves the oxidation of ascorbic acid
into dehydroascorbic acid by Cu2+, followed by its coupling
with 2,4-dinitrophenylhydrazine (DNPH). The resulting
derivative is then treated with strong acid leading to the
production of an orange-red product, which can be mea-
sured spectrophometrically at 520 nm [171]. Ascorbic acid
can also be measured using the method developed by
Zannoni et al. In this method, ferric iron is reduced by
ascorbic acid, producing ferrous iron, which then forms
a red-colored complex with 2,2′-dipyridyl, displaying an
absorbance at 520nm [172]. It is worth noting that incuba-
tion of the samples with dithiothreitol prior to performing
this assay, as suggested by Masato, would reduce dehydroas-
corbic acid into ascorbic acid, enabling the determination of
total ascorbic acid in clinical samples [173]. Alternatively, the
levels of vitamin C can be determined using reversed-phase
HPLC [174–177].

(4) Vitamin E. Vitamin E (α-tocopherol) is a lipid-soluble
vitamin which acts as a lipid peroxyl radical scavenger,
preventing lipid peroxidation chain reactions in the cell
membranes [14, 169].
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Its level can be measured by the method of Emmerie and
Engel [178], later described by Hashim and Schuttringer
[179] and Baker et al. [180], and is based on the reduction
of ferric ions to ferrous ions by α-tocopherol. Similar to the
method by Zannoni et al. (discussed in Section 3), the ferrous
ions are then coupled with 2,2′-dipyridyl, which can be
detected colorimetrically at 520nm [119]. The method of
Desai also involves the reduction of ferric ions by vitamin
E, but the formation of a pink-colored complex is achieved
with batophenanthroline orthophosphoric acid, and the
absorbance is read at 536 nm [181].

Vitamin E levels in serum can also be estimated using
fluorometry by the method of Hansen and Warwick
[182]. Following the precipitation of serum proteins by
alcohol, vitamin E can be extracted into hexane level
and quantified at λexcitation = 295 nm and λemission = 340 nm
[183]. Alternatively, tocopherols can be analyzed by gas
chromatography-mass spectrometry (GC-MS) on a SPB1
column using a selected ion monitoring technique [77–79]
or by reversed-phase HPLC [164–166, 168].

2.3.3. Total Antioxidant Capacity. Until recently, investi-
gating the status of antioxidants has been carried out by
measuring the levels or activities of each separately. How-
ever, measurement of the overall effect of antioxidants can
be quite useful in assessing the oxidative state in clinical
samples due to the various interactions between the differ-
ent antioxidants [184]. Several methods that are less
time-consuming and labor-intensive have therefore been
developed to determine the total antioxidant status (TAS)
in clinical samples.

The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) reduction
assay is a method that uses free radical traps to assess the
antioxidant capacity of the samples. DPPH is a stable free
radical due to the delocalization of the spare electron over
the molecule as a whole, with a deep violet color character-
ized by an absorption band at 520nm. When DPPH is mixed
with an antiradical compound that can neutralize it, it
becomes colorless. Therefore, the decrease in optical density
of DPPH radicals is monitored to evaluate the antioxidant
potential of the samples [185–187].

The 2,2′-azino-bis (3-ethylbenz-thiazoline-6-sulfonic
acid) (ABTS) assay, developed by Erel [188, 189], similarly
uses a strongly colored stable radical compound to evaluate
the antioxidant state of samples. Here, ABTS is first oxidized
by metmyoglobin and hydrogen peroxide into its radical cat-
ion form (ABTS•+), a blue-green chromophore with an
absorption at 750nm. When antioxidants are added,
ABTS•+ is reduced to ABTS and becomes decolorized again.
Therefore, this method also follows the discoloration of
the stable radical spectrophotometrically to measure the
relative antioxidant ability of the samples. This assay is
often referred to as Trolox equivalent antioxidant capacity
(TEAC) method, because the reaction rate is commonly
calibrated with a water-soluble analogue of vitamin E, Trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid),
as an antioxidant standard. The ABTS assay has an advantage
over other techniques in that it is freely soluble in both

organic and aqueous solvents so it is applicable for both
hydrophilic and lipophilic antioxidants [90, 185, 190–193].

