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Abstract

Spreading depolarization (SD) occurs alongside brain injuries and it can lead to neuronal damage. Therefore, pharma-

cological modulation of SD can constitute a therapeutic approach to reduce its detrimental effects and to improve the

clinical outcome of patients. The major objective of this article was to produce a systematic review of all the drugs that

have been tested against SD. Of the substances that have been examined, most have been shown to modulate certain SD

characteristics. Only a few have succeeded in significantly inhibiting SD. We present a variety of strategies that have been

proposed to overcome the notorious harmfulness and pharmacoresistance of SD. Information on clinically used anes-

thetic, sedative, hypnotic agents, anti-migraine drugs, anticonvulsants and various other substances have been compiled

and reviewed with respect to the efficacy against SD, in order to answer the question of whether a drug at safe doses

could be of therapeutic use against SD in humans.
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Introduction

Spreading depolarization (SD) is a massive depolariza-
tion wave of neuronal and glial cells that propagates at
a rate of 2–9mm/min through cerebral gray matter.1 It
is characterized by the abruptly developing, near-com-
plete, and sustained breakdown of transmembrane ion
gradients, neurotransmitter release, increased energy
metabolism, water shifts, and depression of electrical
activity. Today, there is enough evidence showing the
presence of SD in migraine with aura (MA). SDs also
occur in cerebrovascular diseases such as stroke, sub-
arachnoid hemorrhage (SAH), traumatic brain injury
(TBI), and intracerebral hemorrhage (ICH). In these
conditions, SD occurrence has been associated with
neuronal damage, necrosis, degeneration, and poor
clinical outcome.2–4 The pathological effects of SD
can be in part explained due to its impact on cerebral
hemodynamics that produce a cycle of events that have
a cumulative effect progressively increasing the degree
and spatial extend of ischemia. It is well known that
SDs in a healthy, adequately supplied tissue has only
slightly damaging, innocuous effects.5–12 In contrast,
when neurovascular coupling is impaired or the tissue

is inadequately perfused, SD promotes spreading ische-
mia, excitotoxicity, oxidative stress, worsen hypoxia
and neuronal death, therefore, having a negative
impact on clinical outcome.13

In the clinical setting, the therapeutic modulation of
SD has gained expectations. Pharmacological targeting
of SD in the clinic is still in its infancy. Several experi-
mental studies indicate that SD can be modulated by
drugs. According to these observations, pharmaco-
logical modulation of SD in the clinical setting as a
neuroprotective therapy could be feasible. In this art-
icle, we focus on the pharmacological agents that have
been used against SDs. It is a systematic presentation,
classification, and evaluation of drugs that have been
tested against SD (Figure 1). After an exhaustive
search, we found 114 substances whose therapeutic
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effect on SD has been investigated, either individually
or in direct comparison with each other. We give
as part of the introductory segment a brief overview
of the relevant aspects of the physiopathology of this
phenomenon, followed by the clinical implication in
neurological diseases before approaching our main
topic. For a more comprehensive and vast description
of the cellular and molecular mechanisms and the
clinical role of SDs, we refer to the following
reviews.2–4,13–16

Relevant aspects of the physiopathology of
spreading depolarizations

Physiologically, SD corresponds to a self-propagating
wave-front of depolarization with neuronal and glial
cell implication. It can be accompanied by depression

of the electrocorticography (ECoG) activity of a fast
negative potential changes, and it usually spreads at a
characteristic speed of 2–9mm/min,1 and resolves after
5–15min.14,15

Underlying the depolarization, there is a breakdown
of ion gradients, such as Kþ and Hþ increases and Naþ,
Ca2þ, and Cl� decreases. This ionic interchange favors
neuronal swelling and dendrite distortion. There are
also pH changes – extracellular pH becomes first alka-
line and then acidic. The acidosis is associated with the
production of CO2 and lactic acid by a pronounced
oxygen and glucose consumption related to the
increased metabolism, which is necessary to restore
the ion homeostasis through the activation of Naþ/
Kþ-ATPase and Ca2þ pumps.14–16 SD also induces
the release of neurotransmitters into the extracellular
space such as glutamate, which activates NMDA,

Figure 1. Various target points play a role in the antagonization of SDs. Among others, NMDA-, GABA-, opioid-, AMPA, and

cannabinoid receptors. Moreover, a variety of channels is involved. These channels can be found on neurons, astrocytes, and pericytes.

Most substances antagonize SD via a complex machinery that involves multiple of these target points. Substances in the figure are

assigned to a target point which they are mostly associated with.
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AMPA, or kainate receptors that can lead to excito-
toxicity and cellular damage.14–16

SDs can be elicited by a variety of stimulus such as
high-frequency electrical pulses, direct current, mechan-
ical stimulation, basicity, hypo-osmolarity, hyperther-
mia, hypoxia, hyperkalemia, and hypoglycemia, and a
variety of chemical agents, such as Kþ and glutam-
ate,13,15 hypotonic exposure,17 and edothelin-1.18 The
mechanisms of SD induction and propagation in differ-
ent pathological situations is unclear. The two most
important hypotheses are based on extracellular Kþ

and glutamate diffusion mechanisms versus intracellu-
lar propagating agents (including Kþ and Ca2þ)
through gap junctions.15,19

The mechanisms underlying the cerebral hemo-
dynamic responses to SD are not fully understood.
SD is associated with increases in energy metabolism
that require large increases in regional cerebral blood
flow (rCBF). This reaction corresponds to a normal
vascular coupling which describes the increase in
rCBF supply in response to physiological neuronal acti-
vation and the reduction of rCBF with neuronal deacti-
vation. SD has been associated with increments of more
than 100% of rCBF, known as spreading hyperemia.
However, a brief reduction of rCBF and/or a sustained
suppression of rCBF known as spreading oligemia has
been detected following the hyperemic response.20,21

In pathological conditions, SD exerts drastic hemo-
dynamic changes. Under hypoxic circumstances, SD
can induce an inverse neurovascular coupling, consist-
ing of a prolonged and intense hypoperfusion, also
known as spreading ischemia.13–15 The shift from
spreading hyperemia to spreading ischemia can be trig-
gered by the decrease in NO availability together with
the increase of Kþ concentrations. Therefore, during
pathological conditions, spreading ischemia can
render neural tissue vulnerable to secondary damage
up to the development of widespread necrosis.22

Clinical implication of spreading
depolarizations

Occurrence of SD in the human brain and its role in the
pathophysiological basis of several neurological condi-
tions have been addressed in the clinical sciences. There
is sufficient evidence showing that SD has an important
role in different neurovascular conditions such as
stroke, SAH, TBI, and ICH.2–4 A relation between
SDs and MA has also been well documented.23

Different mechanisms for SD development after these
conditions have been postulated.

