Skip to main content
. 2019 Mar 19;13:153. doi: 10.3389/fnins.2019.00153

Table 1.

An overview of linear methods.

Learning representations Approaches Mathematical formulations Optimization problem Relevant references
Correlation-
based learning
Cross-Correlation
CCA

Bif(q)ui[k]~j=1nyAjb(q)yj[k]+e[k]
Generalized
eigenvalue
problem
Biesmans et al., 2017; Dmochowski et al., 2017; de Cheveigné et al., 2018; de Cheveigné et al., 2019
Model-based
learning
Forward modeling
Supervised case: Encoding
yj[k]=Bif(q)ui[k]+ejf[k] Least-
squares
Ding and Simon, 2012a; Di Liberto et al., 2015; Alickovic et al., 2016, in rewiev; Fiedler et al., 2017, 2019; Hjortkjær et al., 2018; Kalashnikova et al., 2018; Lesenfants et al., 2018; Lunner et al., 2018; Verschueren et al., 2018; Wong et al., 2018
Inverse/backward modeling
Supervised case: Decoding
ui[k]=j=1nyAjb(q)yj[k]+eib[k] Mirkovic et al., 2015; O'Sullivan et al., 2015, 2017; Aroudi et al., 2016; Das et al., 2016, 2018; Presacco et al., 2016; Biesmans et al., 2017; Fuglsang et al., 2017; Van Eyndhoven et al., 2017; Zink et al., 2017; Bednar and Lalor, 2018; Ciccarelli et al., 2018; Etard et al., 2018; Hausfeld et al., 2018; Narayanan and Bertrand, 2018; Schäfer et al., 2018; Vanthornhout et al., 2018; Verschueren et al., 2018; Wong et al., 2018; Akbari et al., 2019; Somers et al., 2019