The total radical-trapping antioxidant parameter (TRAP)
assay is another free radical trapping method which has been
widely applied to evaluate the antioxidant capacity particu-
larly in plasma. In this assay, thermal decomposition of the
water-soluble azo compound 2,2′-azobis(2-methylpropiona-
midine) dihydrochloride (ABAP) generates peroxyl radicals
at a known steady rate, which is monitored through a linear
decrease in R-phycoerythrin (R-PE) fluorescence over time
using a luminescence spectrometer (λexcitation = 495 nm and
λemission = 575 nm). When the sample is added to the reaction
mixture, the antioxidants provide protection for the fluores-
cence decay of R-PE. The length of the lag phase is therefore
used to directly estimate the total antioxidant capacity
[75, 185, 194, 195]. This method is relatively more complex
and time-consuming than the others are.

The ferric-reducing antioxidant power (FRAP) assay is a
simpler and faster method to assess the antioxidative poten-
tial of plasma; however, this method cannot detect antioxi-
dants that act by radical quenching. The colorimetric assay
is based on the ability of antioxidants to reduce the ferric tri-
pyridyltriazine (Fe3+-TPTZ) complex to the ferrous form at
low pH. The end-product (Fe2+-TPTZ) has an intense blue
color with absorption at 593nm which can be monitored
using a diode-array spectrophotometer to estimate the anti-
oxidant capacity of the samples [45, 185, 196].

The biological antioxidant potential (BAP) test is another
assay based on the ability of antioxidants to reduce ferric ions
to ferrous ions. However, in this method, ferric ions are
bound to a chromogenic thiocyanate derivative substrate,
which becomes decolorized when the ferric ions are reduced
to ferrous ions by the antioxidants of the serum sample. This
reduction is therefore quantified to estimate the antioxidant
capacity of the sample by measuring the absorbance change
at 505nm [44, 197].

As for the method developed by Koracevic et al., a stan-
dardized solution of the Fe-EDTA complex reacts with
hydrogen peroxide by a Fenton-type reaction leading to the
formation of hydroxyl radicals which degrade sodium benzo-
ate solution resulting in the release of colored TBARS. Addi-
tion of antioxidants inhibits the production of TBARS, and
the inhibition of color development is detected spectrophoto-
metrically at 532nm to estimate the total antioxidant status
in the clinical samples [198].

3. Oxidative Stress in Clinical Samples of
Cancer Patients

ROS is a contributing factor in the natural process of aging as
well as in various pathological diseases including cancer. Oxi-
dative stress has been reported in almost all types of cancers,
promoting many aspects of tumor development and progres-
sion [199]. During the process of carcinogenesis, an increase
in ROS levels can occur due to elevated metabolic activity,
oncogene activation, increased cellular receptor signaling,
or mitochondrial dysfunction. Overproduction of ROS can
also be induced exogenously by carcinogenic insults such

6 Oxidative Medicine and Cellular Longevity



as cigarette smoke, heavy metals, ionizing radiation, and
asbestos [199–202]. Alternatively, oxidative stress observed
in cancer cells can arise from low levels or inactivation
of antioxidant defense mechanisms as a result of muta-
tions in tumor suppressor genes. For instance, mutant
BRCA1 and p53 have been shown to attenuate the activa-
tion and function of nuclear factor (erythroid-derived 2)-
like 2 (Nrf2), a transcription factor that stimulates a
stress response pathway by inducing expression of ROS-
detoxifying enzymes [203–205].

The free radicals, generated during oxidative stress con-
ditions, can consequently act as secondary messengers in
intracellular signaling pathways involved in cell cycle pro-
gression and proliferation, cell survival and apoptosis, cell
migration and angiogenesis, tissue invasion and metastasis,
and tumor stemness, thereby affecting all characters of onco-
genic phenotype of cancer cells [199, 200]. In addition to
these oxidative stress-mediated signaling events, high levels
of ROS can also lead to nonspecific damage of macromole-
cules such as nucleic acids, proteins, and lipids, often creating
more free radicals, and triggering a chain of destruction, to
promote oncogenic transformation [206]. ROS can cause
individual DNA base changes or gross chromosomal alter-
ations, thereby inducing mutagenesis and genomic instabil-
ity. The cells harboring DNA mutations typically undergo
apoptosis if they are unable to completely repair these DNA
lesions; however, under certain circumstances, these cells
escape programmed cell death, giving rise to transformed
progeny [14, 200, 207–209]. The mutagenic effects of ROS
are not limited to DNA damage, but can also involve an
attack of ROS molecules on proteins and lipids. For instance,
oxidative damage to the cells’ lipids initiates lipid peroxida-
tion, leading to the generation of a range of mutagenic prod-
ucts that could alter cellular functions and enhance cancer
initiation or progression [210, 211]. On the other hand,
ROS-induced protein damage to DNA repair enzymes has
been suggested as an explanation for the increased suscepti-
bility of mutations which contribute to the process of
carcinogenesis [212].