Several studies indicate the association between SD
occurrence and functional neuronal damage, neuro-
logical degeneration, and poor clinical outcome. The
deleterious effects in patients after brain injury have

been related with the drastic hemodynamic changes to
SD.2,13,24–26 We briefly review the impact of SD on dif-
ferent cerebrovascular diseases and MA.

Subarachnoid hemorrhage

SAH as a consequence of aneurismal rupture is a
common condition frequently leading to poor outcome
and death. Delayed cerebral ischemia (DCI) constitutes
the most important cause of morbidity and mortality
after SAH. A link between SD and SAH has been
established in a plethora of studies.27–29 In this
regard, the incidence of SD in SAH has been reported
in more than 70% and has been related to the develop-
ment of DCI.27,28 It is believed that increases in basal
Kþ attributable to erythrocytolysis, blood clot hemo-
lytic products and decrease of Nþ pump activity (due to
vasospasm of cerebral arteries) are triggering factors
for SD initiation.13,30

The major morphological and pathological impact
that SDs have in patients with SAH is a decrease in
the flow of oxygen and nutrients to metabolically
active neurons and a dysbalance of vasoconstrictor
and vasodilator agents.31 Therefore, when appearing
as clusters may lead to delayed neurological deficits
and development of new infarcts.27,28 Spreading ische-
mia has been well detected in patients with aneurysmal
SAH and DCI.27,28

In this scenario, factors such as reduction of rCBF,
microcirculatory dysfunction, microthrombosis, and
hemolytic blood products may provide an important
source of SDs leading to spreading ischemia and cor-
tical infarction.13,32 This speaks in favor of SDs as an
etiological factor that may contribute to the develop-
ment of DCI. Therefore, the pharmacological modula-
tion of SDs in SAH may lead to reduction of secondary
brain damage and DCI development, resulting in an
improvement of patients’ outcome.

Traumatic brain injury

Evidence of the development of SDs after TBI has been
well supported in different studies. In TBI patients, SD
has been registered between 50 and 60% and seems to
increase its incidence with lower levels of mean arterial
pressure and cerebral perfusion pressure.26,33

Hypotension, hypoperfusion, and hyperthermia occur
commonly in the clinical setting of TBI; they constitute
potential triggers of SD.34 Recently, Hinzman et al.35

showed the presence of inverse neurovascular coupling
to SD in a group of 24 patients who were subjected to
craniotomy after severe TBI. Supporting the associ-
ation between SD, spreading ischemia and the exacer-
bation of brain injury after TBI,35 therefore, the major
pathological impact that SD has in TBI patients is
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probably the mismatch of energy supply-demand and a
lower perfusion.34 As a result, SDs in TBI contribute to
lesion expansion and promote effects of secondary
insults that often accompany TBI. In consequence,
the control of SDs after TBI might be used to guide
the therapeutic decision making in each patient.

Stroke

After an ischemic insult, the presence of SD has been
reported in up to 100% of the patients; they arise from
the edge of the ischemic core and propagate through
the penumbra area.36 The number and duration of SDs
after ischemic brain lesions has shown to have a correl-
ation with secondary neuronal damage and further
infarct expansion.22 And Also, it has been postulated
that SDs are the underlying mechanism of cytotoxic
edema in grey matter.13 A plethora of evidence valid-
ates the notion of SD as a pathological mechanism
leading to secondary damage after stroke.37,38

Ischemia-mediated breakdown of ionic homeostasis is
thought to initiate the SD ignition.13 It also has been
shown how the supply-demand oxygen-transients mis-
match after somatosensory activation of peri-infarct
cortex is capable to trigger SDs due to an increase
demand or reduced oxygen supply, showing an adverse
effect on ischemic tissue outcome.39

The high incidence of SD after stroke and the dele-
terious consequences points out the relevance of SD
therapeutic modulation after an ischemic event in
order to reduce the infarct growth. This is in particular
challenging, due to the experimental data, indicating
that the induced disruption can outweigh the effect of
the therapeutic drug (e.g., an NMDA receptor antag-
onist), and SDs might still occur.40 Nevertheless, the
drug might still be very efficacious in the peri-ischemic
penumbra. Here, an antagonization of SD could hypo-
thetically unction as a preconditioning and even pro-
mote regeneration and plasticity.22,41

Intracerebral hemorrhage

ICH is a severe disease with high ICU mortality and
morbidity42 and perihematomal edema progression
strongly contributes to neurological deterioration and
worse outcome.43 SD has been detected in patients with
ICH,24 and it is hypothesized to contribute to the lesion
development, although it is not fully clear to which
degree.2 Firstly, Fabricius et al. observed SD in two
out five patients with ICH,24 and recently, a prospective
observational trial by Helbok et al. recorded SD in a
cohort of poor grade ICH patients in whom hematoma
evacuation was performed.44 Helbok et al. reported the
highest SD incidence rate in humans with ICH so far
(67%). An increasing hemorrhage volume in ICH is

thought to increase the risk of SDs through the
extracellular accumulation of Kþ.44 Since SD facilitates
dendritic beading, neuronal swelling, and cytotoxic
edema, SD might aggravate or even induce edema for-
mation in the perihematomal brain tissue of ICH
patients.44 A therapeutic approach of SD might
decrease SD edema expansion.

Migraine with aura

It has been suggested that SDs are responsible for MA
in the human visual cortex by showing a retinotopic
visual percept induced by SD during aura45 supported
by MRI-BOLD studies46 and various animal
models.47–49 There is evidence that SD activates the
trigeminovascular system, hence provoking headache.50

In patients with MA, episodic dysbalance of excitation
and inhibition and a hyperactivity of cortical circuits
have been proposed as a trigger of SDs.51 Even though
MA is usually injurious and not associated with neur-
onal damage, spreading ischemia is hypothesized to be
the underlying mechanism of migrainous stroke.13 The
pharmacological modulation of SDs in MA can serve
as a translational therapeutic model to other patho-
logical settings.

Pharmacological targeting of SD

Today, an overwhelming body of evidence supports the
concept that prevention of SD or containment of its
expansion means less brain damage and is thus of the
highest clinical relevance. Treating SD could improve
functional outcome. An ideal treatment strategy for SD
would have the potential for a pleiotropic effect by
positively modulating several of the implicated patho-
physiological mechanisms at once. However, energy-
depleted tissue complicates the therapeutic targeting
that there are still only a few targets that can be suc-
cessfully addressed by drugs.

Various strategies have been proposed against SD,
among them (1) blocking SD initiation, (2) modulating
of SD propagation, (3) reduction of SD amplitude,
(4) deceleration of SD progression, (5) reduction of
SD hemodynamic response, and (6) reversal of the
inverse response. All of this can be achieved by address-
ing various target points, such as NMDA, GABA,
AMPA, or opioid receptors and many more. The most
effective substances that are applied in humans are keta-
mine and valproate (Table 1). An antagonism of inverse
coupling has been achieved by vasodilators. A partial
antagonist effect of adenosine, by shortening of the
hypoperfusion, has been observed in SD in rodents.52

While the present review focuses on pharmacological
substances that inhibit SD, there are some additional
strategies that have been investigated but will not be
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addressed in depth. Hyperglycemia has been associated
with a lower incidence of SD.53,54 Moreover, in experi-
ments with KCl-induced SD, hypoglycemia was shown
to prolong the SD but had no effect on amplitude, inci-
dence, or propagation.55 Hyperoxia has been shown to
inhibit SD.56,57 Recently, transcutaneous vagus stimu-
lation has been shown to be efficacious in reducing the
susceptibility to KCl and electrically induced SD.58

Methods

Although the treatment of SD is of high clinical import-
ance, it is underreported in medical literature; the pre-
sent review focused on the following answerable
questions: (A) ‘‘Which drugs have been tested against
SD in vivo and in vitro?’’ (B) ‘‘How efficient are they in
reducing incidence and characteristic features of SD?’’
and (C) ‘‘Is a translation into clinical practice feasible
or imaginable?’’ The search for evidence was performed
in three databases: PubMed, Science Direct, and Web
of Science. The search terms included variations on the
condition (‘‘spreading depression, spreading depolar-
ization, cortical depression, anoxic depolarizations,
peri-infarct depolarizations’’) combined with treat-
ment-related terms (‘‘prevention, treatment, effect,
reduction, inhibition, therapy’’) and specific target
points (‘‘NMDA-, AMPA-, GABA-, opioid, seroto-
nin-receptor, anesthetic, sedative, hypnotic, analgesic
agents’’). The search was limited to the English lan-
guage and publications from January 1986 to the pre-
sent (September 2017). For more details on the
strategies used for each database, please contact the
authors. The main inclusion and exclusion criteria (lan-
guage and date) were applied during the screening of
the titles and abstracts, whereas the other criteria
(experiment type and animal) were addressed in full
text review. A total of 138 articles were selected for
full text review. Of these, 132 articles were selected
for final inclusion. Various strategies have been

proposed to target and modulate SD. The properties
of SD that have been targeted are the number, ampli-
tude, propagation, threshold, duration, frequency, and
hemodynamic response. Only articles that investigated
a drug’s effect on number, amplitude, propagation,
threshold, duration, frequency, and pial diameter
were selected for analysis.

Substances

NMDA receptor antagonists/agonists

NMDA receptor is the target of the most potent inhibi-
tors of SD. We therefore discuss its pathophysiologic
role as well as some representative agents.

The NMDA receptor is a heterotetrameric ionotropic
glutamate receptor, and expression studies indicate that
the functional receptor is composed of at least one NR1
subunit and one or more NR2 subunits.59,60 The highest
affinity endogenous ligands of its agonist binding site are
L-glutamate and aspartate.61,62 The NMDA receptor
controls a non-selective cation channel (with permeabil-
ity for Naþ, Kþ, and Ca2þ ions) that is gated by Mg2þ in
a voltage-dependent manner. In its activated state, this
channel can be blocked by various competitive, non-
competitive, and glycine site-specific antagonists as well
as others. Thus, NMDA receptor antagonists such as
ketamine can interfere with SD initiation and expansion
by increasing the threshold for Kþ and neurotransmit-
ters, and its duration by reducing the influx of Naþ and
Ca2þ.63 The NMDA receptor has been hypothesized to
play a definitive role in neurodegenerative conditions,
neuronal death, and various brain disorders.64–68

Failure of NMDA receptor antagonists
in clinical trials

The concept of glutamate-induced excitotoxicity served
as rationale for the integration of NMDA receptor

Table 1. Summary of results.

Most effective agents against SD Number Amplitude Propagation Threshold Duration Frequency

NMDAR antagonist (clinically used) Ketamine # # # " # #

Memantine # # #

NMDAR antagonist (animals only) MK-801 # # # " # #

Anesthetic agents Isoflurane # ¼ # ¼ ¼ #

Sevoflurane ¼ ¼ ¼ ¼ ¼ #

Anti-migraine drugs Valproate # # ¼ " ¼ #

Topiramate # ¼ # " # #

‘‘#’’ Means a reductive effect was observed after drug administration, ‘‘¼’’ means no effect was noticed, and blank space means the parameter was not

tested, ‘‘"’’ means that the examined parameter was increased after drug administration. Typical parameters under investigation are number, amplitude,

propagation, threshold, duration, and frequency. Experimental settings and models are heterogeneous, comprising different animals (chicken, rat, cat, mouse,

and swine) and various forms of SD induction (KCl and electrical stimulation). Among the most effective drugs are ketamine, MK-801, and topiramate.