Identification of oxidative stress biomarkers in clinical
samples of cancer patients and defining their roles in
cancer initiation and progression holds great promise in
promoting the development of targeted therapeutic
approaches and diagnostic strategies evaluating disease sta-
tus. While literature records of direct measurement of ROS
levels in clinical samples are limited, significant amount of
data do exist regarding oxidative damage to the cell’s bio-
molecules (DNA, lipids, and proteins) as well as on enzy-
matic, nonenzymatic, and total antioxidant status in
clinical samples of cancer patients. In the tables below,
we summarize some of these findings in 10 different types
of cancer. Table 1 outlines findings regarding oxidative
damage to DNA, lipids, and proteins in clinical samples
of cancer patients, while Tables 2, 3, and 4 summarize
data related to enzymatic antioxidant activities, nonenzy-
matic antioxidant levels, and total antioxidant status,
respectively. We have particularly selected publications
that report quantitative values of the oxidant/antioxidant
markers.

4. Conclusion

Oxidative stress is implicated in the natural process of aging
as well as in a variety of disease states. A detailed understand-
ing regarding the link between oxidative stress and pathogen-
esis can be exploited to assess disease status as well as to
develop preventive and therapeutic strategies in humans. In
this review, three approaches were suggested to assess oxida-
tive stress in clinical samples: (1) direct measurement of ROS
levels, (2) detection of the resulting oxidative damage to bio-
molecules (DNA, lipids, and proteins), and (3) determination
of antioxidant status (enzymatic antioxidant activities, non-
enzymatic antioxidant levels, or total antioxidant capacity).

Direct ROS determination is a valuable and promising
oxidative stress biomarker that can reflect on disease status.
However, as we noted earlier, their measurement in biologi-
cal systems is a complex task given the short half-life and
high reactivity of these species. On the other hand, “foot-
prints” of oxidative stress are extremely stable and provide
a more reliable approach to evaluate oxidative stress in clin-
ical samples. While some of these modifications only reflect
the local degree of oxidative stress, others have a direct effect
on the function of target molecules. This functional signifi-
cance or the causal role of oxidative modifications further
highlights the clinical applicability of these oxidative stress
markers. However, sample processing should be performed
with caution to ensure their stability and to avoid the possi-
bility that biomolecules may become oxidatively damaged
during their isolation. As for the correlation of the antioxi-
dant status to the state of oxidative stress in clinical samples,
the measurement of individual antioxidant levels/activities
could yield conflicting results. For instance, some papers
report low antioxidant status in cancer samples, explaining
it as a loss of their protective capacity due to high oxidative
stress, while others interpret the findings of high levels/activ-
ities of the antioxidants as an adaptive response mechanism
to detoxify oxidative stress-related harmful metabolites. To
overcome such biases, it is advisable to determine the total
antioxidant status by evaluating all antioxidants simulta-
neously without excluding their interactions with each other.

The choice of the oxidative stress biomarkers and the
methods used to measure them in order to assess oxidative
status in clinical samples should be decided based on the
aim of the study and its design, as well as on the clinical rel-
evance in the selected subjects. No single parameter has yet
been recommended as a gold standard for defining redox sta-
tus in clinical samples. Furthermore, the individual markers
described above only partially reflect on oxidative status.
Therefore, an integrative approach examining both pro-
and antioxidant reactions has been recently suggested to
obtain a comprehensive score with higher sensitivity to phys-
iological and pathological alternations. Global redox status
indexes such as OXY-SCORE or oxidative-INDEX, com-
puted by subtracting the antioxidant capacity from ROS
levels/ROS-induced damage, or oxidative stress index
(OSI), which is the ratio of total oxidant status to total
antioxidant status, reflect simultaneously on oxidative
and antioxidant status in clinical samples and provide a
better and more powerful index in the evaluation of
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overall oxidative stress in clinical samples and the estab-
lishment of a definitive relationship between oxidative
stress and disease status [280–283].

As a final note, to our knowledge, no adequate com-
parison has yet been performed between different bio-
markers and the methodologies used to measure them,
making it difficult if not impossible to make a reliable
comparison of findings from different groups. A critical
evaluation and adaptation of proposed methodologies
available in the literature should therefore be undertaken
prior to carrying out a proposed study, so as to enable
the investigators to choose the most suitable procedure
for each chosen biomarker. In addition, such a compari-
son will enable careful meta-analysis of multiple scientific
studies related to oxidative stress.
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