Klass et al. 1153



antagonists into human trials. Although experimental
studies have widely shown that the pharmacological
blockade of ionotropic glutamate receptors reduces
ischemic damage, clinical trials with classical AMPA
and NMDA glutamate receptor antagonists have pro-
vided negative results.69–71 The main factors that are
hypothesized to cause this failure are:72–74

. Quality of the molecules (pharmacokinetic deficien-
cies, inability to reach effective concentrations in the
penumbra, shot neuroprotective time window,
inappropriate receptor subunit selectivity, high
drug toxicity in humans.75

. Inequivalent doses compared to rodents75

. Development of tolerance,12 for example, upregula-
tion of NMDAr

. Side effects, among others, blocking of normal syn-
aptic NMDA activity that promotes neuronal sur-
vival76 and blocking of neurogenesis at different
stages of recovery.75,77,78

. Administration of NMDAr antagonists at a critical
period after brain trauma exacerbates brain
damage78

. Bad design of clinical trials

It is important to recognize that the relationship of
the dose to produce inhibition of SD in humans is still
unknown for those substances, and the effect on SD
was not monitored in those studies. At that time,
there was no certain evidence that SDs occurred in
humans.

Therapeutic use of NMDA receptor antagonists
might be a balancing act. It is known that NMDA
receptor play a role in the recovery and neuroplasticity
after brain injury.79–84 For example, >40mg/kg/h
s-ketamine inhibited ischemia-induced-neurogenesis,85

but the doses tested in that laboratory study in rodents
are approximately 10 times the magnitude of the doses
used in humans. Long time therapy and high doses of
NMDA receptor blocking may at some point interfere
with the recovery of brain functions. For example,
NMDA receptor agonist in a late phase after stroke
facilitated recovery in rats.79

One possible approach to modulating the NMDA
receptor-mediated synaptic transmission in patho-
logical conditions is to do so without altering the
physiological excitatory transmission. For instance,
Ifenprodil and its analogs block NMDA receptors in
a voltage-independent manner without causing a sig-
nificant reduction in the agonist potency. Ifenprodil’s
pharmacological profile includes the ability to increase
the potency of ambient protons to block the NMDA
receptors.86 Since ischemic tissue is characterized by a
reduction of pH (at approximately 6.5),87 it has been
hypothesized that because Ifenprodil acts on the proton

sensors, it may represent a means of optimizing the
design of a new class of neuroprotectants that would
target the NMDA receptor only in the pathological
condition but not in physiological conditions. This is
just one example of potential ‘‘loopholes’’ in the prob-
lem of the NMDA receptor.

A total of 42 articles that described tests of NMDA
receptor agents were identified. These articles examined
24 NMDA receptor antagonists with respect to their
efficacy in modulating or possibly even blocking the
initiation, propagation, velocity, threshold, amplitude,
and duration of spreading depolarizations (Table 2).
The following NMDA receptor antagonists among
others have received scrutiny: ketamine, Mk-801, phen-
cyclidin, memantine, Glyx-13, NVP-AAM077, TCN
201, and Ro 25-698. Although most of these substances
have been proven to modulate some of the characteris-
tics of SD, only few can inhibit the induction of SD, for
instance ketamine and MK-801.

Table 2 provides the insight that NMDA receptor is
a key contributor to the propagation and initiation of
spreading depolarizations and hence a potent target in
the treatment of SDs. At the same time, NMDAr
antagonism has so far not been successfully translated
into clinical neuroprotection. More precisely, the table
reveals that the number of SD is the most successful
target (as evidenced in 36 articles),12,40,41,62,63,66–68,88–117

whereas an inhibitory effect on amplitude has only been
described in nine articles.62,89,90,93,105,107,109,110,114 The
threshold has only been under scrutiny in experiments,
in which SD is electrically induced and was successfully
increased in all of them.63,91,97,118

Ketamine. Resting on the premise that ketamine non-
competitively blocks the NMDA receptor and thus
restricts the perimembranous cation flow thereby influ-
encing SD, many randomized blinded experiments
in vivo and in vitro have been conducted that have
successfully demonstrated ketamine’s potency.
Effective dosages to affect SD incidence range from
2mg/kg/h to 200mg/kg/h.12,66

Marrannes et al. demonstrated that ketamine causes
a significant dose-dependent reduction of electrically
induced SD in alfentanil-anesthetized adult rats. At a
dose of 40mg/kg, ketamine increased the SD threshold,
decreased the propagation velocity, and decreased the
duration of the accompanying extracellular DC, Kþ,
and Ca2þ changes. At 80mg/kg, the elicitation of SD
was completely inhibited.63 Amemori and Bures found
that ketamine at a dose of 100mg/kg blocked the
occurrence of SD in rats, but the blockade induced by
subsequent ketamine injections weakened and finally
disappeared.12 Rashidy-Pour et al.62 observed a similar
outcome. Ketamine at 50mg/kg indeed blocked the
elicitation of SD. The blockade by the first ketamine
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injection lasted for 30–45min. The blocking effect of
subsequent injections gradually declined and was not
recognizable after a fifth ketamine injection.62 Krüger
et al.89 studied the effect of 100mM ketamine on the
characteristics of a KCl-induced SD in parietal cortical
slices of adult rats. He ascertained that ketamine sig-
nificantly reduced the amplitude of the first SD peak
and blocked the second SD peak when compared with
the controls.89 Hernándéz-Cáceres et al.40 examined the
ketamine-induced blockade of SD in pentobarbital-
anesthetized rats and presented evidence that ketamine
prevented the propagation of SD at 12mg/kg and at
higher doses. The blockade was maximal 20min after
the injection.40 Our group, Sanchéz-Porras et al. used a
gyrencephalic swine model to examine ketamine’s
effects against SDs. In this swine model, an intensive-
medicine setting is recreated in which the animal is
monitored for up to 30 h. The major results were that
s-ketamine at the human equivalent maximum dose of
2 mg/kg/h decreased the KCl-induced SD spreading
and had an effect on the amplitude of SD deflections,
as well as on the duration and speed. Moreover, during
infusion of this dose of ketamine, there was a sustained
decrease in the hemodynamic response following SD.
However, only at 4mg/kg/h of ketamine could the SD
induction and expansion be completely inhibited.90 In
another experimental setting, we found ketamine’s
influence on the vasculature during SD. We observed
a decrease of contractility during oligemia but not
under hyperemia.119

The experiments and clinical trials involving humans
are particularly relevant. Kaube et al.120 assumed that
SD is pathophysiologically relevant for the genesis of
the auras of migraines and thus investigated the ques-
tion whether the aura experienced by some patients
with familial hemiplegic migraine can be stopped by
intranasal ketamine. In 5/11 patients, ketamine repro-
ducibly reduced the severity and duration of the
auras.120 Hertle et al.41 documented an association
between the relative b-frequency and SD. The relative
b-frequency was suppressed up to 2 h prior to SD when
compared to periods that were not followed by SD. An
inverse correlation of the administration of ketamine
with the occurrence of spreading depolarizations has
been noted.41 Case reports document the effect of keta-
mine in two patients with traumatic brain injury and
aneurysmal SAH (aSAH),66 as well as a patient with
perihematomal edema.68 Another case report described
a patient with aSAH who displayed a cluster of SDs
under ketamine. The patient subsequently developed
severe delayed ischemic strokes and died.27 Most
recently, our research group, Santos et al. described a
suppressive effect of S-ketamine on SD in patients with
aSAH (Santos et al., unpublished data). Sixty-six aSAH
patients were prospectively monitored, including

ECoG. We retrospectively compared relevant collected
variables of patients who received ketamine at any time
(n¼33) vs. no-ketamine. A multivariable analysis
including Poisson, negative binomial, and linear
mixed models were performed to show the effect of
ketamine on SD incidence and characteristics. On
patient level, the mean dose of 2.81mg/kg/h ketamine
started at a mean of 4.6 days after ictus for a mean of
8.1 days was not enough to show significant differences
between groups in the total monitoring time of 17 days.
But upon analyzing hourly data and considering when
ketamine was given or not, we found a clear effect of
SD incidence reduction and changes in its electrical
characteristics. Doses above the recommended thera-
peutic range (>2mg/kg/h) were more effective than
therapeutic doses in SAH patients. A reduction of effi-
cacy over the monitoring days in patients was not docu-
mented. In order to reach neuroprotection, our results
favor a patient individualized ketamine schema with
soon start of ketamine and adaptation of the dose to
the patient’s conditions, timing after ictus and to the
detection of SDs.

Memantine. Memantine is an uncompetitive NMDA
receptor antagonist that has been clinically approved
for the treatment of Alzheimer’s symptoms.121–123

This drug is already used as a migraine-preventive
drug in clinical studies, and the results have been pro-
mising.124,125 Currently, positive effects of memantine
on cognition in demented patients have been
obtained.126 Specifically, it has the potential to improve
neuronal plasticity and learning in old animals127 and
an ability to enhance learning in rats with learning def-
icits caused by entorhinal cortex lesions.128 Moreover,
it has been observed that memantine reduced the fre-
quency of auras as well as headache in migraneurs,
which also suggests an association with SDs.124

Memantine’s pharmacological profile suggests that it
has the capacity to block excessive activation of
NMDA receptors without affecting normal signaling
by the receptor and thus better preserves a critical bal-
ance.129 Memantine’s potential to modulate SD has
until now only been subject of few experiments
(Table 2). Experiments in an in vitro chicken retina
model showed a concentration-dependent inhibition
of NMDA-evoked SD. A dosage of 12.67 � 0.99mM
was required to achieve an inhibition of 50% of SD.121

Moreover, memantine showed a significant dose-depen-
dent reduction of the number and amplitude of SD in
rats at a dose of 10mg/kg.102 However, its scientific
status is equivocal. Srienc et al. tested memantine in
rats in which the retinal vessels had been occluded by
photothrombosis and observed no significant effect, but
there was a trend towards a reduction of incidence.110

Recently, our group (Santos et al.) tested memantine at
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a dose of 1.5mg/kg against KCl-induced SD in a gyr-
encephalic porcine model. An analysis using ECoG and
IOS revealed that memantine applied within the thera-
peutic range had no suppressive effect on SD.
Nevertheless, the amplitude and duration were reduced
after the eighth stimulation, at which time the meman-
tine blood concentrations were 200 to 300% of the
therapeutic range. A possible reason for these observa-
tions might be that the increased potassium concentra-
tion of the 11mM preconditioning reduced the efficacy
of NMDA receptor antagonists to suppress SD. In vivo
experiments in rats suggest that an increased extracel-
lular Kþ concentration reduce the efficacy of NMDA
receptor antagonists to suppress SDs.130

MK-801. MK-801 is a well-characterized, potent, and
selective NMDA receptor antagonist that has been
tested for the suppression of cortical and retinal SD
in various in vivo and in vitro experiments on rats,
cats, and chickens (Table 2). A complete blockade of
the elicitation of SDs is in the range of 2–3mg/
kg,62,63,91,100,131 but experiments such as those con-
ducted by Nellgard and Wieloch showed that even
smaller dosages such 0.10mg/kg inhibited mechanically
elicited SD.92 A potency of MK-801 has also been
observed by numerous other investigators.93,95,98,108

Although it is a sufficiently potent inhibitor of SD
that it is often used as a positive control in experiments,
MK-801 has various reported side effects: MK-801
induces marked regional alterations in the local cere-
bral glucose utilization in rats,132 and a dose of 0.2mg/
kg has been reported to be sufficient to alter object
recognition memory.133 Recently, repetitive MK-801
administration has also been documented to induce
structural changes that resemble schizophrenia and a
dementia-like degeneration in the rat brain.134 At a
dose of 0.1mg/kg, MK-801 also exhibits anxiolytic
and antinociceptive effects in primates,135 which raises
the question whether it must be considered for further
studies.

Magnesium. Magnesium’s multifaceted pharmacological
profile includes neuroprotection. Experiments in
rodents have shown that the infarct size after MCAO
can be reduced by an application of magnesium.136,137

Despite these promising results, clinical randomized
controlled trials in which magnesium was used as an
intervention in acute stroke demonstrated neither neu-
roprotection nor reduced death or disability.138

Recently, Yamamoto et al. investigated a potentially
preventive effect of continuous cisternal irrigation
with MgSO4 on the cerebral vasospasms associated
with SAH in a randomized controlled trial but found
no protective effect on delayed cerebral ischemia nor on
the clinical outcome.139

Neurophysiologically, magnesium has versatile
effects including the inhibition of intracellular Ca2þ

influx and blocking the NMDA-activated channels.140

Magnesium’s neuroprotective properties and physio-
logical profile provide a rationale for various trials to
examine its potential to inhibit SD (Table 2).

Shibata and Bures showed magnesium’s potential to
inhibit KCl-induced reverberating SD in rats.113 van
der Hel et al.99 similarly observed a significant reduc-
tion of the frequency, a delay of the latency and a sig-
nificant blockade of the generation of KCl-induced SD
in rats at 90mg/kg. Magnesium’s inhibitory potential
was also observed in in vitro chicken models.111,112

More recently, our group, Santos et al. investigated
magnesium’s effect against SD in the gyrencephalic
swine model. A local administration and an intraven-
ous bolus of MgSO4 were tested. Local application of a
dose of 10mmol/LMgSO4 significantly reduced the
amplitude of the oligemic response of SD. In contrast,
an intravenous application did not alter SD, which
indicates that the blood–brain permeability, high
renal elimination, and low bioavailability need to be
considered when examining magnesium’s therapeutic
potential against SD.114 The same principle can be
applied for most therapeutic agents.

Further noncompetitive NMDA receptor antagon-
ists: Phencyclidine, 2-APH, AP5, CGS 19755, CGP
40116, CGP 43487, ACEA 1021, ZD9379, L-707, 324,
Glyx-13, KYNA, NVP-AAM007, TCN-2001, ifenpro-
dil, Ro 25-6981, CP-101,606, UBP141, 3PPP, BD-1063,
loperamid, spiperone, and 4-IBP.

Various non-competitive NMDA receptor antagon-
ists have been tested against SD. Some will be presented
in detail in this section. For more details, see Table 2.

Lauritzen and Hansen91 and Marrannes et al.63

observed that DL-2-amino-7-phosphonoheptanoic
acid suppressed the incidence of electrically induced
SD in rats at a dose of 10mg/kg, whereas a much
higher dose of 160mg/kg of 2-APH is required to
reach complete suppression.

The competitive NMDA-receptor antagonists CGS
19755 (cis-4-phosphonomethyl-2-piperidine carboxyl-
ate), CGP 40116 (D-(E)-2-amino-4-methyl-5-phos-
phono-3-pentenoic acid), and its carboxylester CGP
43487 have been shown to inhibit the elicitation of
mechanically induced SD in the rat cortex at doses of
0.75mg kg�1, 0.25mg kg�1, and 1.50mg kg�1,
respectively.92

Since the NMDA receptor channel complex contains
a glycine recognition site that must be occupied for
activation, it can be hypothesized that antagonism of
the glycine site might counteract SD. ACEA 1021 (5-
nitro-6,7-dichloro-1,4-dihydro-2,3-quinoxalinedione)
minimized cerebral infarct volumes.141,142 Martin
et al.88 examined ACEA-1021 for its influence on the
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threshold and propagation rate of electrically induced
SD. Although the threshold was unaffected, a dose-
dependent deceleration of SD was noted. The elicit-
ation of SD was not inhibited by ACEA 1021 at any
dose.88

ZD9379 is a soluble, potent, bioavailable full antag-
onist at the glycine site.116 It reduced the number of
SDs and the infarct size in rats with a permanent
MCAO at a dose of 5mg/kg according to Tatlisumak
et al.143

L-707, 324 is a high affinity antagonist at the glycine
site of the NMDA receptor that has shown in vivo
potency against seizures.144 Its effectiveness against
SD has been investigated by Obrenovitch and
Zilkha.95 A dose of 10mg/kg was required to block
the induction of SD, whereas 5mg/kg was sufficient
to completely inhibit propagation, but the effect on
SD was rather moderate compared to that of a classical
inhibitor as MK-801.

Glyx-13 is an NMDA-receptor modulator with gly-
cine-site partial agonist properties that recently has
been shown to produce rapid antidepressant
responses.145 Its physiological profile permits Glyx-13
to act as an agonist of the NMDA receptor in the
absence of saturating D-serine while acting as an antag-
onist at high concentrations of D-serine. During SD,
which elicits the release of high levels of glutamate and
D-serine, GLYX-13 is likely to act as an antagonist that
would prevent the over-activation of NDMA recep-
tors.146,147 Its interaction with SD has only recently
came under the spotlight. Glyx-13 has been observed
to increase the refractory period of hippocampal rat
SD, to limit the propagation of SD, and to reduce the
amplitude of the negative field potential shift and
restored the dendritic spines.148 Since Glyx-13 is not
an NMDA receptor antagonist, but rather an allosteric
modulator, therapeutic application could be facilitated
because the side-effects of NMDA receptor channel
blockers would be avoided.

Kynurenines, and particularly the endogenous
kynurenic acid, exhibit a strong modulatory potential
on the neuronal structures in the brainstem, which may
play a crucial role in the pathogenesis of migraine.149

Kynurenic acid suppresses SD107,150 and the precursor
L-kynurenin also suppresses SD waves and reduced
c-fos immunoreactivity and neuronal nitric oxide syn-
thase, which are associated with SD as well as with
migraines.150–153 A therapeutic use is improbable
because Kynurenic acid facilitates pathological path-
ways154 and is involved in the development of manic
or psychotic symptoms.155

GluN2A, GluN2B, and GluN2C/2D: Specific NMDA antagonists

against SD. The GluN2A-selective NMDA receptor

antagonist NVP-AAM077 reduced the amplitude and
propagation rate of KCl-induced SDs in chicken
retina,105,109 30-fold more potent than MK-801. To a
slightly lesser extent, the GluN2A-specific antagonist
TCN2001 also reduced the amplitude and deaccelerated
SD in the chicken retina.109 Contrasting results for
TCN-201 in chick retina were found by Shatillo et al.,
who used BOLD fMRI to examine the drug’s effect
against SD but found no inhibitory effect.108

Ro 25-698, a GluN2B-selective receptor antagonist,
reduced the amplitude to 51.1% of the initial values at a
concentration of 10 mmol/L105 in chicken retina, and
similar inhibitory potential was documented in KCl-
induced SD in rats.102

CP-101,606, a GluN2B-selective receptor antagonist,
prevents the death of rat hippocampal neurons156 and
reduces the size of infarcts caused by subdural hema-
toma in rats.157 Nevertheless, CP-101,606 was ineffect-
ive against SD in Wang et al.’s chicken retina model.105

Different results were obtained by Peeteres et al. who
described a dose-dependent reduction in the SD num-
bers and amplitude.102 Similarly, Menniti et al.117

observed that CP-101,606 inhibited SD generation at
a dose of 2.25mg/kg bolus þ 2.25mg/kg/h intravenous
infusion. Additionally, the amplitude and propagation
velocity were also decreased in a dose-dependent
manner.117

Sigma site antagonists/agonists against SD. Sigma receptors
can be found throughout the body and CNS,158,159 and
the evidence suggests that sigma ligands are associated
with neuroprotection.160–162 The exact role of sigma
receptors in the pathogenesis of SD is yet to be
elucidated.

We reviewed five sigma site-specific NMDA receptor
antagonists BD-1063, 3PPP, 4-IBP, carbetapentane,
and dextromethorphan.

Anderson and Andrew tested carbetapentane and
dextromethorphan against KCl-induced SD in rat
brain slices. Both drugs at a dose of 100 mM blocked
the generation of SD and prevented the tissue swelling
that usually follows SD.101 Moreover, Anderson and
Andrew examined 4-IBP, a &R agonist that has only
insignificant cross reactivity at the NMDA receptor
sites compared to other sigma agonists.163 4-IBP
showed a blocking effect against KCl-induced SD in
rodents at a dose of 100 mM, but did not prevent the
secondary swelling.101 Another &R agonist that has
an inhibitory effect against SD is SK&F 10047,
which showed a dose-dependent inhibition of the inci-
dence of KCl-induced SD in rats.94 In contrast, the
&1R antagonists BD-1063 and (þ)-3-PPP had no
inhibitory effects on the KCl-induced SD in rat brain
slices.101
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Anesthetic, sedative, hypnotic, and
analgesic agents

SD susceptibility is modulated by general anes-
thetics.118,167–171 An anesthetic agent that combines
effectiveness against SD and clinical applicability is
sevoflurane. To our knowledge, sevoflurane has been
tested against KCl-induced SD only by Kitahara
et al.168 in rats. A dose-dependent reduction in the fre-
quency and a dose-dependent increase in the DC cur-
rent have been observed, whereas the number,
amplitude, and duration of SD seemed to be
unaffected.168

Isoflurane has been examined in six studies with
ambiguous results. Similar to most volatile anesthetics,
isoflurane acts via various mechanisms and affects dif-
ferent channels and receptors at various levels of the
brain. Muscle relaxation is likely induced by isoflurane’s
potentiation of glycine receptor activity. Moreover, it
antagonizes NMDA receptor and affects the calcium
ATPase, ATP synthase, and GABA receptors.
Importantly, isoflurane has various adverse effects,
such as hypotonia and cardiodepression. Additionally,
isoflurane has been associated with neurodegeneration,
promotion of apoptosis, and an increase of the amyloid
beta protein levels that are associated with Alzheimer’s
disease.172 Currently, volatile alternatives as sevoflurane
are preferred over isoflurane for clinical use. A protect-
ive effect of isoflurane against the initiation of SD has
been described in various experiments.168,169,173,174

Specifically, there is evidence for isoflurane’s potential
to suppress the SD frequency168,173 and to reduce the
propagation speed,173 whereas the amplitude of SD
seems to be unaffected by this agent.168

The exact mechanisms by which anesthetics inhibit
are yet to be clarified, but may involve their ability to
partially antagonize the NMDA receptor. For instance,
isoflurane has been associated with a reduction of neur-
onal depolarization as a reaction to a glutamate and
NMDA application175 and can even reduce the mean
open time of the NMDA channel.176

Further anesthetic agents that have been tested
against SDs but were proven to be either ineffective or
only to have a modulatory effect at doses that could
never be applied in humans include dexmedetomi-
dine,173,177 benzocaine,181 debucain,178 lidocaine,179–181

midazolam,41 equithesin,182 and thionembutal.167

Table 3 provides the insight that most anesthetic
agents exert little or no influence against SD; hence,
future investigation should focus on more promising
substances. Table 3 shows that none of the potential
characteristics of SD (number, amplitude, duration,
frequency, and propagation) is a successful target for
anesthetic substances. Although three articles show
some inhibition against the number of SD,104,169,174

the majority describes no inhib-
ition,41,167–169,171,179,182,183 or even an increased ampli-
tude after drug administration.41 Even more ambiguous
results are observed for the effect on frequency. While
three articles describe an inhibition,167,168,173 two
describe an increase.168,184 Duration168,173,184 has not
been affected by any tested anesthetic drug.

Anti-migraine drugs

There is evidence that SD plays a causative role in all
migraine types, including migraine without aura.185

First, the phenomenological resemblance (e.g., velocity,
hyperexcitability and electrocorticogram suppression)
between SDs and the scintillating phenomenon that
can be observed during migraine supports that SD is
the electrophysiological mechanism for the migraine
aura.186 Second, chronic administration of anti-
migraine drugs has been shown to have an inhibitory
effect on SD.50 Third imaging studies of migraine with
aura.45,46,187,188 The resulting hypothesis that SD sup-
pression may be a function of anti-migraine drugs has
been fueled by new discoveries. In particular, the anti-
migraine effect of vagus stimulation (that has been suc-
cessfully applied against migraine189–191) has recently
been tested in the context of SD by Chen et al.58 He
observed an inhibitory effect of noninvasive as well as
direct stimulation against KCl-induced SD in rats.58

In contrast, SD-blocking substances have come
under scrutiny for a potential anti-migraine effect.
Ketamine, a proven blocker of SD, has been shown
to stop the neurological aura symptoms in some
patients but had no effect on the headache.120

Many migraine drugs from different pharmaco-
logical classes have been tested against SD so
far,50,97,102,110,179,185,192–207 and topiramate and flunar-
izine were most effective since they exerted an inhibi-
tory effect in all of the revised studies.

Valproate

Valproate was originally used as an anticonvulsant and
has a multifaceted action spectrum: it inhibits voltage-
dependent sodium channels and T-type calcium
currents, augments the action of glutamic acid decarb-
oxylase, and modulates the extracellular signal-
regulated kinase pathway.208 Evidence supports its
efficacy in migraine prevention and acute migraine ther-
apy.209 Approximately one to three months of valpro-
ate or topiramate treatment additionally suppress
cortical hyperexcitability in migraineurs.210–212

Currently, valproate is a promising substance for the
therapy of SD. A recent study by Ayata et al.50 inves-
tigated the efficiency of topiramate, valproate,
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propranolol, amitriptyline, and methysergide against
SD. Chronic daily application of these agents corre-
lated with a dose-dependent deceleration of SD by
40% to 80% and a reduction of susceptibility whereas
a single dose was ineffective.50 Further studies support
the idea that chronical application is effective,185,202

while some groups report no effect at all.179

Tonabersat

Tonabersat is a novel putative migraine prophylactic
agent with a unique stereospecific binding site in the
brain. In animal models, tonabersat has shown an
inhibitory potential against SD and cerebrovascular
responses to trigeminal nerve stimulation.213 With
respect to its efficacy in humans, tonabersat failed to
significantly reduce the number of headache days in
migraineurs when compared to placebo, but it is usually
well tolerated.214 With respect to its effect against SD,
we found positive preliminary results, showing a poten-
tial to reduce the number of SD,192–194 to decelerate
SD192,194 and to modulate hemodynamic response.193

Topiramate

Topiramate is generally used as an anticonvulsant for
epilepsy. Pharmacologically, topiramate positively
modulates the GABAA receptors. GABAA receptors
are pentameric ligand-gated ion channels that are
involved in neuropathic pain and migraine among
other effects and consequentially constitute a thera-
peutic target.215–218 In regard to efficacy against SD,
there are promising results.

Ayata et al.50 showed that 60 and 80mg/kg/day of
topiramate reduced the number of SDs by 30% and
50%, respectively, whereas 40mg/kg/day was ineffect-
ive. Furthermore, an almost complete abolishment of
SD was observed after 17 weeks of topiramate treat-
ment, whereas 1 week of treatment even at a high dose
(80mg/kg/day) had little effect, which suggests that a
sustained treatment is necessary for a significant sup-
pression.50 Moreover, a suppressive effect on SD fre-
quency and propagation196 and a modulatory effect on
hemodynamic response195 have been reported.

Other modulators of the GABAA receptor, such as
TPA023, NS11394, and SL651498, have been docu-
mented to exert some inhibition against SD in an
in vitro chicken model,219 suggesting that GABAA

receptors, especially the a2 subtype, might be a respon-
sive therapeutic target.

Flunarizine

Flunarizine is a large hydrophobic fluorinated pipera-
zine derivative that is used in the prophylaxis ofT
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migraine.220–224 Flunarizine possesses neuronal calcium
channel blocking activity.225 In contrast to other Ca2þ-
entry blockers, flunarizine does not modify the myo-
genic activity of vascular smooth muscle.198 This par-
ticularity is important because it implies that flunarizine
can render cells unresponsive to vasoconstrictive sti-
muli, without interfering with the normal control of
tissue perfusion.198 Evidence also exists for its efficacy
against SD. Certain investigators only observed
Flunarizine’s effects on hemodynamic response of
SDs, but not on the characteristics of SDs,200,226

while other investigators observed Flunarizine’s
effect on hemodynamic response as well as SD
characteristics.97,199

Flunarizine’s suppressive effect on the number of
SDs might originate from a blockade of L-, N-, and
P/Q-type voltage-gated Ca2þ channels227 and flunari-
zine’s shortening effect on duration may be attributed
to its inhibitory effect on the cortical hypoperfusion
induced by SD.226

Sumatriptan

Sumatriptan is effective in migraine by acting on
the serotonin system. Its effects are mediated
through vasoconstriction and blockade of neurologic
inflammation. Few experiments on sumatriptan’s
inhibition of SD have been performed. A dose-depen-
dent reduction of the numbers and amplitude and a
deceleration of KCl-induced SDs in isolated chicken
retinas at a dosage from 0.05 to 2.00 mM205,228 was
observed in the late 1990s, while more recently pub-
lished studies support these observations.110,204

However, the scientific status of this agent is ambiva-
lent, and some studies observed no reductive effect on
SD.194,203,229

Additional anti-migraine drugs that were effective
against SDs are lamotrigine,185 riboflavin,185 methylser-
gide,50,205 amitryptoline,50 and propranolol,50,205,206

but only a few experiments exist. Various anti-migraine
agents have shown no effects against SD. Among these
are dihydroergotamine,179 ergotamine,205 clonidine,205

lisuride,205 iprazochrome,205 isoprenaline,207 and
amylnitrite.207

Table 4 provides the insight that, to date, a variety of
in vivo and in vitro models suggest that prophylactic
drugs are effective against SD if applied chronically
over a long period of time.179,193,205 These substances
need to be tested in adequate dosages and in fur-
ther settings. Table 4 shows that the most success-
ful target of anti-migraine drugs is SD
number,50,110,192–195,197–199,204,205 while amplitude and
propagation show ambiguous results. Especially,
propagation is reported to be increased by certain
anti-migraine drugs.192,194T
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Further agents tested against SD

In addition to the substances discussed above, we
reviewed 54 other articles and identified 60 more sub-
stances that had been tested against SDs. Among them
are AMPA receptor antagonists, ion channel blockers,
cannabinoid receptor agonists, and various other agents
such as garlic extract and shrimp carotenoid. The diver-
sity of anti-SD substances underlines the complexity of
SD and indicates that more research is necessary.

Table 5 shows that some of the substances that are
less known for an inhibitory effect against SD (nalox-
one,230,231 GYKI 52466,232,233 sulpiride,234 and
THC235) show potential to reduce SD number, propa-
gation, and duration and must not be forgotten.

Conclusions

The most effective group of drugs that are effective to
block SD incidence and characteristics are NMDAr
antagonists. Still, a refinement of the glutamate recep-
tor antagonist therapy is necessary, including more sub-
type selectivity or a plural inhibition of glutamate
excitotoxicity.

Neuroprotection using SD as a target must be scru-
tinized in more realistic scenarios, rather than animal
models that do not translate to the human gyrencepha-
lic brain, because neither of the strategies tested using
them could be translated into the clinic. We have to
consider not interfering with neuronal survival and
neurogenesis, important factors in the rehabilitation
of the patients.

Different from other neuroprotective targets, target-
ing SD can be finely adjusted and individualized,
because we have the possibility to measure SDs in
real time using ECoG.
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